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Abstract. Motivated by some results for linear programs and complementarity problems,
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proposed smoothing method by Chen and Tseng [8].
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1 Introduction

In this paper we describe an algorithm for the solution of semidefinite programs (SDPs).
Using some standard notation that will be defined formally at the end of this section, a
semidefinite program is a constrained optimization problem that is typically given in primal
form by

min C •X s.t. Ai •X = bi, i = 1, . . .m, X � 0 (1)

or in its dual form by

max bTλ s.t.
m∑

i=1

λiAi + S = C, S � 0; (2)

here, the vector b ∈ Rm as well as the symmetric matrices C ∈ Rn×n and Ai ∈ Rn×n (i =
1, . . . ,m) are the given data, whereas the symmetric matrix X ∈ Rn×n denotes the variable
for the primal semidefinite program (1) and the vector λ ∈ Rm together with the symmetric
matrix S ∈ Rn×n denote the variables of the dual semidefinite program (2).

It is easy to see that the (primal) semidefinite program is a convex minimization problem.
Under a suitable constraint qualification, this semidefinite program is therefore equivalent
to its optimality conditions. These optimality conditions can be written as follows:∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,

X � 0, S � 0, XS = 0.
(3)

Motivated by the groundbreaking work of Nesterov and Nemirovskii [22], several authors sug-
gest to solve the optimality conditions (3) by (primal-dual) interior-point methods. These
interior-point methods typically consider the following perturbation of the optimality condi-
tions (3), usually called the central path conditions:∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,

X � 0, S � 0, XS = τ 2I,
(4)

where τ denotes a positive parameter (note that we parameterize the central path conditions
by τ 2 instead of τ). Typical interior-point methods now apply a Newton-type method to (a
symmetrized version of) the equations within the central path conditions, dealing with the
X � 0 and S � 0 constraints explicitly by a suitable line search. The interested reader is
referred to the papers [15, 2, 25, 29], for example.

The method to be discussed here is also a Newton-type method. However, before ap-
plying Newton’s method, we first reformulate the optimality conditions or the central path
conditions as a nonlinear system of equations. This reformulated system does not contain
any explicit inequality constraints like X � 0, S � 0 or X � 0, S � 0, and Newton’s method
applied to this system will automatically generate symmetric search directions without any
further transformations (unlike interior-point methods).

We believe that our method is of particular interest for the solution of some difficult com-
binatorial optimization problems. In fact, semidefinite programs are known to provide very
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good lower bounds for some combinatorial problems. However, solving such a semidefinite
relaxation by an interior-point method within a branch-and-bound strategy may not result
in the most efficient way to solve the underlying combinatorial problem since the solution of
one semidefinite relaxation may not be used as a starting point for a neighbouring problem
due to the fact that interior-point methods require strictly feasible starting points. On the
other hand, the method to be presented here does not have such a restriction regarding its
starting point.

Our method may be viewed as a generalization of some smoothing-type methods for linear
programs and complementarity problems to the framework of semidefinite programs. While
such a generalization has already been suggested in a recent paper by Chen and Tseng [8], we
stress that there are still a couple of differences between that paper and ours. For example,
we present a new characterization of the central path conditions which may be viewed as
the basis for our method. Furthermore, our method is based on an essentially smooth
reformulation of the optimality conditions (3) themselves (and this is what we really want
to solve), while Chen and Tseng [8] consider a reformulation of the central path conditions.
This may also explain why our approach seems to give better numerical results than the one
from [8].

The organization of this paper is as follows. Section 2 contains some new characterizations
of the central path conditions (4). These characterizations are based on a certain function φ
whose further properties are discussed in Section 3. Our algorithm is described in Section 4,
and its global and local convergence properties are analyzed in Sections 5 and 6, respectively.
We then present some very promising numerical results in Section 7 and close this manuscript
with some final remarks in Section 8.

Throughout this paper, we use the following notation: For two matrices A,B ∈ Rn×n,
we define the scalar product

A •B := 〈A,B〉 := tr(ABT ),

where tr(C) :=
∑n

i=1 cii denotes the trace of a matrix C ∈ Rn×n. (Warning: The related
symbol ◦ is used for the composition of two mappings; it does not denote the Hadamard
product of two matrices!) We denote by Sn×n,Sn×n

+ , and Sn×n
++ the sets of symmetric, sym-

metric positive semidefinite, and symmetric positive definite matrices of dimension n × n,
respectively. We also write A � 0 and A � 0 in order to indicate that A belongs to Sn×n

+

and Sn×n
++ , respectively. Furthermore, A � B or A � B means that A−B � 0 or A−B � 0.

If A � 0, we denote by A1/2 the unique positive semidefinite square root of A. In our anal-
ysis, we will use both the spectral norm ‖A‖2 and the Frobenius norm ‖A‖F for a matrix
A ∈ Rn×n. We endow the vector space Rn×n × Rm × Rn×n with the norm

|||(X,λ, S)||| :=
√
‖X‖2F + ‖λ‖22 + ‖S‖2F .

We use the same symbol for the norm

|||(X,λ, S, τ)||| :=
√
‖X‖2F + ‖λ‖22 + ‖S‖2F + τ 2

in the vector space Rn×n × Rm × Rn×n × R. Note that these two norms correspond to the
standard Euclidian norm if all entries in the underlying vector spaces are viewed as long
vectors.
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2 Reformulations of the Central Path

The aim of this section is to give two new reformulations of the central path conditions (4)
for semidefinite programs. These reformulations can be obtained by generalizing existing
reformulations for linear programs and complementarity problems in a suitable way.

Before we deal with the central path conditions (4), however, we first consider the optimal-
ity conditions (3). In order to motivate our approach, let us define a mapping ϕ : R×R→ R
by

ϕ(a, b) := a+ b−
√
a2 + b2.

This mapping was introduced by Fischer [13] and is usually called the Fischer-Burmeister
function. It is well-known (and easy to verify) that it has the following property:

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (5)

Now let us define a mapping φ : Sn×n × Sn×n → Sn×n by

φ(X,S) := X + S − (X2 + S2)1/2 (6)

which is an obvious extension of the definition of ϕ with the arguments begin symmetric
matrices rather than two real numbers. It has been shown by Tseng [27, Lemma 6.1] that
the mapping φ has a property similar to (5), namely

φ(X,S) = 0⇐⇒ X � 0, S � 0, XS = 0. (7)

In the following, we will include a proof for this equivalence. We stress that our proof is
somewhat different from the one given by Tseng [27] and that a similar technique will later
be used in order to prove our new characterizations of the central path conditions. To verify
the equivalence (7), we will exploit the following simple result from Alizadeh [1, Lemma 2.9].

Lemma 2.1 Let X,S ∈ Sn×n
+ be two symmetric positive semidefinite matrices. Then XS =

0 if and only if X • S = 0.

Lemma 2.1 allows us to state the following result.

Proposition 2.2 Let φ be the Fischer-Burmeister function defined in (6). Then

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0.

Proof. First assume that X � 0, S � 0, XS = 0 holds. This implies XS + SX = 0 and
therefore

(X + S)2 = X2 + S2.

Using the fact that X and S are symmetric positive semidefinite, it follows that

X + S = (X2 + S2)1/2,

since the square root of a symmetric and positive semidefinite matrix is uniquely defined
within the space of symmetric and positive semidefinite matrices. Obviously, this implies
φ(X,S) = 0.
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Conversely, assume that φ(X,S) = 0 holds for two symmetric matrices X,S ∈ Sn×n.
This means that X + S = (X2 + S2)1/2. Squaring both sides of this equation gives

X2 + S2 = (X + S)2 and X + S ∈ Sn×n
+ .

This is equivalent to
XS + SX = 0 and X + S ∈ Sn×n

+ . (8)

Let X = QTDQ with Q ∈ Rn×n orthogonal and D = diag(λ1, . . . , λn) be the spectral
decomposition of the symmetric matrix X. Then (8) can be rewritten as

QTDQS + SQTDQ = 0 and QTDQ+ S ∈ Sn×n
+ .

If we premultiply this equation by Q and postmultiply it by QT , we obtain

DQSQT +QSQTD = 0 and D +QSQT ∈ Sn×n
+ .

Using the abbreviation A := QSQT , we get

DA+ AD = 0 and D + A ∈ Sn×n
+ . (9)

Componentwise, this can be rewritten as

(λi + λj)aij = 0 and D + A ∈ Sn×n
+ (10)

for all i, j = 1, . . . , n. In particular, we obtain for i = j

2λiaii = 0 and λi + aii ≥ 0

for all i = 1, . . . , n. Obviously, this implies λi ≥ 0 for all i = 1, . . . , n, which in turn means
that X is positive semidefinite.

Using a symmetric argument (based on a spectral decomposition of S), we see that S is
also positive semidefinite.

In order to verify that XS = 0, we observe that (8) implies

X • S = tr[XS] =
1

2
tr[XS + SX] = 0.

In view of Lemma 2.1, we therefore have XS = 0. 2

We now want to modify the definition of φ so that it can be used in order to characterize
the central path conditions (4). To this end, let τ ≥ 0 be any nonnegative number which
will be viewed as a parameter within this section. Then define ϕτ : R× R→ R by

ϕτ (a, b) := a+ b−
√
a2 + b2 + 2τ 2.

This is the so-called smoothed Fischer-Burmeister function since it is obviously continuously
differentiable for every τ > 0 and since it coincides with the Fischer-Burmeister function ϕ
for τ = 0. The mapping ϕτ was introduced in [19] and has the following interesting property:

ϕτ (a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = τ 2.
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This simple observation was made in [19], and it shows that several smoothing-type methods
for linear programs and related problems are closely related to interior-point methods.

