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Abstract

We allow a contest organizer to bias a contest in a discriminatory way; i.e., she can favor spe-
cific contestants by designing the contest rule in order to maximize total equilibrium effort
(resp. revenue). The two predominant contest regimes are considered, all-pay auctions and
lottery contests. For all-pay auctions the optimal bias is derived in closed form: It implies ex-
treme competitive pressure among active contestants and low endogenous entry. Moreover,
the exclusion principle advanced by Baye et al. (1993) becomes obsolete in this case. In
contrast, the optimally biased lottery induces larger entry of contestants due to softer compe-
tition. Our main result regarding total revenue comparison under the optimal biases reveals
that the all-pay auction revenue dominates the lottery contest for all levels of heterogeneity
among contestants. The incentive effect due to a strongly discriminating contest rule (all-
pay auction) dominates the participation effect due to a weakly discriminating contest rule
(lottery).
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1 Introduction

The all-pay auction and the lottery contest game are the most frequently used setups to model
strategic competition among agents that exert non-refundable effort to influence their respective
chances to win a fixed prize. Both types of models have been extensively used in applied analy-
sis, for instance, in the areas of R&D competition, lobbying, sports, rent-seeking, procurement,
etc., see Konrad (2009) [11] for a survey. One of the reasons for the popularity of these models
might be the analytical tractability, especially if employed under the assumptions that the rules
that govern the competition are anonymous and that agents are homogeneous. Recently, there
is a growing interest in relaxing these limiting assumptions: The heterogeneity of contestants
comes into the focus of analysis and, as a consequence, also the question of how the contest
organizer should exploit heterogeneity among contestants by treating different contestants differ-
ently. Recent examples that follow this approach are Siegel (2012, 2010), [12, 13], Kirkegaard
(2012), [10], Epstein et al. (2011), [4], Szech (2011), [15], and Franke et al. (2011), [6].

Due to the prominence of the rent-seeking interpretation in this literature an important aspect
in the strategic analysis is the relation between aggregate equilibrium efforts of the agents (i.e.,
the revenue of the auction or contest) and the underlying institutional rules and characteristics that
govern the specific form of the contest. In Baye et al. (1993), [2], for instance, an analysis of the
all-pay auction with heterogeneous players established the so called exclusion principle, which
implies that a revenue-maximizing contest organizer might optimally exclude strong agents from
the competition ex-ante. This result is in contrast to the symmetric lottery case considered in
Fang (2002), [5], where it is shown that exclusion of strong players is never optimal for the
contest organizer. Moreover, the direct comparison between these two contest regimes reveals
that neither revenue-dominates the other a priori. The intuition for this result can be attributed
to the trade-off between competitive pressure and entry which is differently resolved in the two
regimes: Competitive pressure in an all-pay auction is primarily generated by the institution
itself. Its highly discriminative, all-pay deterministic winner-takes-it-all nature endogenously
restricts entry in equilibrium to (generically) just two contestants. However, competition between
those two is so intense, that in (mixed strategy) equilibrium only one has a positive payoff in
expectation (while both have a positive probability of winning). In contrast, a lottery contest with
its characteristic probabilistic contest rule is much less discriminative as an institution because it
does not require to be the highest bidder in order to win. This characteristic is highly conducive
for attracting entry; i.e., competitive pressure in a lottery contest is primarily generated by the
interaction of many active contestants in equilibrium. Fang (2002), [5] shows that from a revenue
maximizing contest designer’s point of view it depends on degree and nature of heterogeneity of
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contestants whether it is better to ignite competitive pressure ex ante (through the choice of a very
discriminative contest success function like the all-pay auction), which is reduced endogenously
ex post due to a minimal amount of entry, or to opt for weaker competitive pressure ex ante

(by choosing a less discriminative contest success function like the lottery contest) which is
endogenously reinforced ex post due to entry of more contestants.

Importantly, both of these models are based on the assumption that the contest organizer
is neutral with respect to the contestants; that is, she chooses among contest regimes, which
treat contestants anonymously. This is certainly not the case in many real world contests (just
think of the contest rules for a job opening of a professorship), where the contest organizer has
control over some variables, which bias the contest systematically (and legally) in favor of certain
contestants. Further examples are provided by biased contests in affirmative action contexts,
public procurement practices, which favor local or national firms over others, sport tournaments
with handicap schemes, and litigation law, which allocates the costs between the parties involved
asymmetrically. A detailed account of biased public procurement in Israel is provided by Epstein
et al. (2011), [4]. Biasing the contest rule gives the contest organizer additional power to promote
her interests, in particular in the presence of heterogeneous contestants. This situation is analyzed
for the case of two contestants in Epstein et al. (2011), [4], where the contest organizer can
specify individual weights for each of two contestants. Setting individual weights reflects her
potential for discriminating between the two contestants which has consequences for the revenue
comparison between all-pay auction and lottery contest: The optimally biased all-pay auction
revenue-dominates any biased lottery contest, independently of heterogeneity between the two
contestants. However, the restriction to the two-player case is particularly severe for at least two
reasons: Firstly, it ignores the basic trade-off with regard to competitive pressure as described
above. The ”minimal entry” feature of the all-pay auction is eliminated, likewise the scope of
the lottery contests for increased competitive pressure through additional entry. Secondly, the
solution theory of the biased lottery contest with only two contestants is a degenerate case of the
general n-player solution, see Franke et al. (2011), [6]. More precisely, the optimal weight for a
contestant in the two-player case only depends on his own characteristics, whereas with three or
more players any optimal individual bias weight depends on the characteristics of all contestants.