We now generalize the smoothed Fischer-Burmeister function ϕτ in an obvious way:
Define φτ : Sn×n × Sn×n → Sn×n by

φτ (X,S) := X + S − (X2 + S2 + 2τ 2I)1/2. (11)

Then we can state the following result.

Proposition 2.3 Let τ > 0 be any positive number and let φ be defined by (11). Then

φτ (X,S) = 0 ⇐⇒ X � 0, S � 0, XS = τ 2I.

Proof. First assume that X � 0, S � 0, XS = τ 2I holds. This implies XS + SX = 2τ 2I
and therefore

(X + S)2 = X2 + S2 + 2τ 2I.

Using the fact that X and S are symmetric positive definite, it follows that

X + S = (X2 + S2 + 2τ 2I)1/2.

This, in turn, implies φτ (X,S) = 0.
Conversely, let φτ (X,S) = 0 for two symmetric matrices X,S ∈ Sn×n. This means that

X + S = (X2 + S2 + 2τ 2I)1/2. Squaring both sides of this equation gives

X2 + S2 + 2τ 2I = (X + S)2 and X + S ∈ Sn×n
++ .

This is equivalent to
XS + SX = 2τ 2I and X + S ∈ Sn×n

++ . (12)

Let X = QTDQ with Q ∈ Rn×n orthogonal and D = diag(λ1, . . . , λn) be the spectral
decomposition of the symmetric matrix X. Following the proof of Proposition 2.2 and using
the abbreviation A := QSQT , we see that (12) can be rewritten as

DA+ AD = 2τ 2I and D + A ∈ Sn×n
++ . (13)

Componentwise, this becomes

(λi + λj)aij = 2τ 2δij and D + A ∈ Sn×n
++ (14)

for all i, j = 1, . . . , n, where δij is the standard Kronecker symbol, i.e.,

δij :=

{
1, if i = j,
0, if i 6= j.

In particular, we obtain for i = j

2λiaii = 2τ 2 and λi + aii > 0
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for all i = 1, . . . , n. Obviously, this implies λi > 0 for all i = 1, . . . , n. Hence the symmetric
matrix X is positive definite.

In a similar way (using a spectral decomposition of S), we can show that S is also positive
definite.

In order to verify that XS = τ 2I, we observe that (14) implies aij = 0 for all i 6= j
since λi + λj > 0 according to our previous argument. Hence A is a diagonal matrix. In
particular, we therefore have DA = AD. Consequently, we obtain from (13) that DA = τ 2I.
Premultiplying this equation by QT and postmultiplying it by Q gives XS = QTDQS =
QTDAQ = τ 2I. 2

We next want to introduce a second function with similar properties as the (smoothed)
Fischer-Burmeister function. To this end, let

ϕ(a, b) := 2 min{a, b}

for a, b ∈ R. For obvious reasons, this mapping is called the minimum function. It is easy
to see that it satisfies the equivalence

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

In order to extend its definition to the class of symmetric matrices, it is helpful to reformulate
the minimum function in the following way:

ϕ(a, b) = 2 min{a, b} = a+ b− |a− b| = a+ b−
√

(a− b)2.

Motivated by the expression on the right-hand side, we now define the function φ : Sn×n ×
Sn×n → Sn×n by

φ(X,S) := X + S − ((X − S)2)1/2. (15)

It turns out that this function shares the property (7) with the Fischer-Burmeister function
from (6). This observation is similar to the one made by Tseng [27, Lemma 2.1] and can
alternatively be verified by following the proof of Proposition 2.2. We skip the details here
and just state the result.

Proposition 2.4 Let φ be the minimum function defined in (15). Then

φ(X,S) = 0 ⇐⇒ X � 0, S � 0, XS = 0.

We now want to modify the definition of the minimum function in such a way that we get
a characterization of the central path conditions (4). To this end, we first recall that there
is a suitable modification of the minimum function for scalar variables, namely

ϕτ (a, b) := a+ b−
√

(a− b)2 + 4τ 2,

where τ denotes a nonnegative number. This smoothed minimum function is usually called
the Chen-Harker-Kanzow-Smale smoothing function in the literature [6, 19, 23], and it was
noted in [19] that it has the following property for each τ > 0:

ϕτ (a, b) = 0 ⇐⇒ a > 0, b > 0, ab = τ 2.
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This observation motivates to define a mapping φτ : Sn×n × Sn×n → Sn×n by

φτ (X,S) := X + S − ((X − S)2 + 4τ 2I)1/2. (16)

It turns out that this function has the desired property.

Proposition 2.5 Let τ > 0 be any positive number and let φ be defined by (16). Then

φτ (X,S) = 0 ⇐⇒ X � 0, S � 0, XS = τ 2I.

Proof. First assume that X � 0, S � 0, XS = τ 2I holds. This implies XS + SX = 2τ 2I
and therefore

(X + S)2 = (X − S)2 + 4τ 2I.

Consequently, we have
X + S = ((X − S)2 + 4τ 2I)1/2,

i.e., φτ (X,S) = 0.
Conversely, if φτ (X,S) = 0 for two matrices X,S ∈ Sn×n, we get X + S = ((X − S)2 +

4τ 2I)1/2 and therefore

(X − S)2 + 4τ 2I = (X + S)2 and X + S ∈ Sn×n
++ .

This is equivalent to
XS + SX = 2τ 2I and X + S ∈ Sn×n

++ .

Hence we can follow the argument from the proof of Proposition 2.3 in order to show that
X � 0, S � 0, and XS = τ 2I holds. 2

Let φτ denote either the smoothed Fischer-Burmeister function from (11) or the smoothed
minimum function from (16). Then define a mapping Φτ : Sn×n × Rm × Sn×n → Sn×n ×
Rm × Sn×n by

Φτ (X,λ, S) :=

 ∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φτ (X,S)

 . (17)

Then Propositions 2.3 and 2.5 immediately give the following new characterization of the
central path conditions (4) for semidefinite programs.

Theorem 2.6 Let Φτ be defined by (17) with φ given by (11) or (16), and let τ > 0. Then
the following statements are equivalent:

(a) (X,λ, S) satisfies the central path conditions (4).

(b) (X,λ, S) is a solution of the nonlinear system of equations Φτ (X,λ, S) = 0.

8



3 Properties of φ

In this section we will state some properties of the functions φτ introduced in the previous
section. In particular, we will show that these functions are differentiable (in the sense of
Fréchet).

However, in contrast to our previous section, we will view the nonnegative number τ as
an independent variable from now on. In order to make this clear in our notation, we set
φ(X,S, τ) := φτ (X,S), i.e., we now write

φ(X,S, τ) := X + S − (X2 + S2 + 2τ 2I)1/2 (18)

for the smoothed Fischer-Burmeister function from (11), and

φ(X,S, τ) := X + S − ((X − S)2 + 4τ 2I)1/2 (19)

for the smoothed minimum function from (16). Taking τ as a variable rather than a pa-
rameter is motivated by some computational reasons and will be explained in some more
detail in our next section when we present our smoothing-type method for the solution of
the optimality conditions (3).

We begin our analysis of the functions φ with the following result whose proof can be
found in [8, Lemma 1].

Lemma 3.1 Let φ denote one of the functions defined in (18) or (19). Then, for any
X,S ∈ Sn×n and any τ > ν > 0, we have

κ (τ − ν)I � φ(X,S, ν)− φ(X,S, τ) � 0,

κ τI � φ(X,S, 0)− φ(X,S, τ) � 0,

where κ denotes a positive constant independent of X,S, τ, and ν.

We stress that the constant κ from Lemma 3.1 is actually known: κ = 2 for the smoothed
minimum function, and κ =

√
2 for the smoothed Fischer-Burmeister function.

Corollary 3.2 Let φ be given by (18) or (19), and let κ be the constant from Lemma 3.1.
Then the following statements hold:

(a) The inequality
‖φ(X,S, ν)− φ(X,S, τ)‖F ≤ κ

√
n(τ − ν)

holds for all X,S ∈ Sn×n and all τ > ν > 0.

(b) The inequality
‖φ(X,S, 0)− φ(X,S, τ)‖F ≤ κ

√
n τ

holds for all X,S ∈ Sn×n and all τ > 0.
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Proof. Let λ1, . . . , λn denote the eigenvalues of the symmetric matrix φ(X,S, ν) −
φ(X,S, τ). By Lemma 3.1 we have κ(τ − ν) ≥ λi > 0. We therefore get

‖φ(X,S, ν)− φ(X,S, τ)‖F =
√
λ2

1 + . . .+ λ2
n ≤ κ

√
n(τ − ν).

This proves part (a). The second statement can be derived from Lemma 3.1 in essentially
the same way as part (a). 2

We next want to show that the two functions φ from (18) and (19) are continuously differen-
tiable in their arguments X,S, and τ , at least under suitable assumptions. This result was
essentially given by Chen and Tseng [8, Lemma 2] (who, however, view τ as a parameter)
and can alternatively be derived from the recent paper [24] by Sun and Sun.

Here we give a somewhat different proof for the differentiability of the functions φ. The
reason is that, at least in our opinion, the proof given in, e.g., [8] is not very constructive in the
sense that it is not clear how to obtain the somewhat complicated formulas for the derivatives
of the functions φ. We hope that the reader will find our approach more constructive. It is
based on the following lemma from [16, Section 7.2].

Lemma 3.3 Let A ∈ Sn×n
++ , B ∈ Sn×n

+ be two given matrices. Then∥∥A1/2 −B1/2
∥∥

2
≤

∥∥A−1/2
∥∥

2
· ‖A−B‖2 .