The objective of this paper is to determine a revenue (or total effort) maximizing contest
organizer’s choice of contest, when she is faced with n heterogeneous contestants. Her choice
set consists of a set of (potentially biased) contest success function, which contains lotteries and
all-pay auctions. For lottery contests we can rely on Franke et al. (2011), [6], who analyze the
optimal choice of the contest organizer if her choice set is restricted to biased lotteries. How-
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ever, the optimal choice from the set of biased all-pay auctions has not been determined so far.
This derivation is challenging due to the fact that, depending on the choice of the all-pay auction
contest rule, multiple mixed strategy equilibria might exist which are not revenue equivalent.
Nevertheless, we derive a simple expression of the optimal bias in closed form and the corre-
sponding revenue for any finite set of contestants with heterogeneous valuations. This result
allows us then to compare the induced revenue in the two regimes under the respective optimal
biases. Our second main result (Theorem 4.3) states that revenue dominance of an optimally
biased all-pay auction over the optimally biased lottery holds for any given set of heterogeneous
contestants. This result is far from trivial, but has a clear intuition: The ability of the contest or-
ganizer to discriminate between contestants in the all-pay auction is used to make the exclusion
principle obsolete (an alternative approach is the modified all-pay auction rule in Gale and Stege-
man (1994), [8], which gives only the strongest contestant a special status). Under the optimal
bias it will always be the two strongest contestants who choose to be active, and they are made to
compete with each other in the strongest possible way, i.e., in a playing field that is completely
leveled due to the bias. No strong player is excluded a priori by the organizer. As expected, the
discriminatory power of the contest organizer in the lottery contest is used to encourage further
entry: In any optimally biased lottery contest at least the three strongest contestants are active.
However, the playing field among active contestants is not completely leveled in the optimally
biased lottery contest because balancing the playing field negatively affects incentives for strong
contestants. Moreover, the optimal bias is specified such that not all contestants might be in-
duced to become active. This incompatibility of high entry and high competitive pressure due
to a leveled field given entry in the lottery contest contributes to its inferiority with respect to
the optimally biased all-pay auction. Our theoretical results therefore provide a new explana-
tion for the often observed phenomenon that only two strong contestants endogenously decide
to participate in contests although the potential field of contestants is substantially larger (see
the introduction of Fullerton and McAfee (1999), [7], for some real world examples of this phe-
nomenon in research contests). Our revenue dominance theorem demonstrates that the reason
for this observation might not be the irrational manipulation of the contest design from the side
of the contest organizer (or outright illegal collusion with specific contestants) but instead her
motivation to maximize total efforts.

The paper is organized as follows. Section 2 contains the model, Section 3 derives the opti-
mally biased all-pay auction. In Section 4 we recapitulate the optimally biased lottery contest as
derived in Franke et al. (2011), [6], and compare it to the result from Section 3, which gives our
Revenue Dominance Theorem. Section 5 concludes.
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2 The Model

There are n agents N = {1, . . . , n}, that participate either in a contest or in an all-pay auction
which implies that they can influence the probability to win a non-divisible prize by exerting
non-refundable effort. Agents are heterogeneous with respect to their valuation of the prize;
that is, agent i ∈ N values the prize at vi ∈ (0,∞) and chooses a strategy (exerts effort) xi ∈

[0,∞) to influence the probability Pri(xi, x−i) : [0,∞)n
→ [0, 1] of winning the prize, where∑

i∈N Pri(xi, x−i) = 1 and (xi, x−i) := (x1, . . . , xn) for all i = 1, . . . , n. Hence, the payoff function of
agent i is:

πi(xi, x−i) = Pri(xi, x−i)vi − xi for all i ∈ N.

The formal rule of a contest, which maps an individual’s effort into his winning probability
as a function of the other contestants’ efforts is called a contest success function (CSF). We are
going to consider deterministic and probabilistic CSFs; we refer to the former as all-pay auctions
and to the latter as lotteries. Technically speaking, lotteries are logit CSFs with linear component
functions.

We will assume without loss of generality that agents are ordered with respect to their valua-
tions: v1 ≥ v2 ≥ . . . ≥ vn. The contest organizer has the power to bias the contest outcome with
respect to specific agents. This implies that the contest organizer can specify a vector of agent
specific weights α = {α1, . . . , αn} ∈ (0,∞)n that affect the impact of the agents’ effort on the win
probability as specified below. We consider two different classes of contest success functions
that govern the probability to win the prize for player i:

• The biased all-pay auction (BAA) framework:

PrBAA
i (xi, x−i) =


1, if αixi > α jx j for all j , i,

1
k+1 , if αixi = α jx j for k agents j , i and αixi > αlxl for all other agents l , i,

0, if αixi < α jx j for some j , i.

• The biased lottery contest game (BLC) framework:

PrBLC
i (xi, x−i) =


αi xi∑n

j=1 α j x j
, if

∑n
j=1 α jx j , 0,

0, if
∑n

j=1 α jx j = 0.

We are going to evaluate the two regimes with respect to the maximal total (expected) revenue
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X∗,c that they induce in equilibrium: X∗,c =
∑

j∈N E[x∗,cj ] with c ∈ {BAA, BLC}, where x∗,c is the
(potentially mixed) Nash equilibrium strategy under the respective optimal bias and E[x∗,cj ] is
the corresponding expected equilibrium effort of agent j. Alternatively, we can formulate the
following three stage game, where the objective of the contest organizer is to maximize total
revenue:

1. Stage: The contest organizer chooses the competitive regime BAA or BLC.

2. Stage: The contest organizer specifies the optimal bias α; i.e., chooses the best CSF.

3. Stage: The agents choose the payoff maximizing strategies.

Note that the previous contributions by Baye et al. (1993), [2], who introduced the exclusion
principle, and Fang (2002), [5], who compared the standard (unbiased) all-pay auction and lottery
contest, can be viewed as restricting the contest organizer’s choice of αi to 0 or 1 for all i =

1, . . . , n. The former means ‘exclusion’, the latter ‘participation’, i.e. ‘becoming a finalist’ in the
language of these authors.

We will derive the subgame-perfect Nash-equilibrium by backward induction. The charac-
terization and existence proof of the Nash equilibrium in the third stage given a fixed bias α is
standard: For asymmetric lottery contest games the methods presented in Stein (2002), [14], as
well as Cornes and Hartley (2005), [3], can be used; for the biased all-pay auction a transfor-
mation allows that similar arguments as in Baye et al. (1993), [2], can be applied. Hence, we
directly concentrate on the second stage. In the following section we derive a closed form for-
mula for maximal total revenue in the all-pay auction framework and provide an optimal bias.
For the lottery contest we rely on the results in Franke et al. (2011), [6], where a closed form
expression for total revenue under the optimal bias is provided. Note that the respective biases
for the all-pay auction and the lottery contest framework are not unique which had to be expected
because all contest success functions are homogeneous of degree zero in both frameworks.

3 Revenue Maximization in the All-Pay Auction

The scope of discrimination and the resulting amount of total revenue in the all-pay auction is
derived as follows. In the first lemma, we are going to show that the biased all-pay auction is
strategically equivalent to a standard unbiased all-pay auction with transformed valuations. This
allows us to use the results from this literature, e.g. Baye et al. (1993 and 1996), [2], [1], and
Hillman and Riley (1989), [9]. We derive the maximal revenue and a corresponding bias in
closed form.

5



Before we are going to present the equivalence result in the next lemma we introduce the
following notation. Denote by yi = αixi and ṽi = αivi for all i ∈ N. In line with Baye et al.
(1993), [2], the expected effort from agent i’s (potentially mixed) strategy yi is denoted by E[yi]
for all i ∈ N.

Lemma 3.1 The BAA framework is equivalent to a standard unbiased all-pay auction based on

transformed valuations ṽ = {ṽ1, . . . , ṽn}, where total (expected) equilibrium revenue is equal to:

X̃BAA =

n∑
i=1

1
αi

E[y∗i ] (1)

with y∗ being an equilibrium of the unbiased all-pay auction.

Proof. We now use the transformed effort variable yi for all i ∈ N. Then the contest success
function can be formulated as a standard unbiased all-pay auction (AA):

PrAA
i (yi, y−i) =


1, if yi > y j for all j , i,

1
k+1 , if yi = y j for k agents j , i and yi > yl for all other agents l , i,

0, if yi < y j for some j , i,

while the payoff function of agent i can be expressed as:

πi(yi, y−i) = PrAA
i (yi, y−i)vi −

yi

αi
for all i ∈ N.

Multiplying the payoff function of agent i ∈ N by the constant factor αi > 0 does not affect the
equilibrium of the transformed game. Let π̃i = αiπi for all i ∈ N. The transformed game is then
equivalent to a standard all-pay auction with payoff-function:

π̃i(yi, y−i) = PrAA
i (yi, y−i)ṽi − yi for all i ∈ N,

where total revenue is calculated as: X̃BAA =
∑n

i=1
1
αi

E[y∗i ] because E[x∗i ] = 1
αi

E[y∗i ] for all i ∈ N.
�

Note, that the bias weights (α1, . . . , αn), which transform original valuations (v1, . . . , vn) with
v1 ≥ . . . ≥ vn into transformed valuations (ṽ1, . . . , ṽn) = (α1v1, . . . , αnvn), need not preserve the
order of the original valuations. Thus, it might be necessary to permute the contestants in order
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to reobtain ordered valuations. As the permutation depends on the respective bias, the contest
organizer can induce each possible ordering of contestants and each possible constellation of
transformed valuations by specifying an appropriate bias. However, our first result circumvents
the problems posed by changed orderings of valuations after applying the bias by relying on
a bias parameter which leaves the order of valuations unchanged. Moreover, this specific bias
parameter will constitute a lower bound for total equilibrium revenue under the optimal bias.

Proposition 3.2 Let v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn; then applying an optimal bias α∗ = (α∗1, . . . , α
∗
n) in

the BAA framework yields total equilibrium revenue that satisfies

X∗,BAA ≥
v1 + v2

2
.

Proof. To prove this result, it suffices to provide one bias α, which yields a corresponding
equilibrium revenue X̃BAA = v1+v2

2 . For this reason we consider the special bias α ∈ (0,∞)n,
where α1 = 1

v1
, α2 = 1

v2
and αi = 1

2v3
for all i > 2. The corresponding transformed valuations are

then ṽ1 = ṽ2 = 1 and ṽi ≤
1
2 < 1 for all i > 2. Note that this special bias preserves the ordering of

the contestants, i.e. we have
ṽ1 = ṽ2 > ṽ3 ≥ . . . ≥ ṽn.

It is known that the equivalent unbiased all-pay auction with valuations ṽ has a unique and sym-
metric Nash equilibrium y∗, where

E[y∗1] = E[y∗2] = ṽ1
2 = 1

2

and E[y∗i ] = 0 for all i > 2, see for example Theorem 1 in Baye et al. (1996) [1]. By Lemma 3.1
this yields an equilibrium revenue of

X̃BAA =
1
α1

E[y∗1] +
1
α2

E[y∗2] =
v1 + v2

2

and thus concludes the proof. �

The specific bias α in the previous proof is applied in such a way that the playing field
among the two contestants with highest valuations is completely balanced; i.e. ṽ1 = α1v1 =

α2v2 = ṽ2, and the remaining contestants are inactive. This levelled contest leads to payoff 0
for both contestants, cf. again Theorem 1 in Baye et al. (1996) [1]. This scenario of having
the two contestants with the highest valuations compete against each other on equal terms (after
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applying the bias) has such a strong intuitive appeal, that one might conjecture that the lower
bound provided in Proposition 3.2 is also an upper bound on total revenue. This would imply
that the specific bias used in the proof is actually the optimal revenue maximizing bias of the
biased all-pay auction in general. However, in order to prove this conjecture one has to consider
all potential biases, in particular those which result in a changed ordering of valuations. The
following example shows that applying such a bias induces total revenue which is actually less
than the lower bound provided in Proposition 3.2. This insight will be generalized to all potential
biases in the rest of this section.

Consider the case v = (v1, v2, v3) = (3, 2, 1) and apply the bias vector α = (1
4 ,

1
2 ,

4
5 ). This

yields the transformed valuations ṽ = (α1v1, α2v2, α3v3) = (3
4 , 1,

4
5 ), which we have to reorder to

v̄ = (v̄1, v̄2, v̄3) = (1, 4
5 ,

3
4 ) = (ṽ2, ṽ3, ṽ1). This induces the permutation (v̄1, v̄2, v̄3) = (αp−1(2)vp−1(2),

αp−1(3)vp−1(3), αp−1(1)vp−1(1)) with p : {1, 2, 3} → {1, 2, 3} and p(1) = 2, p(2) = 3, and p(3) = 1; i.e.,
p(i) denotes the order index of the transformed value of vi. For this specific combination of bias
and valuations only the two contestants with the two highest transformed valuations will be active
in equilibrium. Expected transformed equilibrium effort is then: E[y∗p−1(2)] = v̄2