We are now in the position to derive a formula for the derivatives of the mappings φ. To
be specific, assume that φ denotes the smoothed Fischer-Burmeister function from (18). We
have to show that

‖φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)‖2 = o(|||(U, V, µ)|||)

holds for all (U, V, µ) ∈ Sn×n × Sn×n × R tending to (0, 0, 0), where ∇φ(X,S, τ) denotes a
suitable linear operator standing for the derivative of φ at the point (X,S, τ). To this end,
we decompose the mapping φ into

φ(X,S, τ) = φ1(X,S, τ)− φ2(X,S, τ)

with

φ1(X,S, τ) := X + S,

φ2(X,S, τ) := (X2 + S2 + 2τ 2I)1/2.

Then it is easy to see that φ1 is differentiable with

∇φ1(X,S, τ)(U, V, µ) = U + V.

The situation for φ2 is more complicated. Let us define

E :=
(
X2 + S2 + 2τ 2I

)1/2
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and assume that E is positive definite. Let

LE[X] := EX +XE (20)

denote the corresponding Lyapunov operator. Then the positive definiteness of E guarantees
that the Lyapunov equation

LE[X] = H

has a unique solution within the set of symmetric matrices for every H ∈ Sn×n, cf. [17,
Theorem 2.2.3]. Hence we can define the inverse L−1

E of LE, i.e., L−1
E [H] denotes the unique

element X satisfying EX +XE = H. Let us further define the matrix

D :=
(
(X + U)2 + (S + V )2 + 2(τ + µ)2I

)1/2
.

An easy calculation shows that D2 − E2 = LE[D − E] + (D − E)2. Applying L−1
E to this

equation and rearranging terms yields

E −D = L−1
E [(D − E)2 − (D2 − E2)]

= L−1
E [(E −D)2 − (XU + UX + SV + V S + 4τµI + U2 + V 2 + 2µ2I)].

Using the linearity of L−1
E then gives

φ2(X + U, S + V, τ + µ)− φ2(X,S, τ)−∇φ2(X,S, τ)(U, V, µ)
= −∇φ2(X,S, τ)(U, V, µ)− (E −D)
= −∇φ2(X,S, τ)(U, V, µ) + L−1

E [XU + UX + SV + V S + 4τµI]
+L−1

E [U2 + V 2 + 2µ2I]− L−1
E [(E −D)2].

(21)

Obviously, we have
‖L−1

E [U2 + V 2 + 2µ2I]‖F = O(|||(U, V, µ)|||2).
In view of Lemma 3.3, we also have∥∥(E −D)2

∥∥
F
≤ ‖E −D‖2F
≤ γ1

∥∥E2 −D2
∥∥2

F

= γ1

∥∥XU + UX + SV + V S + 4τµI + U2 + V 2 + 2µ2I
∥∥2

F

= O(|||(U, V, µ)|||2)

for some constant γ1 > 0 independent of U, V, and µ. This implies

‖L−1
E [(E −D)2]‖F = O(|||(U, V, µ)|||2).

Therefore, setting

∇φ2(X,S, τ)(U, V, µ) := L−1
E [XU + UX + SV + V S + 4τµI],

it follows immediately from (21) that φ2 is differentiable at (X,S, τ). This, in turn, implies
that φ itself is differentiable at this point. This proves the main part of the first statement
in the following result.
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Theorem 3.4 Let X,S ∈ Sn×n be two given matrices and τ ∈ R+.

(a) If φ is given by (18) and X2 + S2 + 2τ 2I � 0, then φ is continuously differentiable in
(X,S, τ) with

∇φ(X,S, τ)(U, V, µ) = U + V − L−1
E [XU + UX + SV + V S + 4τµI] , (22)

where E := (X2 + S2 + 2τ 2I)1/2.

(b) If φ is given by (19) and (X − S)2 + 4τ 2I � 0, then φ is continuously differentiable in
(X,S, τ) with

∇φ(X,S, τ)(U, V, µ) = U + V − L−1
E [(X − S)(U − V ) + (U − V )(X − S) + 8τµI] ,

(23)
where E := ((X − S)2 + 4τ 2I)1/2.

Proof. (a) The differentiability of the smoothed Fischer-Burmeister function follows from
our preceding discussion.

Since E = (X2 + S2 + 2τ 2I)1/2 � 0 is continuous in (X,S, τ) by Lemma 3.3, it is
readily seen that ∇φ(X,S, τ) is continuous in (X,S, τ), see also [8]. Hence φ is continuously
differentiable in (X,S, τ).

(b) Let D := ((X − S + U − V )2 + 4(τ + µ)2I)
1/2

. Using D2−E2 = LE[D−E] + (D−E)2

and applying L−1
E to this equation yields

E −D = L−1
E [(E −D)2 − ((X − S)(U − V ) + (U − V )(X − S) + (U − V )2 + 8τµI + 4µ2I)].

Since L−1
E is linear, this implies

φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)

= U + V −D + E −∇φ(X,S, τ)(U, V, µ)

= E −D + L−1
E [(X − S)(U − V ) + (U − V )(X − S) + 8τµI]

= L−1
E [(E −D)2]− L−1

E [(U − V )2 + 4µ2I].

In view of Lemma 3.3 we have∥∥(E −D)2
∥∥

F
≤ ‖E −D‖2F
≤ γ2

∥∥E2 −D2
∥∥2

F

= γ2

∥∥(X − S)(U − V ) + (U − V )(X − S) + (U − V )2 + 8τµI + 4µ2I
∥∥2

F

= O(|||(U, V, µ)|||2)

for some constant γ2 > 0 independent of U, V, and τ . This implies

‖φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)‖F
≤ γ3

∥∥(E −D)2
∥∥

F
+ γ3

∥∥(U − V )2 + 4µ2I
∥∥

F

= O(|||(U, V, µ)|||2)
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for some constant γ3 > 0 independent of U, V, and τ . This shows that φ is differentiable
with ∇φ given by (23).

Since E = ((X − S)2 + 4τ 2I)1/2 � 0 is continuous in (X,S, τ), it is readily seen that
∇φ(X,S, τ) is continuous in (X,S, τ), cf. [8]. 2

Note that Theorem 3.4 implies that, if τ > 0, then both functions φ are continuously
differentiable everywhere.

We close this section by noting that both functions φ were shown to satisfy the relation

‖φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)‖2 = O(|||(U, V, µ)|||2), (24)

while it would have been enough to show that

‖φ(X + U, S + V, τ + µ)− φ(X,S, τ)−∇φ(X,S, τ)(U, V, µ)‖2 = o(|||(U, V, µ)|||)

holds in order to see that the functions φ are differentiable at the point (X,S, τ). The reader
might therefore ask whether the stronger relation (24) already implies that φ is continuously
differentiable. However, this is not true as indicated by the following counterexample: Let
f(x) := x2 sin(1/x) for x 6= 0 and f(0) := 0. Then it is easy to see that f satisfies

|f(x)− f(0)− f ′(0)x| = O(|x|2),

with f ′(0) := 0, i.e., (24) holds. However, f is only differentiable in the origin, but not
continuously differentiable.

4 Description of Algorithm

We now want to exploit our previous results in order to obtain a suitable algorithm for the
solution of the optimality conditions (3) and, therefore, for the solution of the underlying
primal and dual semidefinite programs. The most obvious way would be to utilize the
mapping

Φ(X,λ, S) :=

 ∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φ(X,S)


with φ being the Fischer-Burmeister function (6) or the minimum function (15), since then
Propositions 2.2 and 2.4 immediately imply that

(X∗, λ∗, S∗) solves (3) ⇐⇒ (X∗, λ∗, S∗) solves Φ(X,λ, S) = 0.

However, solving the nonlinear system of equations Φ(X,λ, S) = 0 is a nontrivial task
because φ and, therefore, Φ is nonsmooth in general. Hence we do not follow this idea here
although some recent theoretical results [24, 7, 14] indicate that such an approach might be
possible.
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The next idea is to replace the nondifferentiable mapping Φ by the smooth function

Φτ (X,λ, S) :=

 ∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φτ (X,S)

 ,

where φτ denotes either the smoothed Fischer-Burmeister function from (11) or the smoothed
minimum function from (16). This (specialized to the framework of semidefinite programs)
is precisely the approach followed by Chen and Tseng [8] although they have not observed
the equivalence between the nonlinear system of equations Φτ (X,λ, S) = 0 on the one hand
and the central path conditions (4) on the other hand, cf. Theorem 2.6.

In this paper, however, we follow an idea by Jiang [18] (in the context of nonlinear
complementarity problems) and view τ as an independent variable. To this end, we define
the mapping Θ : Sn×n × Rm × Sn×n × R→ Sn×n × Rm × Sn×n × R by

Θ(X,λ, S, τ) :=


∑m

i=1 λiAi + S − C
Ai •X − bi (i = 1, . . . ,m)

φ(X,S, τ)
τ

 , (25)

where φ denotes one of the functions given by (18) or (19). Apart from the fact that τ is an
independent variable rather than a parameter, the function Θ differs from the function Φτ

also because we have added one more line so that

Θ(X,λ, S, τ) = 0 (26)

becomes a square system of equations. This additional line immediately implies τ = 0 so
that the system (26) is equivalent to the optimality conditions (3) themselves (and not to the
central path conditions (4)). This might be an advantage compared with the reformulation
Φτ (X,λ, S) = 0 since we really want to solve the optimality conditions (3) and not the cen-
tral path conditions (4). Furthermore, it follows from Theorem 3.4 that Θ is a continuously
differentiable function at any point (X,λ, S, τ) with τ > 0, and the positivity of τ will auto-
matically be guaranteed by our method. This is an advantage compared with the nonsmooth
reformulation Φ(X,λ, S) = 0. Moreover, according to our numerical experience done with
some related methods for the solution of linear programs (cf. [9, 10, 11]), the reformulation
(26) has the best numerical behaviour. It also has some better theoretical properties in the
context of linear complementarity problems, see Burke and Xu [5, 4], although it is currently
not clear whether this can be extended to semidefinite programs.