2 , E[y∗p−1(3)] =
v̄2

2
2v̄1

,
and E[y∗p−1(1)] = 0, see for instance Hillman and Riley (1989), [9]. The contest organizer is
interested in total revenue which is based on untransformed effort, see (1). For this specific bias
total revenue can be calculated as follows: X̃BAA =

∑3
i=1

1
αp−1(i)

E[y∗p−1(i)] = 0 + 2
5 + 8

5 = 2, where
the permutation and transformation had to be reversed to derive the last equality. Hence, total
revenue for this bias specification is strictly less than the lower bound derived in Proposition 3.2
because v1+v2

2 = 2.5 > 2 which directly implies that the considered bias cannot be optimal.
In general, let p : N → N,N = {1, . . . , n} be defined by

(v̄1, . . . , v̄n) = (ṽp−1(1), . . . , ṽp−1(n)) = (αp−1(1)vp−1(1), . . . , αp−1(n)vp−1(n))

such that the permuted valuations satisfy v̄1 ≥ . . . ≥ v̄n. For notational convenience, let us write
ᾱi = αp−1(i) and ȳi = yp−1(i) for all i = 1, . . . , n. Note then, that X̃BAA =

∑n
i=1

1
ᾱi

E[ȳ∗i ] =
∑n

i=1
1
αi

E[y∗i ]
because the terms of the sum are merely permuted.

We now prove that for v = (v1, . . . , vn) and v1 ≥ . . . ≥ vn the lower bound for an optimal bias
α∗ from Proposition 3.2 is also an upper bound for all biases α ∈ (0,∞)n.

Proposition 3.3 Let v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn; then applying any bias α = (α1, . . . , αn) in the BAA

framework yields total equilibrium revenue that satisfies

X̃BAA ≤
v1 + v2

2
.
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Proof. Consider an arbitrary bias α ∈ (0,∞)n, the corresponding transformed valuations ṽi =

αivi and a permutation p such that the permuted valuations satisfy v̄1 ≥ . . . ≥ v̄n. Then these
transformed valuations have to belong to one of the following three cases, which we will now
consider separately using results from the solution theory of Baye et al. (1993,1996) [2, 1] for
the standard unbiased all-pay auction (here we also follow the terminology from [1] and say
that player i randomizes continuously on a set A ⊆ R if he plays a mixed strategy such that the
corresponding cumulative distribution function (cdf) is continuous on A and strictly increasing
almost everywhere on A):

Case 1: v̄1 > v̄2 > v̄3 ≥ . . . ≥ v̄n Then Theorem 3 in Baye et al. (1996) implies that there is a
unique Nash equilibrium ȳ∗, which satisfies E[ȳ∗i ] = 0 for all i = 3, . . . , n. Lemma 1 in Baye et
al. (1993) yields E[ȳ∗1] = v̄2

2 and thus Theorem 1 in Baye et al. (1993) gives

E[ȳ∗2] =
v̄2

2

v̄1
−

v̄2

v̄1
E[ȳ∗1] =

v̄2
2

2v̄1
<

v̄2

2
.

Together, this implies

X̃BAA =

n∑
i=1

E[ȳ∗i ]
ᾱi

<
v̄2

2ᾱ1
+

v̄2

2ᾱ2
<

v̄1

2ᾱ1
+

v̄2

2ᾱ2
=

vp−1(1) + vp−1(2)

2
≤

v1 + v2

2
.

Case 2: v̄1 = v̄2 = . . . = v̄m > v̄m+1 ≥ . . . ≥ v̄n with 2 ≤ m ≤ n We can assume without
loss of generality that the permutation p is chosen such that ᾱ1 ≤ ᾱ2 ≤ . . . ≤ ᾱm. Theorem 1 in
Baye et al. (1996) implies that in all possible Nash equilibria ȳ∗ the following holds: E[ȳ∗i ] = 0
for all i = m + 1, . . . , n,

∑m
i=1 E[ȳ∗i ] = v̄1 and there are at least two players in the set {1, . . . ,m}

randomizing continuously on [0, v̄1], whereas all other players i ∈ {1, . . . ,m} randomize contin-
uously on an interval (bi, v̄1] with a bi ∈ [0, v̄1]. Moreover, by the same result, whenever two
or more players randomize continuously on a common interval, their cdfs are identical on that
interval. Consequently, the (at least) two players randomizing continuously on the whole interval
[0, v̄1] exert the highest expected equilibrium effort E[ȳ∗i ]. Since there are at least two of them,
this implies E[ȳ∗i ] ≤ v̄1

2 for all i = 1, . . . ,m. Putting all of these pieces together, we obtain

X̃BAA =

n∑
i=1

E[ȳ∗i ]
ᾱi

=
E[ȳ∗1]
ᾱ1

+

m∑
i=2

E[ȳ∗i ]
ᾱi

≤
E[ȳ∗1]
ᾱ1

+

m∑
i=2

E[ȳ∗i ]
ᾱ2

=
E[ȳ∗1]
ᾱ1

+
v̄1 − E[ȳ∗1]

ᾱ2

=
v̄1

ᾱ2
+

[
1
ᾱ1
−

1
ᾱ2

]
E[ȳ∗1] ≤

v̄1

2ᾱ1
+

v̄1

2ᾱ2
=

v̄1

2ᾱ1
+

v̄2

2ᾱ2
≤

v1 + v2

2
.
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Case 3: v̄1 > v̄2 = . . . = v̄m > v̄m+1 ≥ . . . ≥ v̄n with 3 ≤ m ≤ n By Theorem 2 in Baye et al.
(1996) we know that there is a continuum of Nash equilibria ȳ∗. All those satisfy E[ȳ∗i ] = 0 for
all i = m + 1, . . . , n. For technical reasons, we have to distinguish two different cases depending
on the bias α:

Case 3a: v̄1
ᾱ1
≥

v̄2
ᾱ2

Theorem 2 in Baye et al. (1996) implies
∑m

i=2 E[ȳ∗i ] =
v̄2

2
v̄1
−

v̄2
v̄1

E[ȳ∗1] and
states that, among the infinitely many Nash equilibria that occur in this case, the expression E[ȳ∗1]
is maximal when only one other player i ∈ {2, . . . ,m} is active. In this case, by the formulae
following Theorem 2 in Baye et al. (1996), the cdf of player 1 is given by G1(y) =

y
v̄2

and
thus E[ȳ∗1] =

∫ v̄2

0
yG′1(y) dy = v̄2

2 . Hence, for an arbitrary Nash equilibrium, the corresponding
expectation is at most v̄2