The main idea of our algorithm is to solve the system of equations (26) by Newton’s
method. Global convergence of this method is achieved by following a suitable neighbourhood
of the central path. The neighbourhood used here is given by

N (β) =

{
(X,λ, S, τ)

∣∣∣Ai •X = bi ∀i = 1, . . . ,m,
m∑

i=1

λiAi + S = C, ‖φ(X,S, τ)‖F ≤ βτ

}
,

where β denotes a positive number. Local fast convergence will be guaranteed by using a
suitable predictor step. In order to simplify the formulation of our algorithm as well as the
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notation used in the subsequent analysis, let us introduce the abbreviations

W := (X,λ, S) and W k := (Xk, λk, Sk),

where k denotes the iteration index. We are now in the position to give a formal statement
of our smoothing-type method for the solution of semidefinite programs.

Algorithm 4.1
(S.0) (Initializiation)

Choose W 0 = (X0, λ0, S0) ∈ Sn×n × Rm × Sn×n with

m∑
i=1

λ0
iAi + S0 = C and Ai •X0 = bi (i = 1, . . . ,m).

Choose τ0 > 0, β > 0 with ‖φ(X0, S0, τ0)‖F ≤ βτ0 and set k := 0. Choose σ̂, α1, α2 ∈
(0, 1).

(S.1) (Predictor step)
Let (∆W k,∆τk) = (∆Xk,∆λk,∆Sk,∆τk) ∈ Sn×n × Rm × Sn×n × R be a solution of
the system

∇Θ(W k, τk)

(
∆W
∆τ

)
= −Θ(W k, τk). (27)

If
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

= 0: STOP.

Otherwise, if
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk)

∥∥
F
> βτk, then let

Ŵ k := W k, τ̂k := τk and ηk := 1,

else let ηk = αs
1, where s is the natural number with∥∥φ(Xk + ∆Xk, Sk + ∆Sk, αr

1τk)
∥∥

F
≤ βτkα

r
1, r = 0, 1, 2, . . . , s,∥∥φ(Xk + ∆Xk, Sk + ∆Sk, αs+1

1 τk)
∥∥

F
> βτkα

s+1
1 ,

and set

τ̂k := ηkτk and Ŵ k :=

{
W k, if s = 0,
W k + ∆W k, otherwise.

(S.2) (Corrector step)
Let (∆Ŵ k,∆τ̂k) = (∆X̂k,∆λ̂k,∆Ŝk,∆τ̂k) be a solution of

∇Θ(Ŵ k, τ̂k)

(
∆Ŵ
∆τ̂

)
= −Θ(Ŵ k, τ̂k) +

(
0

(1− σ̂)τ̂k

)
. (28)

Let η̂k be the maximum of the numbers 1, α2, α
2
2, . . . with∥∥∥φ(X̂k + η̂k∆X̂

k, Ŝk + η̂k∆Ŝ
k, τ̂k + η̂k∆τ̂k)

∥∥∥
F
≤ (1− σ̂η̂k)βτ̂k. (29)

Set
W k+1 := Ŵ k + η̂k∆Ŵ

k, τk+1 := (1− σ̂η̂k)τ̂k, k ← k + 1,

and go to (S.1).
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It can easily be seen that all iterates (Xk, λk, Sk) and (X̂k, λ̂k, Ŝk) generated by Algorithm
4.1 are feasible for the optimality conditions (3) in the sense that

m∑
i=1

λk
iAi + Sk = C, Ai •Xk = bi (i = 1, . . . ,m) (30)

and
m∑

i=1

λ̂k
iAi + Ŝk = C, Ai • X̂k = bi (i = 1, . . . ,m)

hold for all k ∈ N. Moreover, we will see below that all matrices Xk, Sk and X̂k, Ŝk are
symmetric, cf. Section 7. In contrast to interior-point methods, however, these matrices are
not necessarily positive definite or positive semidefinite.

The termination criterion used in (S.1) is justified by Propositions 2.2 and 2.4: Together
with our previous note on the feasibility of the iterates, these results imply that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

= 0 ⇐⇒ W k + ∆W k is a solution of (3).

For our theoretical analysis of Algorithm 4.1, we will always assume that this criterion never
holds so that Algorithm 4.1 generates an infinite sequence. Furthermore, the updating rule
for τk+1 in (S.2) is equivalent to the more standard formula

τk+1 = τ̂k + η̂k∆τ̂k;

this observation follows immediately from the last row of the linear system (28) in the
corrector step which gives ∆τ̂k = −σ̂τ̂k.

Finally, we stress that we have to solve a linear system of equations in both the pre-
dictor and the corrector step, with possibly different matrices ∇Θ(W, τ), and this is more
costly than what is usually done by interior-point methods. However, an easy inspection
of our subsequent analysis shows that all convergence results remain true for the following
modification of Algorithm 4.1: If the predictor step has been accepted with ηk < 1, then
skip the corrector step, i.e., set W k+1 := W k + ∆W k, τk+1 := ηkτk, k ← k + 1, and return
to (S.1). This modified algorithm either has to solve only one linear system of equations in
the predictor step, or it has to solve two systems, but then these two systems have the same
coefficient matrix. This modification has been implemented in order to obtain the numerical
results in Section 7.

We now start to analyse the properties of Algorithm 4.1 more formally. The aim of the
remaining part of this section will be to show that Algorithm 4.1 is well-defined. To this
end, we first want to show that the linear systems (27) and (28) have a unique solution. In
order to verify this statement, we need some further properties of the Lyapunov operator
from (20). These properties are therefore summarized in our next result.

Lemma 4.2 Let A,B ∈ Sn×n
++ be two symmetric positive definite matrices and LA, LB be the

corresponding Lyapunov operators defined by (20), with L−1
A , L−1

B denoting their inverses.
Then the following statements hold:

(a) LA and LB are self-adjoint.
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(b) L−1
A and L−1

B are self-adjoint.

(c) LA ◦ LB and LB ◦ LA are strongly monotone.

(d) L−1
A ◦ LB and L−1

B ◦ LA are strongly monotone.

Proof. (a) We only have to verify that LA is self-adjoint. This follows directly from the
fact that

LA[X] • Y = tr(LA[X]Y )

= tr
(
(AX +XA)Y

)
= tr(AXY ) + tr(XAY )

= tr(XY A) + tr(XAY )

= tr
(
X(AY + Y A)

)
= tr(XLA[Y ])

= X • LA[Y ]

for all X, Y ∈ Sn×n.

(b) We show that L−1
A is self-adjoint. Noting that L−1

A is the inverse of LA and exploiting
part (a), we obtain

L−1
A [X] • Y = L−1

A [X] • LA

[
L−1

A [Y ]
]

= LA

[
L−1

A [X]
]
• L−1

A [Y ]

= X • L−1
A [Y ]

for all X,Y ∈ Sn×n.

(c) Using the first statement, we obtain(
LA ◦ LB[X]

)
•X = LB[X] • LA[X]

= tr(LB[X]LA[X])
= tr

(
(BX +XB)(AX +XA)

)
= tr

(
BXAX +XBAX +BXXA+XBXA

)
= tr

(
2BXAX +X2(BA+ AB)

)
= 2 tr(BXAX) + tr

(
X2(BA+ AB)

)
= 2

∥∥B1/2XA1/2
∥∥2

F
+ tr

(
X(BA+ AB)X

)
(31)

for all X ∈ Sn×n. Since BA (AB) is similar to B1/2AB1/2 (A1/2BA1/2) and A,B are symmet-
ric positive definite, it follows that BA and AB have real and positive eigenvalues. Hence the
symmetric matrix BA + AB is positive definite. Consequently, X(BA + AB)X is positive
semi-definite so that

tr
(
X(BA+ AB)X

)
≥ 0 (32)
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for all X ∈ Sn×n. Furthermore, since the mapping X 7→
∥∥B1/2XA1/2

∥∥
F

defines a norm and
all norms are equivalent in finite dimensional spaces, there exists a constant µ > 0 such that∥∥B1/2XA1/2

∥∥
F
≥ µ ‖X‖F (33)

for all X ∈ Sn×n. Putting together the inequalities (31)–(33), we obtain(
LA ◦ LB[X]

)
•X ≥ 2

∥∥B1/2XA1/2
∥∥2

F
≥ 2µ2 ‖X‖2F ,

i.e., LA ◦ LB is strongly monotone on Sn×n. In order to see that LB ◦ LA is also strongly
monotone, we just have to change the roles of A and B.

(d) Since LA is self-adjoint by part (a), we obtain for every X ∈ Sn×n (by setting Y :=
L−1

A [X]) (
L−1

A ◦ LB[X]
)
•X =

(
L−1

A ◦ LB ◦ LA[Y ]
)
• LA[Y ]

=
(
LB ◦ LA[Y ]

)
• Y.

However, LB ◦ LA is strongly monotone by part (c). Hence the fourth statement is a direct
consequence of (c). 2

In order to see that the linear systems (27) and (28) have a unique solution, we will show
that the linear mapping ∇Θ(X,λ, S, τ) is invertible. To this end, we state the following
standard assumption.

Assumption 4.3 The matrices Ai (i = 1, . . . ,m) are linearly independent, i.e.,

m∑
i=1

αiAi = 0 ∧ αi ∈ R =⇒ αi = 0 ∀i = 1, . . . ,m.

Exploiting Lemma 4.2 and Assumption 4.3, we are now able to show that ∇Θ(X,λ, S, τ) is
a bijection, i.e., it is both one-to-one and onto. Note that this implies that the predictor
direction (∆Xk,∆λk,∆Sk,∆τk) and the corrector direction (∆X̂k,∆λ̂k,∆Ŝk,∆τ̂k) are well-
defined.

Proposition 4.4 Suppose that Assumption 4.3 holds. Then the linear mapping∇Θ(X,λ, S, τ)
with φ given by (18) or (19) is bijective for all (X,λ, S, τ) ∈ Sn×n × Rm × Sn×n × R++.

Proof. We only consider the case where the function φ is given by (18). The proof for the
smoothed minimum function is similar and therefore omitted here.

Let (X,λ, S, τ) ∈ Sn×n × Rm × Sn×n × R++ be fixed. Since ∇Θ(X,λ, S, τ) is a linear
mapping from the finite-dimensional vector space Sn×n×Rm×Sn×n×R into itself, we only
have to verify that this mapping is one-to-one. To this end, it is sufficient to show that the
system

∇Θ(X,λ, S, τ)(∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0)
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or, equivalently, the system

m∑
i=1

∆λiAi + ∆S = 0, (34)

Ai •∆X = 0 (i = 1, . . . ,m), (35)

∇φ(X,S, τ)(∆X,∆S,∆τ) = 0, (36)

∆τ = 0 (37)

has (∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0) as its only solution. From (37) we immediately obtain
∆τ = 0. Setting E := (X2 +S2 +2τ 2I)1/2, we therefore get from (36) and Theorem 3.4 that

∆X + ∆S − L−1
E [X∆X + ∆X X + S∆S + ∆S S] = 0.

Applying LE to both sides of the equation and rearranging terms yields

LE−X [∆X] + LE−S[∆S] = 0.

Since E − S � 0 (see [27, Lemma 6.1(c)] for a formal proof), the inverse L−1
E−S exists, and

we get
L−1

E−S ◦ LE−X [∆X] + ∆S = 0. (38)

Using (34) and (35) and taking the scalar product with ∆X yields

0 = L−1
E−S ◦ LE−X [∆X] •∆X −

m∑
i=1

∆λiAi •∆X︸ ︷︷ ︸
=0

= L−1
E−S ◦ LE−X [∆X] •∆X. (39)

Using the fact that E − X � 0 and E − S � 0, it follows from Lemma 4.2 (d) that the
operator L−1

E−S ◦ LE−X is strongly monotone. Therefore, (39) immediately gives ∆X = 0.
This implies ∆S = 0 by (38). The assumed linear independence of the matrices Ai and (34)
show that ∆λ = 0, and this completes the proof. 2

Based on the previous results, we are now in the position to show that Algorithm 4.1 is
well-defined under Assumption 4.3.

Theorem 4.5 Algorithm 4.1 is well-defined under Assumption 4.3. Furthermore, the iter-
ates W k = (Xk, λk, Sk) and τk and Ŵ k = (X̂k, λ̂k, Ŝk) and τ̂k belong to the neighbourhood
N (β).

Proof. In view of Proposition 4.4, it remains to show that the two backtracking strategies
in (S.1) and (S.2) of Algorithm 4.1 are well-defined.

To this end, we first consider (S.1). Since we assume that Algorithm 4.1 generates an
infinite sequence, the termination criterion in (S.1) is not satisfied for any k ∈ N. Hence
we have

∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)
∥∥

F
> 0. Since the mapping τ 7→ ‖φ(X,S, ·)‖F is con-

tinuous, this implies that the backtracking strategy in (S.1) terminates in a finite number
of inner loops. Thus, Ŵ k and τ̂k are well defined and satisfy the neighbourhood condition
(Ŵ k, τ̂k) ∈ N (β).

19



We next consider the steplength procedure from (S.2). Let us define the mapping
ψ(X,S, τ) := ‖φ(X,S, τ)‖F . Then standard rules from differential calculus imply

ψ′(X̂k, Ŝk, τ̂k)(∆X̂
k,∆Ŝk,∆τ̂k) = φ(X̂k,Ŝk,τ̂k)•∇φ(X̂k,Ŝk,τ̂k)(∆X̂k,∆Ŝk,∆τ̂k)

‖φ(X̂k,Ŝk,τ̂k)‖
F

(28)
= −

∥∥∥φ(X̂k, Ŝk, τ̂k)
∥∥∥

F
.

(40)

Now suppose that the computation of the steplength η̂k does not terminate in a finite number
of inner loops in (S.2). Then we have∥∥∥φ(X̂k + αt

2∆X̂
k, Ŝk + αt

2∆Ŝ
k, τ̂k + αt

2∆τ̂k)
∥∥∥

F
> (1− σ̂αt

2)βτ̂k

for all t ∈ N. Since βτ̂k ≥
∥∥∥φ(X̂k, Ŝk, τ̂k)

∥∥∥
F
, this implies∥∥∥φ(X̂k + αt

2∆X̂
k, Ŝk + αt

2∆Ŝ
k, τ̂k + αt

2∆τ̂k)
∥∥∥

F
> (1− σ̂αt

2)
∥∥∥φ(X̂k, Ŝk, τ̂k)

∥∥∥
F

or, equivalently,∥∥∥φ(X̂k + αt
2∆X̂

k, Ŝk + αt
2∆Ŝ

k, τ̂k + αt
2∆τ̂k)

∥∥∥
F
−

∥∥∥φ(X̂k, Ŝk, τ̂k)
∥∥∥

F

αt
2

> −σ̂
∥∥∥φ(X̂k, Ŝk, τ̂k)

∥∥∥
F

for all t ∈ N. Taking the limit t→∞ and using (40) yields

−
∥∥∥φ(X̂k, Ŝk, τ̂k)

∥∥∥
F

= ψ′(X̂k, Ŝk, τ̂k)(∆X̂
k,∆Ŝk,∆τ̂k) ≥ −σ̂

∥∥∥φ(X̂k, Ŝk, τ̂k)
∥∥∥

F
.

Since σ̂ ∈ (0, 1), this implies φ(X̂k, Ŝk, τ̂k) = 0. Hence we have

‖φ(X̂k + αt
2∆X̂

k, Ŝk + αt
2∆Ŝ

k, τ̂k + αt
2∆τ̂k)‖F → 0 for t→∞,

whereas
(1− σ̂αt

2)βτ̂k → βτ̂k for t→∞,
contradicting the assumption that the computation of η̂k does not terminate in a finite
number of inner loops. Hence the line search in (S.2) is also well-defined.

The statement regarding the neighbourhood N (β) follows immediately from the updat-
ing rules in Algorithm 4.1. 2

5 Global Convergence

Having seen that our Algorithm 4.1 is well-defined, we now want to show that it is also
globally convergent. To this end, we assume throughout this section that Algorithm 4.1
generates an infinite sequence. Under this blanket assumption, we will prove that every
accumulation point of a sequence {W k} = {(Xk, λk, Sk)} generated by Algorithm 4.1 is
a solution of the optimality conditions (3). To verify this result, we need the following
proposition.
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Proposition 5.1 If the sequence {W k} = {(Xk, λk, Sk)} generated by Algorithm 4.1 has an
accumulation point, then the sequence {τk} converges to zero.

Proof. Since the sequence {τk} is monotonically decreasing and bounded from below by
zero, it converges to a nonnegative number τ∗. If τ∗ = 0, we are done.

So assume that τ∗ > 0. Then the updating rules in (S.1) of Algorithm 4.1 immediately
give

Ŵ k = W k, τ̂k = τk, and ηk = 1 (41)

for all k ∈ N sufficiently large. Subsequencing if necessary, we assume without loss of
generality that (41) holds for all k ∈ N. Then we obtain from the updating rules in (S.2)
that

τk = τ0

k−1∏
j=0

(
1− σ̂η̂j

)
.