2 . Assuming without loss of generality that the permutation p is chosen
such that ᾱ2 ≤ . . . ≤ ᾱm holds, we therefore obtain

X̃BAA =

n∑
i=1

E[ȳ∗i ]
ᾱi

≤
E[ȳ∗1]
ᾱ1

+

m∑
i=2

E[ȳ∗i ]
ᾱ2

=
E[ȳ∗1]
ᾱ1

+

v̄2
2

v̄1
−

v̄2
v̄1

E[ȳ∗1]

ᾱ2

=
v̄2

2

ᾱ2v̄1
+

[
1
ᾱ1
−

v̄2

ᾱ2v̄1

]
E[ȳ∗1] ≤

v̄2

2ᾱ1
+

v̄2
2

2ᾱ2v̄1
<

v̄1

2ᾱ1
+

v̄2

2ᾱ2
≤

v1 + v2

2
.

Note that the second inequality in this chain holds because the corresponding term in brackets is
nonnegative in the case considered here.

Case 3b: v̄1
ᾱ1
< v̄2

ᾱ2
This case, although intuitively being nonoptimal since it implies vp−1(1) <

vp−1(2), requires a surprisingly involved analysis. We consider an auxiliary bias α̂, which, under
the same permutation p used in the definition of ᾱ and v̄, is of the form α̂ =

(
v̄2
v̄1
ᾱ1,

v̄1
v̄2
ᾱ2, ᾱ3, . . . , ᾱn

)
and thus yields the transformed (and permuted) valuations

v̂ := (α̂1vp−1(1), . . . , α̂nvp−1(n)) = (v̄2, v̄1, v̄3, . . . , v̄n).

So essentially v̂ is the same as v̄ with only the first two components swapped. Note that v̂ is not
in descending order since v̄2 < v̄1. However, noting that we also have

v̂2

α̂2
=

v̄1v̄2

v̄1ᾱ2
=

v̄2

ᾱ2
>

v̄1

ᾱ1
=

v̄2v̄1

v̄2ᾱ1
=

v̂1

α̂1
,

we recognize that, after another permutation which switches the first two entries so that the
components of v̂ are in descending order, the bias α̂ belongs to Case 3a.

Hence, it suffices to show that any equilibrium effort X̃BAA generated by the bias ᾱ is less or
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equal to an equilibrium effort X̂BAA generated by the bias α̂, since this implies by Case 3a

X̃BAA ≤ X̂BAA <
v1 + v2

2
.

Now consider an arbitrary Nash equilibrium of the all-pay auction with valuations v̄ and denote
the corresponding expected equilibrium efforts by E[ȳ∗i ] for i = 1, . . . , n. Obviously, for each
of these equilibria there exists a corresponding Nash equilibrium of the all-pay auction with
valuations v̂ such that the expected equilibrium efforts E[ŷ∗i ] satisfy

E[ŷ∗1] = E[ȳ∗2], E[ŷ∗2] = E[ȳ∗1] and E[ŷ∗i ] = E[ȳ∗i ] for all i = 3, . . . , n.

Hence, these two Nash equilibria satisfy

X̃BAA − X̂BAA =

n∑
i=1

E[ȳ∗i ]
ᾱi
−

n∑
i=1

E[ŷ∗i ]
α̂i

=

[
E[ȳ∗1]

v̄1
−

E[ȳ∗2]
v̄2

] [
v̄1

ᾱ1
−

v̄2

ᾱ2

]
,

and thus
X̃BAA − X̂BAA ≤ 0 ⇐⇒

E[ȳ∗1]
v̄1
−

E[ȳ∗2]
v̄2
≥ 0.

Therefore, it remains to verify the right inequality. By Theorem 2 in Baye et al. (1996), we know
that player 1 is randomizing continuously on the interval [0, v̄2] and that there is at least one player
i ∈ {2, . . . ,m} randomizing continuously on (0, v̄2] and bidding zero with propability Gi(0). All
other players j ∈ {2, . . . ,m} randomize continuously on an interval (b j, v̄2] with b j ∈ [0, v̄2] and
bid zero with probability G j(b j). Furtheremore, the same result guarantees that, whenever two or
more players i, j ∈ {2, . . . ,m} randomize continuously on the same interval, their cdfs Gi,G j are
identical on that interval. Since

E[ȳ∗i ] = 0 ·Gi(bi) +

∫ v̄2

bi

yG′i(y) dy

for i = 2, . . . ,m, it follows from the previous observations that the player randomizing contin-
uously on (0, v̄2] has the highest expected equilibrium effort E[ȳ∗i ] among the players 2, . . . ,m.
Hence, if E[ȳ∗1]

v̄1
−

E[ȳ∗2]
v̄2
≥ 0 holds in the case b2 = 0, it holds for all b2 ∈ [0, v̄2]. Thus, we consider

only the case b2 = 0 and assume without loss of generality that the permutation p is chosen such
that 0 = b2 = . . . = bh < bh+1 ≤ . . . ≤ bm ≤ v̄2 with 2 ≤ h ≤ m. Then, by the formulae following
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Theorem 2 in Baye et al. (1996), the cdfs of player 1 and 2 are of the form

G1(y) =


y
v̄2

[
v̄1−v̄2+y

v̄1

] 2−h
h−1 [∏m

k=h+1 Gk(bk)
] −1

h−1 if y ∈ [0, bh+1),
y
v̄2

[
v̄1−v̄2+y

v̄1

] 2− j
j−1

[∏m
k= j+1 Gk(bk)

] −1
j−1 if y ∈ [b j, b j+1), for j = h + 1, . . . ,m − 1

y
v̄2

[
v̄1−v̄2+y

v̄1

] 2−m
m−1 if y ∈ [bm, v̄2],

G2(y) =


[

v̄1−v̄2+y
v̄1

] 1
h−1 [∏m

k=h+1 Gk(bk)
] −1

h−1 if y ∈ [0, bh+1),[
v̄1−v̄2+y

v̄1

] 1
j−1

[∏m
k= j+1 Gk(bk)

] −1
j−1 if y ∈ [b j, b j+1), for j = h + 1, . . . ,m − 1[

v̄1−v̄2+y
v̄1

] 1
m−1 if y ∈ [bm, v̄2].