Since τk → τ∗ > 0 by assumption, it therefore follows that limk→∞ η̂k = 0. Hence the stepsize
ρ̂k := η̂k/α2 does not satisfy the line search criterion (29) for all k ∈ N sufficiently large. We
therefore have ∥∥∥φ(X̂k + ρ̂k∆X̂

k, Ŝk + ρ̂k∆Ŝ
k, τ̂k + ρ̂k∆τ̂k)

∥∥∥
F
> (1− σ̂ρ̂k)βτ̂k (42)

for all these k ∈ N.
Now let W ∗ = (X∗, λ∗, S∗) be an accumulation point of the sequence {W k}, and let

{W k}K be a subsequence converging to W ∗. Since τ∗ > 0, it follows from (41) and
Proposition 4.4 that the corresponding subsequence {(∆Ŵ k,∆τ̂k)}K converges to some
(∆Ŵ ∗,∆τ̂∗) = (∆X̂∗,∆λ̂∗,∆Ŝ∗,∆τ̂∗), where (∆Ŵ ∗,∆τ̂∗) is a solution of the linear system

∇Θ(W ∗, τ∗)

(
∆Ŵ
∆τ̂

)
= −Θ(W ∗, τ∗) +

(
0

(1− σ̂)τ∗

)
, (43)

cf. (28). In particular, the sequence {(∆Ŵ k,∆τ̂k)}K is bounded. Using {ρ̂k}K → 0 and
taking the limit k →∞ on the subset K, we then obtain from (41), (42) and the continuity
of the function φ(·, ·, ·) that

‖φ(X∗, S∗, τ∗)‖F ≥ βτ∗. (44)

On the other hand, we obtain from (41), (42), the definition of the neighbourhood N (β) and
Theorem 4.5∥∥∥φ(X̂k + ρ̂k∆X̂

k, Ŝk + ρ̂k∆Ŝ
k, τ̂k + ρ̂k∆τ̂k)

∥∥∥
F

> (1− σ̂ρ̂k)βτ̂k

= (1− σ̂ρ̂k)βτk

≥ (1− σ̂ρ̂k)
∥∥φ(Xk, Sk, τk)

∥∥
F

for all k ∈ N sufficiently large. In view of (41), this implies∥∥∥φ(Xk + ρ̂k∆X̂
k, Sk + ρ̂k∆Ŝ

k, τk + ρ̂k∆τ̂k)
∥∥∥

F
−

∥∥φ(Xk, Sk, τk)
∥∥

F

ρ̂k

> −σ̂
∥∥φ(Xk, Sk, τk)

∥∥
F
.
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Letting ψ(X,S, τ) := ‖φ(X,S, τ)‖F and using (40), we therefore obtain for k → ∞ on the
subset K that

−‖φ(X∗, S∗, τ∗)‖F ≥ −σ̂ ‖φ(X∗, S∗, τ∗)‖F ,

since ψ is continuously differentiable at (X∗, S∗, τ∗) (recall that τ∗ > 0). Since σ̂ ∈ (0, 1),
this implies ‖φ(X∗, S∗, τ∗)‖F = 0, a contradiction to (44). 2

As a simple consequence of Proposition 5.1, we now obtain the following global convergence
result for Algorithm 4.1. Note that this global convergence result depends on the corrector
step only, while the precise choice of the predictor step in Algorithm 4.1 has no influence on
this result.

Theorem 5.2 Every accumulation point of a sequence {W k} = {(Xk, λk, Sk)} generated by
Algorithm 4.1 is a solution of the optimality conditions (3).

Proof. LetW ∗ = (X∗, λ∗, S∗) be an accumulation point of a sequence {W k} = {(Xk, λk, Sk)}
generated by Algorithm 4.1, and let {W k}K be a subsequence converging to W ∗. In view
of Proposition 5.1, we have limk→∞ τk = 0. Since all iterates belong to the neighbourhood
N (β) by Theorem 4.5, we therefore obtain

‖φ(X∗, S∗, 0)‖F = lim
k∈K

∥∥φ(Xk, Sk, τk)
∥∥

F
≤ lim

k∈K
βτk = 0.

In view of (30) and Propositions 2.2 and 2.4, this implies that W ∗ = (X∗, λ∗, S∗) is a solution
of the optimality conditions (3). 2

6 Local Superlinear Convergence

This section investigates the local properties of Algorithm 4.1. Our aim is to show that the
sequence {τk} converges superlinearly to zero. Since this result depends on certain properties
of the predictor step in Algorithm 4.1, we first state the following assumption.

Assumption 6.1 The sequence {τk} generated by Algorithm 4.1 converges to zero, and we
have ∣∣∣∣∣∣∣∣∣∣∣∣( ∆W k

∆τk

)∣∣∣∣∣∣∣∣∣∣∣∣ = O(τk), (45)

where (∆W k,∆τk) denotes the search direction computed in (27).

In order to justify Assumption 6.1, we first note that Proposition 5.1 provides a sufficient
condition for the sequence {τk} to converge to zero. To understand the second condition,
assume that the sequence of inverse operators ∇Θ(W k, τk)

−1 remains bounded for k → ∞.
Then we obtain from the linear system (27) that (45) holds provided that the right-hand
side in (27) is of the order O(τk). This, however, is rather obvious since the feasibility of the
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iterates (cf. (30)) together with the fact that all iterates belong to the neighbourhood N (β)
(cf. Theorem 4.5) show that∣∣∣∣∣∣Θ(W k, τk)

∣∣∣∣∣∣ =

√
‖φ(Xk, Sk, τk)‖2F + τ 2

k ≤
∥∥φ(Xk, Sk, τk)

∥∥
F

+ τk ≤ βτk + τk = O(τk).

In addition, such a relation also holds if we replace the right-hand side in (27) by −Θ(W k, 0)
since then Corollary 3.2 and Theorem 4.5 imply∣∣∣∣∣∣Θ(W k, 0)

∣∣∣∣∣∣ =
∥∥φ(Xk, Sk, 0)

∥∥
F

≤
∥∥φ(Xk, Sk, τk)− φ(Xk, Sk, 0)

∥∥
F

+
∥∥φ(Xk, Sk, τk)

∥∥
F

≤ κ
√
nτk + βτk

= O(τk),

where κ > 0 denotes the constant from Lemma 3.1. In particular, all global and local
convergence properties of Algorithm 4.1 remain true if we use this modification of the right-
hand side in (27).

In order to state a sufficient condition for Assumption 6.1 to be satisfied, we introduce
the following assumption.

Assumption 6.2 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (3) such that

(a) (Strict complementarity)
X∗ + S∗ � 0;

(b) (Nondegeneracy)
For any (∆X,∆λ,∆S) satisfying

m∑
i=1

∆λiAi + ∆S = 0 and Ai •∆X = 0 (i = 1, . . . ,m),

the following implication holds:

X∗∆S + ∆XS∗ = 0 =⇒ (∆X,∆S) = (0, 0).

Assumption 6.2 (a) is rather standard, and Assumption 6.2 (b) was introduced by Kojima et
al. [20]. As noted in [20], Haeberly showed that this assumption is equivalent to the primal
and dual nondegeneracy condition considered by Alizadeh et al. [2].

The next result implies that Assumption 6.1 holds under Assumptions 4.3 and 6.2 pro-
vided that the iterates (Xk, λk, Sk) generated by Algorithm 4.1 converge to a solution
(X∗, λ∗, S∗) satisfying these two conditions. The convergence of the iterates to this sin-
gle point is not at all restrictive since it is known that the two Assumptions 4.3 and 6.2
together imply that (X∗, λ∗, S∗) is the unique solution of the optimality conditions (3).

Theorem 6.3 Suppose that Assumptions 4.3 and 6.2 hold at a solution (X∗, λ∗, S∗) of (3).
Then the linear mapping ∇Θ(X∗, λ∗, S∗, 0) is bijective.
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Proof. We only consider the case where φ is defined via the smoothed Fischer-Burmeister
function from (18). The proof for the smoothed minimum function from (19) is similar.

Let us define E :=
(
(X∗)2 + (S∗)2

)1/2
. In view of the assumed strict complementarity,

it is easy to see that E is a positive definite matrix. Hence Theorem 3.4 implies that Θ
is continuously differentiable at (X∗, λ∗, S∗, 0). In order to see that ∇Θ(X∗, λ∗, S∗, 0) is
bijective, we only have to verify that it is one-to-one. To this end, we consider the equation

∇Θ(X∗, λ∗, S∗, 0)


∆X
∆λ
∆S
∆τ

 =


0
0
0
0


and show that (∆X,∆λ,∆S,∆τ) = (0, 0, 0, 0) is its only solution. The last row immediately
gives

∆τ = 0. (46)

Taking this into account and using Theorem 3.4, the first three block rows can be rewritten
as follows:

m∑
i=1

∆λiAi + ∆S = 0, (47)

Ai •∆X = 0 (i = 1, . . . ,m), (48)

∆X + ∆S − L−1
E [X∗∆X + ∆XX∗ + S∗∆S + ∆SS∗] = 0. (49)

Equation (49) implies
LE−X∗ [∆X] + LE−S∗ [∆S] = 0, (50)

cf. the proof of Proposition 4.4. Now, using the fact that (X∗, λ∗, S∗) is a strictly comple-
mentary solution of (3) so that, in particular, we have X∗S∗ = 0, i.e., X∗ and S∗ commute, it
follows that these two matrices can be diagonalized simultaneously by an orthogonal trans-
formation. This means that we can find a single orthogonal matrix Q ∈ Rn×n and diagonal
matrices DX ∈ Rn×n and DS ∈ Rn×n such that X∗ = QTDXQ and S∗ = QTDSQ. Taking
this into account, an easy calculation shows that

E −X∗ = S∗ and E − S∗ = X∗.

Hence (50) can be rewritten as

S∗∆X + ∆XS∗ +X∗∆S + ∆SX∗ = 0.

Using (47), (48) and Assumption 6.2, we therefore obtain from [21, Lemma 6.2] that (∆X,∆S) =
(0, 0). Since the matrices Ai are linearly independent by Assumption 4.3, it follows from (47)
that ∆λ = 0. In view of (46), this completes the proof. 2

We stress that Theorem 6.3 provides only a sufficient condition for Assumption 6.1 to be
satisfied. Since the assumptions used in Theorem 6.3 do imply that the solution set of the
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optimality conditions (3) is just a singleton, Theorem 6.3 is somewhat restrictive. However,
some recent results obtained for linear programs and complementarity problems indicate
that Assumption 6.1 may also hold under weaker conditions which do not necessarily imply
the unique solvability of (3), cf. Tseng [28] and [10].

We now start to analyze the local behaviour of Algorithm 4.1, and begin with the following
technical result.

Lemma 6.4 Suppose Assumption 6.1 holds. Then we have∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥

F
= o(τk).