By the same formulae, we also get

G j(b j) =


[

v̄1−v̄2+bh
v̄1

] 1
h−1 [∏m

k=h+1 Gk(bk)
] −1

h−1 if j = h,[ v̄1−v̄2+b j

v̄1

] 1
j−1

[∏m
k= j+1 Gk(bk)

] −1
j−1 if j = h + 1, . . . ,m − 1,[

v̄1−v̄2+bm
v̄1

] 1
m−1 if j = m.

Exploiting all these formulae and the convention bm+1 = ν̄2 and
∏m

k=m+1 Gk(bk) = 1, we obtain
using integration by parts and some elementary calculations

E[ȳ∗1]
v̄1
−

E[ȳ∗2]
v̄2

=
1
v̄1

∫ v̄2

0
yG′1(y) dy −

1
v̄2

[
0 ·G2(0) +

∫ v̄2

0
yG′2(y) dy

]
=

v̄2

v̄1
− 1 −

∫ v̄2

0

[
G1(y)

v̄1
−

G2(y)
v̄2

]
dy

=
v̄2

v̄1
− 1 −

1
v̄2

m∑
j=h

 m∏
k= j+1

Gk(bk)


−1
j−1 ∫ b j+1

b j

[
v̄1 − v̄2 + y

v̄1

] 1
j−1

(
y
v̄1

v̄1

v̄1 − v̄2 + y
− 1

)
dy

=
v̄2

v̄1
− 1 +

v̄1 − v̄2

v̄1v̄2

m∑
j=h

 m∏
k= j+1

Gk(bk)


−1
j−1 ∫ b j+1

b j

[
v̄1 − v̄2 + y

v̄1

] 2− j
j−1

dy

=
v̄2

v̄1
− 1 +

v̄1 − v̄2

v̄2

m∑
j=h

( j − 1)

 m∏
k= j+1

Gk(bk)


−1
j−1

[ v̄1 − v̄2 + b j+1

v̄1

] 1
j−1

−

[
v̄1 − v̄2 + b j

v̄1

] 1
j−1


=

v̄2

v̄1
− 1 +

v̄1 − v̄2

v̄2

m∑
j=h

( j − 1)
(
G j+1(b j+1) −G j(b j)

)
=

v̄2 − v̄1

v̄1
+

v̄1 − v̄2

v̄2

(m − 1) −
m∑

j=h+1

G j(b j) − (h − 1)Gh(bh)


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=
v̄1 − v̄2

v̄1v̄2

−v̄2 + v̄1

(m − 1) −
m∑

j=2

G j(b j)


 .

By Theorem 2 in Baye et al. (1996), we know

m∏
j=2

G j(b j) =
v̄1 − v̄2

v̄1
. (2)

A simple consideration reveals that this, together with G j(b j) ∈ (0, 1] for all j = 2, . . . ,m, implies

m∑
j=2

G j(b j) ≤ (m − 2) · 1 + 1 ·
m∏

j=2

G j(b j) = (m − 2) +
v̄1 − v̄2

v̄1

(essentially, the first inequality comes from the observation that the sum is maximized if G j(b j) =

1 for all but one index j ∈ {2, . . . ,m}, whereas the remaining player takes his value in such a way
the product constraint (2) is satisfied). Plugging this into the previous result, we obtain the
desired inequality

E[ȳ∗1]
v̄1
−

E[ȳ∗2]
v̄2
≥

v̄1 − v̄2

v̄1v̄2

[
−v̄2 + v̄1

[
(m − 1) − (m − 2) −

v̄1 − v̄2

v̄1

]]
= 0.

This completes the proof. �

The last two Propositions imply:

Theorem 3.4 Let v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn; then applying an optimal bias α∗ = (α∗1, . . . , α
∗
n) in

the BAA framework yields total equilibrium revenue that satisfies

X∗,BAA =
v1 + v2

2
. (3)

Moreover, the proof of Proposition 3.3 reveals the optimal biases:

Corollary 3.5 Let v1 = v2 = . . . = vm > vm+1 ≥ v3 ≥ . . . ≥ vn with 2 ≤ m ≤ n. Then the optimal

biases in the BAA framework are those α∗ ∈ (0,∞)n satisfying the following conditions: There is

a subset I∗ ⊆ {1, . . . ,m} such that |I∗| ≥ 2, α∗i vi = α∗jv j for all i, j ∈ I∗ and for all i ∈ I∗, k < I∗ it

holds that α∗i vi > α
∗
kvk.

Let v1 > v2 = . . . = vm > vm+1 ≥ v3 ≥ . . . ≥ vn with 2 ≤ m ≤ n. Then the optimal biases in

the BAA framework are those α∗ ∈ (0,∞)n satisfying the following conditions: There is a unique
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i∗ ∈ {2, . . . ,m} such that α∗1v1 = α∗i∗vi∗ and for all k , 1, i∗ it holds that α∗1v1 > α
∗
kvk.

Proof. According to the proof of Proposition 3.3, optimal biases α∗ are those, for which equality
holds in Case 2. This implies that all active players have the same transformed valuation α∗i vi. All
active players i ∈ {3, . . . ,m} have to satisfy ᾱi = ᾱ2 or equivalently vp−1(i) = vp−1(2). Additionally,
it either has to hold that E[ȳ∗1] = v̄1

2 , which is equivalent to the fact that only two players are active,
or ᾱ1 = ᾱ2 has to be true, which is equivalent to vp−1(1) = vp−1(2). Finally, using the assumption
ᾱ1 ≤ . . . ≤ ᾱm, we have vp−1(1) = v1 and vp−1(2) = v2.

Hence, in the case where v1 = v2, the optimal biases α∗ are those ensuring that an arbitrary
number of players with valuation v1 is active in a Nash equilibrium and that all those active
players have the same transformed valuation α∗i vi.

In the case, where v1 > v2, the optimal biases α∗ are those that guarantee that player 1 and
only one player out of those with valuation v2 are active in a Nash equilibrium and that both
have the same transformed valuation α1v1. However, this implies that there can only be one other
player i∗ , 1 with transformed valuation α∗1v1, since otherwise there exist Nash equilibria in
which more than two players are active. �

We are now in a position to compare total revenue under the derived optimal bias with that
under the unbiased all-pay auction where α1 = α2 = 1. For the unbiased all-pay auction it is well-
known that in equilibrium the (expected) payoff to contestant 1 is v1 − v2 ≥ 0, while the payoff to
contestant 2 is 0 ; the contest organizer can expect E[y1]+E[y2] = v2

2 +
v2

2
2v1

. Hence, the contestants,
namely contestant 1, lose the entire rent of (v1 − v2), while the contest organizer by biasing the
contest in the prescribed way generates additional revenue of v1+v2

2 − ( v2
2 +

v2
2

2v1
) =

(v1+v2)
2v1

(v1 − v2).
Since v1+v2

2v1
≤ 1 the loss in contestants’ payoff is larger than the gain in revenue for the organizer

who applies the optimal bias.

4 Lotteries Versus All-Pay Auctions

The optimal bias for the asymmetric lottery contest has been derived in Franke et al. (2011), [6],
under the condition that heterogeneity affects marginal costs to exert effort. However, a simple
transformation leads to the framework as presented here, see [6], section 2. We repeat the result
in its transformed version in the following proposition to maintain a consistent notation.

Proposition 4.1 There exists an optimal bias αBLC in the BLC framework that is not unique.

14



However, any optimal bias αBLC leads to:

X∗,BLC =
1
4

∑
j∈K∗

v j −
(k∗ − 2)2∑

j∈K∗
1
v j

 , where (4)

K∗ =

i ∈ N
∣∣∣∣ k∗ − 2

vi
<

∑
j∈K∗

1
v j

 with k∗ := |K∗|.

It is shown in [6], Lemma 4.8, that K∗, the set of active contestants, is well-defined and
unique and can equivalently be written as

K∗ =

i ∈ N
∣∣∣∣ i − 2

vi
<

i∑
j=1

1
v j

 . (5)

Theorem 3.4 and Proposition 4.1 facilitates the revenue comparison between the two contest
regimes under the respective optimal bias because closed form expressions for total revenue
are provided in (3) and (4). However, for the optimally biased lottery contest the set of active
agents is only indirectly defined in (5), which impedes a direct comparison. Hence, we need
one more auxiliary result before we can state the main result of our paper. In the following
lemma we consider biased lottery contests, where the agents’ valuations are given according to
V = {v1, . . . , vn}, and denote by X∗,BLC(V) the revenue of the lottery contest as defined in (4) and
by K(V) the set of active agents under the optimal bias according to (5). The lemma basically
says that maximal revenue X∗,BLC(V) increases with the valuations V = (v1, . . . , vn).

Lemma 4.2 The function X∗,BLC(V) is continuously differentiable on (0,∞)n and the partial

derivatives are given by

∂X∗,BLC(V)
∂vi

=


0 if i < K∗(V),

1
4

1 − (k(V)−2)2(∑
j∈K(V)

1
v j

)2
1
v2

i

 , if i ∈ K∗(V).

In particular, for all i ∈ N it holds that ∂X∗,BLC(V)
∂vi

≥ 0, i.e. X∗,BLC(V) is monotonically increasing

in vi for all i ∈ N.

Proof. Recall that X∗,BLC(V) gives the maximal total effort of all active contestants in equilibrium
after the contest organizer has chosen the optimal bias α∗ given valuations V = (v1, . . . , vn).
Hence, α∗ = α∗(V); in the same vein, K∗ = K∗(V) denotes the set of active contestants in
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the optimally biased contest given V = (v1, . . . , vn). Denote by k∗(V) the cardinality of K∗(V),
k∗(V) = |K∗(V)|.

We now define the index set

L∗(V) =

i ∈ N
∣∣∣∣ k∗(V) − 2

vi
=

∑
j∈K∗(V)

1
v j


and set l∗(V) = |L∗(V)|. L∗(V) contains those indices - if any - which belong to contestants
who are indifferent between becoming active (with a bid of 0) and staying inactive (recall the
definition of K∗(V) from (5)).

So let V = (v1, . . . , vn) be given and consider any ε-neighborhood of V , Uε(V), for ε > 0
sufficiently small. It is then true that for any V ′ ∈ Uε(V)

K∗(V) ⊆ K∗(V ′) ⊆ K∗(V) ∪ L∗(V)

holds; i.e., for all valuations V ′ sufficiently close to V the set of active contestants in the optimally
biased lottery contest for V ′ consists of all contestants active in the optimally biased lottery
contest for V plus - possibly - contestants from L∗(V), who have become active in V ′. Intuitively,
since the participation condition in (5) for a contestant i is given by an inequality, an active
contestant in V , who satisfies the inequality, must stay active for sufficiently small changes in V
as those cannot lead to a violation of the inequality. For the same reason, inactive contestants,
who even violate the condition in L∗(V), must stay inactive for sufficiently small changes in V.
Formally, this is proven in [6], Theorem 3.2.

So let M ⊆ L∗(V) and m = |M|. An alternative representation of X∗,BLC(V) then reads:

X∗,BLC(V) =
1
4

 ∑
j∈K∗(V)

v j −
(k∗(V) − 2)2∑

j∈K∗(V)
1
v j


=

1
4

 ∑
j∈K∗(V)

v j +
m(k∗(V) − 2)∑

j∈K∗(V)
1
v j

−
(k∗(V) + m − 2)(k∗(V) − 2)∑

j∈K∗(V)
1
v j


=

1
4

 ∑
j∈K∗(V)

v j +
∑
j∈M

v j −
(k∗(V) + m − 2)2∑

j∈K∗(V)
1
v j

+ m
k∗(V)−2

∑
j∈K∗(V)

1
v j


=

1
4

 ∑
j∈K∗(V)∪M

v j −
(k∗(V) + m − 2)2∑

j∈K∗(V)∪M
1
v j

 .
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The second equality results from a trivial split of the last term, the third and fourth equalities
result from using the definition of L∗(V) (and hence M).

From the last expression of X∗,BLC(V) we immediately see that X∗,BLC(V) must be continuous
at V: Any sequence V j → V can be decomposed into - at most 2l∗(V) - subsequences, such that
each of these subsequences satisfies K(V j) = K∗(V) ∪ M for all elements V j of this subsequence
with a fixed subset M ⊆ L∗(V). Consequently X∗,BLC(V j) converges to X∗,BLC(V).