Proof. Since

∇φ(Xk, Sk, τk)

 ∆Xk

∆Sk

∆τk

 = −φ(Xk, Sk, τk)

by (27), we obtain from the integral mean value theorem that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥

F

=

∥∥∥∥∥∥
∫ 1

0

∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)

 ∆Xk

∆Sk

∆τk

 dη + φ(Xk, Sk, τk)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∫ 1

0

∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)

 ∆Xk

∆Sk

∆τk

 dη −∇φ(Xk, Sk, τk)

 ∆Xk

∆Sk

∆τk

∥∥∥∥∥∥
F

≤
∫ 1

0

∥∥∥∥∥∥
[
∇φ(Xk + η∆Xk, Sk + η∆Sk, τk + η∆τk)−∇φ(Xk, Sk, τk)

]  ∆Xk

∆Sk

∆τk

∥∥∥∥∥∥
F

dη

= o

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
 ∆Xk

∆Sk

∆τk

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
 ,

where the last equality follows from the continuous differentiability of the mapping φ. Tak-
ing into account Assumption 6.1, we therefore get

∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)
∥∥

F
=

o(τk). 2

The main step in order to prove local superlinear convergence of the sequence {τk} is con-
tained in the following result.

Lemma 6.5 Suppose Assumption 6.1 holds, and let the constant β satisfy the inequality
β > κ

√
n, where κ denotes the constant from Lemma 3.1. Then the sequence {ηk} converges

to zero.

Proof. Let ε > 0 be arbitrarily given. Using the fact that ∆τk = −τk because of (27), we
obtain from Lemma 6.4 that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥ =
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk + ∆τk)

∥∥
F

= o(τk).
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Hence there is an index Kε ∈ N such that∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)
∥∥

F
≤ ετk ∀k ≥ Kε.

Then we get for all η > 0 and all k ≥ Kε∥∥φ(Xk + ∆Xk, Sk + ∆Sk, ητk)
∥∥

F

≤
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

+∥∥φ(Xk + ∆Xk, Sk + ∆Sk, ητk)− φ(Xk + ∆Xk, Sk + ∆Sk, 0)
∥∥

F

≤ ετk + κ
√
nητk,

where the last inequality follows from Corollary 3.2. Since the inequality

ετk + κ
√
nητk ≤ βητk

holds for all η ≥ ε
β−κ

√
n
, the definition of ηk shows that ηkα1 does not satisfy this inequality,

i.e.,

ηk <
ε

(β − κ
√
n)α1

.

Since β − κ
√
n > 0 by assumption and ε > 0 was chosen arbitrarily, this implies ηk → 0. 2

We are now in the position to state the main local convergence result for Algorithm 4.1.

Theorem 6.6 Under Assumption 6.1 we have τk+1 = o(τk), i.e., the smoothing parameter
converges locally superlinearly to zero.

Proof. Using Lemma 6.5 and the definition of τk+1 and τ̂k in Algorithm 4.1, we obtain

τk+1 ≤ τ̂k = ηkτk = o(τk),

i.e., τk → 0 superlinearly. 2

We close this section by noting that Theorem 6.6 still holds if we would replace the right-
hand side in (27) by −Θ(W k, 0). This follows from the analysis carried out in [8] (so we skip
the details here) and does not follow immediately from our previous discussion since both
Lemma 6.4 and Lemma 6.5 depend on the fact that the right-hand side of (27) is given by
−Θ(W k, τk).

7 Numerical Results

In order to test the numerical performance of Algorithm 4.1, we implemented the method in
Matlab. To simplify the programming work, we borrow the data structure, problem input,
and some linear algebra routines from the SDPT3 (version 2.1) Matlab code by Toh, Todd,
and Tütüncü [26].
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In our Matlab implementation of Algorithm 4.1 we choose φ to be the smoothed minimum
function from (19). (The results for the smoothed Fischer-Burmeister function seem to be
similar.) Furthermore, we take α1 = α2 = 0.5. The centering parameter σ̂ gets updated
dynamically using a procedure suggested in [12] for the solution of linear programs.

In order to see how the Newton directions can be computed, let us first consider one
iteration of the predictor step. Dropping the superscript k and using the abbreviation

Rd = C −
m∑

j=1

λjAj − S,

the predictor step (27) (with the modification mentioned in Section 6 that the right-hand
side −Θ(W, τ) gets replaced by −Θ(W, 0)) becomes

m∑
j=1

∆λjAj + ∆S = Rd, (51)

Ai •∆X = bi − Ai •X (i = 1, . . . ,m), (52)

∇φ(X,S, τ)(∆X,∆S,∆τ) = −φ(X,S, 0), (53)

∆τ = 0 . (54)

Writing E := ((X −S)2 + 4τ 2I)1/2 (cf. Theorem 3.4), applying the corresponding Lyapunov
operator LE on both sides of equation (53) and using (54), we obtain

LE−(X−S)[∆X] + LE+(X−S)[∆S] = −LE[φ(X,S, 0)]

or, equivalently,

∆X = −L−1
E−(X−S)

[
LE+(X−S)[∆S] + LE[φ(X,S, 0)]

]
. (55)

Substituting ∆S from (51) and rearranging terms yields

∆X =
m∑

j=1

∆λjL
−1
E−(X−S)

[
LE+(X−S)[Aj]

]
−L−1

E−(X−S)

[
LE+(X−S) [Rd] + LE[φ(X,S, 0)]

]
.

Taking inner products with Ai (i = 1, . . . ,m) and using the fact that L−1
E−(X−S) is self-adjoint

by Lemma 4.2 (b), we obtain from (52)

m∑
j=1

∆λjLE+(X−S)[Aj] • L−1
E−(X−S)[Ai] = bi − Ai •X

+
(
LE+(X−S)[Rd] + LE[φ(X,S, 0)]

)
• L−1

E−(X−S)[Ai], i = 1, . . . ,m .

(56)

This is a linear equation in the variables ∆λ ∈ Rm. After solving this system, we immediately
get ∆S from (51). Note that ∆S is obviously symmetric since Rd and all Ai are symmetric.
In view of (55), ∆X can then be obtained as a solution of a Lyapunov equation with a
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symmetric right-hand side and is therefore also symmetric, cf. [17, Theorem 2.2.3]. The
solution of this Lyapunov equation may be computed by using a spectral decomposition of
(X − S)2 + 4τ 2I, see [17, p. 100].

The computation of the search direction in the corrector step (28) is similar to the one
of the predictor step. The main difference is that we compute the vector ∆λ̂ by solving the
linear system

m∑
j=1

∆λ̂jLÊ+(X̂−Ŝ)[Aj] • L−1

Ê−(X̂−Ŝ)
[Ai] = bi − Ai • X̂

+
(
LÊ+(X̂−Ŝ)[R̂d] + LÊ[φ(X̂, Ŝ, τ̂)]− 8στ̂ 2I

)
• L−1

Ê−(X̂−Ŝ)
[Ai], i = 1, . . . ,m ,

(57)

rather than (56), where, of course, we have used the notation

(X̂, λ̂, Ŝ) := (X̂k, λ̂k, Ŝk),

R̂d := C −
m∑

j=1

λ̂jAj − Ŝ,

Ê := ((X̂ − Ŝ)2 + 4τ̂ 2I)1/2.

Note, however, that the corrector step is not carried out when the predictor step was accepted
with ηk < 1. Hence, either the algorithm uses only a predictor step in one iteration, or the
two matrices in (56) and (57) coincide.

In order to describe the way we compute our starting point (X0, λ0, S0), let us call a
triple (X,λ, S) feasible for the optimality conditions (3) if it satisfies the linear equations∑m

i=1 λiAi + S = C (this will be called dual feasibility) and Ai •X = bi (i = 1, . . . ,m) (this
will be called primal feasibility). Note that we do not require X � 0 or S � 0 for such a
feasible triple. Of course, our starting point (X0, λ0, S0) should be feasible in this sense.

To this end, we define a symmetric matrix A ∈ Rm×m by

Aij = Ai • Aj , i, j = 1, . . . ,m,

and solve the linear system Ay = b to obtain y0 ∈ Rm. Then we define

X0 =
m∑

i=1

y0
iAi

and compute λ0 as a solution of the system Aλ = (A1 • C, . . . , Am • C)T . Finally, setting

S0 = C −
m∑

i=1

λ0
iAi ,

we obtain a starting point (X0, λ0, S0) that is obviously feasible. Note, however, that both
X0 and S0 may have negative eigenvalues.

Having computed this starting point, the remaining parameters of Algorithm 4.1 are
initialized by

τ0 =
∥∥φ(X0, S0, 0)

∥∥ /5 and β = max
{
2.1 ·
√
n, 1.5 · ‖φ(X,S, τ0)‖ /τ0

}
.
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We terminate the iteration if τk/n < 10−6 (recall that we parameterize the central path
conditions by τ 2) and if the feasibility measure

max


∥∥∥[
bi − Ai •Xk

]m

i=1

∥∥∥
2

max{1, ‖b‖2}
,

∥∥∥C − Sk −
∑m

i=1 λ
k
iAi

∥∥∥
F

max{1, ‖C‖2}


is smaller than 10−10. The reason for dividing τk by n is based on the fact that ‖φ(Xk, Sk, 0)‖F =
O(τk). Since we want to have ‖φ(Xk, Sk, 0)‖F small, it seems reasonable to terminate if τk
gets small. However, getting ‖φ(Xk, Sk, 0)‖F small becomes increasingly more difficult the
larger the dimension of the matrices Xk and Sk are since we take the Frobenius norm. In
order to make our termination criterion more or less independent of the dimension of Xk

and Sk, we therefore decided to use the above-mentioned stopping rule.
Note that, theoretically, this feasibility measure is always zero for our method. Numeri-

cally, however, the situation is different. While the dual feasibility does not really cause any
troubles (mainly because Sk gets defined in such a way that the dual feasibility is zero), we
sometimes observed difficulties with respect to the primal feasibility. In order to decrease
the primal infeasibility, we therefore exploit a projection technique also used in SDPT3:
After computing a Newton direction (∆X,∆λ,∆S,∆τ), we check whether the inequality
‖[Ai • (X + ∆X)]mi=1 − b‖ > ‖[Ai •X]mi=1 − b‖ holds. If this inequality is satisfied, we replace
∆X by its orthogonal projection onto the nullspace {U ∈ Sn×n |Ai • U = 0, i = 1, . . . ,m}.
As a consequence of this procedure, the feasibility stays close to the machine precision for
all test problems.