In order to show continuous differentiability of X∗,BLC(V) it suffices to show partial differ-
entiability with respect to all vi, i = 1, . . . , n, and continuity of all the partial derivatives. For
all i < K∗(V) ∪ L∗(V) we obviously have ∂

∂vi
X∗,BLC(V) = 0 since X∗,BLC(V) does not depend

on vi in a whole neighborhood. So let i ∈ K∗(V) ∪ L∗(V) and consider an arbitrary sequence
v j

i → vi. If we define V j = (v1, . . . , vi−1, v j
i , vi+1, . . . , vn), then obviously V j → V . Again, consider

any subsequence of V j such that K(V j) = K∗(V) ∪ M for a fixed M ⊆ L∗(V) and consequently∣∣∣K(V j)
∣∣∣ = k∗(V) + m for all j in this subsequence. We then have on this subsequence:

lim
j→∞

X∗,BLC(V) − X∗,BLC(V j)

vi − v j
i

=


0, for i ∈ L∗(V) \ M,

1
4

1 − (k∗(V)+m−2)2(∑
l∈K∗(V)∪M

1
vl

)2
1
v2

i

 , for i ∈ K∗(V) ∪ M

=


0, for i ∈ L∗(V) \ M,

1
4

1 − (k∗(V)−2)2(∑
l∈K∗(V)

1
vl

)2
1
v2

i

 , for i ∈ K∗(V) ∪ M

=


0, for i ∈ L∗(V) = M ∪ L∗(V) \ M,

1
4

1 − (k∗(V)−2)2(∑
l∈K∗(V)

1
vl

)2
1
v2

i

 , for i ∈ K∗(V).

Here we have again made use of the definition of L∗(V), which contains M.
Obviously, the above limit exists and is independent of the sequence V j, or the respective

subsequences. Hence, X∗,BLC(V) is partially differentiable with respect to all vi, i = 1, . . . , n.
Continuity of the partial derivatives ∂

∂vi
X∗,BLC(V) derived above can now be shown in the same

way as we have shown continuity of X∗,BLC(V). The nonnegativity of the partial derivatives is
again a direct consequence of the definition of the set K∗(V). �

Now we can finally state the main result of this section. We shall prove that for any V =

(v1, . . . , vn) the optimally biased BLC regime yields less total effort than v1+v2
2 , which was shown

to be the maximal revenue under the optimally biased BAA regime.
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Theorem 4.3 The optimal BAA regime induces higher total effort in equilibrium than the opti-

mal BLC regime, i.e. X∗,BAA > X∗,BLC.

Proof. We prove the theorem by first considering a special case, where the theorem can be
verified by a simple calculation, and then reducing all other cases to the first one.

First we consider the case where all agents – possibly except the first one – have the same
valuation, that is v1 ≥ v2 = v3 = . . . = vn. If we determine the set K∗ of active agents in regime
BLC based on (5), we immediately see that all agents are active in this case. Applying Theorem
3.4 the crucial inequality X∗,BAA > X∗,BLC is thus satisfied if

v1 + v2

2
>

1
4

v1 + (n − 1)v2 −
(n − 2)2

1
v1

+ n−1
v2

 .
After some algebra this inequality can be simplified to:

(n − 1)v2
1 + 2v1v2 > (n − 3)v2

2

The first expression on the left hand side is larger than the expression on the right hand side
which implies that the inequality holds.

Now consider arbitrary valuations v1 ≥ v2 ≥ v3 ≥ . . . ≥ vn and denote the correspond-
ing optimal revenues by X∗,BAA and X∗,BLC. To prove the assertion in this case, we construct
auxiliary valuations by first substituting v3 with v2 and then compare the resulting revenue
X∗,BLC(v1, v2, v2, v4, . . . , vn) with X∗,BLC = X∗,BLC(v1, v2, v3, . . . , vn). Afterwards, we continue this
procedure with v4, . . . , vn. Lemma 4.2 and the previously considered special case imply

X∗,BLC = X∗,BLC(v1, v2, v3, . . . , vn) ≤ X∗,BLC(v1, v2, v2, v4, . . . , vn)

≤ X∗,BLC(v1, v2, v2, v2, v5 . . . , vn) ≤ . . . ≤ X∗,BLC(v1, v2, v2, v2, . . . , v2)

<
v1 + v2

2
= X∗,BAA,

which completes the proof of this theorem. �

5 Concluding Remarks

We have shown that in the presence of heterogeneous contestants an optimally biased all-pay
auction always revenue-dominates the optimally biased lottery contest. We have done so by
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providing the solution to a contest organizer’s problem of optimally biasing all-pay auctions
(Theorem 3.4) and comparing this solution to the known solution (Franke et al. (2011)) of finding
an optimally biased lottery contest. Our revenue dominance result is in contrast to the comparison
of the unbiased versions of these contest models if there are more than two contestants. The
(unbiased) all-pay auction might yield less revenue (total effort), if in particular the exclusion
principle applies; i.e., heterogeneity is such that it is revenue-enhancing to exclude the strongest
player from participation. The two active but weaker contestants then may expend less effort than
all the active players in the lottery contest. In contrast, we show that if the contest organizer has
the ability to bias the contest, the exclusion principle of the all-pay auction becomes obsolete.
No player is excluded. The contest organizer can always bias the all-pay auction in such a way
that the two strongest players will be active and, moreover, compete on equal terms (the strongest
player is therefore not excluded but sufficiently weakened in her effectiveness). All other players
choose to be inactive. In short, the two strongest contestants are exposed on equal terms to the
extremely discriminative all-pay auction. They are made to compete as two identical players with
valuations v1+v2

2 would do, and this results in maximal (expected) revenue of v1+v2
2 for the contest

organizer. Reducing the discriminativeness of the contest by using a lottery CSF will attract
more entry into the contest; i.e., more contestants (at least three) will be active in equilibrium.
But having more active contestants in the less discriminative contest does not pay off for the
contest organizer: The increase in competitiveness due to a higher number of competitors cannot
offset the loss of competitiveness due to a ’softer’ contest. Economic policy instruments aimed
at facilitating entry do not work for contests. If revenue maximization is the goal of the contest
organizer then participation effects are not strong enough to outweigh incentive effects.
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