In the SDPT3 code, there are eight test problems. The results for different sizes are
shown in Tables 1 – 4. To compare the results with those from interior point methods, the
number of iterations for the infeasible path following algorithm from the SDPT3 package
are also printed; more precisely, we present the results for the three most popular interior
point methods, namely those based on the AHO-, HKM-, and NT-directions, see, e.g., [26]
for some further details.

In Table 1 we tabulate the single run iteration counts (niter). Because it is not garantueed
by Algorithm 4.1 that X and S are positive semi-definite, we also report the minimal eigen-
values of X and S at the final iterate. Table 1 indicates that Algorithm 4.1 has better
iteration counts than all interior-point methods except for the Lovasz problem. However, we
should note that one iteration of Algorithm 4.1 is (usually) more expensive than one iteration
of an interior-point method due to the fact that we have to calculate a matrix square root.

In Tables 2 – 4 we report the average iteration counts for the first ten instances of each
problem using different problem dimensions. (Note that all test problems depend on some
random numbers, so we decided to give the average results over ten runs for each problem.)
In general, it seems that Algorithm 4.1 needs less many iterations than all interior-point
methods for smaller problems, whereas the number of iterations is comparable to interior-
point methods for larger problems. Of course, the precise behaviour also depends on the
particular test problem, and it might be an interesting future research topic to investigate
the reasons why our smoothing-type method behaves particularly well on some problems
while it has more difficulties for some other problems. In any case, we stress that the results
we obtain for Algorithm 4.1 seem to be considerably better than those reported for a related
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AHO HKM NT Alg. 4.1
Problem n m niter niter niter niter λmin(X) λmin(S)
random 10 10 9 16 15 7 -1.91e-08 -2.77e-09
Norm min 20 6 9 10 10 8 -1.97e-09 -6.49e-09
Cheby 20 11 7 10 10 6 -2.58e-13 -3.17e-08
Maxcut 10 10 7 8 8 6 -8.04e-10 -9.35e-10
ETP 20 10 11 14 12 6 -5.86e-07 -4.26e-07
Lovasz 10 20 9 9 9 11 -9.42e-09 -1.12e-06
LogCheby 60 6 10 11 11 11 -9.06e-08 -2.68e-10
ChebyC 40 11 7 8 9 5 -4.74e-12 3.03e-10

Table 1: Number of iterations for small SDP (single run).

AHO HKM NT Alg. 4.1
Problem n m niter niter niter niter
random 10 10 8.2 13.5 12.6 6.5
Norm min 20 6 8.0 9.3 10.1 6.7
Cheby 20 11 7.9 9.8 9.9 5.9
Maxcut 10 10 7.4 8.2 8.4 5.5
ETP 20 10 11.8 14.7 12.2 10.8
Lovasz 10 ≈ 25 7.6 8.7 8.7 9.1
LogCheby 60 6 10.4 10.9 11.1 10.8
ChebyC 40 11 7.6 8.5 9.0 5.2

Table 2: Average number of iterations for small SDP.

method by Chen and Tseng [8] (it should be noted, however, that the termination criteria
are different and not directly comparable).

Finally, Table 5 gives some results for Algorithm 4.1 being applied to some test problems
from the SDPLIB, cf. Borchers [3]. In this table, we present for each test problem the number
of iterations, the final value of the smoothing parameter τ , the relative duality gap as well
as the feasibility measure at the final iterate. Note that the duality gap is negative for many
test problems because the matrices generated by our method are not necessarily positive
semi-definite. (This, in fact, was the reason why we had to take a different termination
criterion than interior-point methods.)

8 Final Remarks

We have presented two new characterizations of the central path conditions for semidefinite
programs. These characterizations were used in order to derive a smoothing-type method for
the solution of semidefinite programs. The search directions generated by these methods are
automatically symmetric, and the method was shown to be globally and locally superlinearly
convergent under suitable assumptions. The numerical results are very promising and it is
certainly worth to do some more work in order to improve these methods. For example, it
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AHO HKM NT Alg. 4.1
Problem n m niter niter niter niter
random 20 20 10.2 14.4 13.1 8.9
Norm min 40 11 8.5 10.1 10.7 7.7
Cheby 40 21 7.7 9.7 10.0 6.1
Maxcut 21 21 8.2 9.6 9.6 6.3
ETP 40 20 12.6 16.7 13.3 14.0
Lovasz 21 ≈ 105 9.7 10.1 10.4 12.7
LogCheby 120 11 12.3 13.2 13.1 13.5
ChebyC 80 21 8.3 9.2 9.4 6.1

Table 3: Average number of iterations for medium sized SDP.

AHO HKM NT Alg. 4.1
Problem n m niter niter niter niter
random 50 50 10.4 15.6 13.7 10.9
Norm min 100 26 9.4 10.7 11.2 8.8
Cheby 100 27 9.3 10.4 11.4 7.1
Maxcut 50 50 9.0 10.0 10.5 6.7
ETP 100 50 13.7 18.4 15.1 19.1
Lovasz 30 ≈ 220 10.3 10.6 10.7 15.3
LogCheby 300 51 13.6 14.0 13.7 13.6
ChebyC 200 41 9.0 9.8 10.0 6.8

Table 4: Average number of iterations for large SDP.
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Problem n m niter τ rel. gap. inf. measure
arch0 335 174 44 5.9e-05 -1.037695e-05 3.499271e-13
arch2 335 174 43 9.4e-05 5.195117e-05 6.384054e-13
arch4 335 174 47 1.3e-04 7.104246e-05 4.250081e-13
arch8 335 174 78 1.1e-04 -3.542500e-06 9.052898e-13
gpp100 100 101 18 9.9e-05 -3.042351e-06 2.123789e-15
gpp124-1 124 125 19 1.0e-04 -1.912270e-05 1.195466e-14
gpp124-2 124 125 19 7.0e-05 -2.615799e-06 2.176315e-15
gpp124-3 124 125 16 1.1e-04 -2.025964e-06 1.887616e-15
gpp124-4 124 125 20 6.5e-05 -4.630696e-06 1.331054e-14
gpp250-1 250 250 19 2.1e-04 -1.294246e-05 2.476407e-14
gpp250-2 250 250 17 1.9e-04 -5.718274e-06 2.130110e-14
gpp250-3 250 250 16 1.7e-04 -3.424270e-06 1.258957e-14
gpp250-4 250 250 17 2.2e-04 -2.061362e-06 3.875924e-14
mcp100 100 100 10 1.8e-06 -2.068888e-09 6.683366e-16
mcp124-1 124 124 15 2.6e-05 -5.421892e-09 5.389812e-16
mcp124-2 124 124 10 8.6e-05 -2.899952e-07 7.948236e-16
mcp124-3 124 124 9 2.9e-05 -8.401942e-08 6.089117e-16
mcp124-4 124 124 9 5.8e-07 -1.672955e-09 7.768182e-16
mcp250-1 250 250 14 5.7e-05 -9.849429e-08 9.333300e-16
mcp250-2 250 250 11 1.1e-04 -4.597849e-07 1.003759e-15
mcp250-3 250 250 11 8.7e-05 -1.589781e-07 1.081043e-15
mcp250-4 250 250 11 4.9e-05 -1.219282e-07 1.007461e-15
mcp500-1 500 500 26 3.7e-04 -5.734057e-07 1.087701e-15
mcp500-2 500 500 14 1.4e-04 -3.508263e-07 1.429353e-15
mcp500-3 500 500 11 3.7e-04 -1.295995e-06 1.526598e-15
mcp500-4 500 500 10 5.6e-05 -7.792705e-08 1.574678e-15
theta1 50 104 13 3.9e-05 -1.307451e-07 6.261965e-17
theta2 100 498 15 1.7e-05 -1.766186e-07 1.049632e-14
theta3 150 1106 15 7.8e-05 -1.009075e-06 1.998401e-15
theta4 200 1949 15 9.5e-06 -1.006602e-07 3.996803e-15
truss1 13 6 8 3.3e-09 -3.003989e-09 3.621438e-15
truss2 133 58 13 1.3e-05 -7.869353e-06 2.209316e-14
truss3 31 27 14 5.0e-06 -5.614971e-10 2.660288e-15
truss4 19 12 7 1.3e-05 -3.397473e-05 1.324462e-15
truss5 331 208 16 2.1e-04 -6.840872e-07 1.803378e-14
truss6 451 172 21 2.5e-04 -2.430952e-04 4.601362e-13
truss7 301 86 25 5.9e-05 -2.316906e-07 3.795188e-13
truss8 628 496 20 1.7e-04 -4.805725e-06 3.038575e-14

Table 5: Selected problems from SDPLIB
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is interesting to investigate the question how the matrix square roots can be computed in a
more efficient way.
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