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Abstract. We discuss some practical issues of a Newton-type method for the solution of
semidefinite programs. This Newton-type method is obtained by reformulating the semidef-
inite program (or its optimality conditions) as a nonlinear system of equations Θ(W ) = 0,
to which a modification of Newton’s method can be applied. Two reformulations of this
kind can be obtained via the smoothed minimum function and via the smoothed Fischer-
Burmeister function. When applying Newton’s method to Θ(W ) = 0, we have to solve at
each iteration a linearized system ∇Θ(W )∆W = −Θ(W ), and the solution of this linearized
system is the main computational burden for the Newton-type method. In this manuscript,
we therefore take a closer look at this linearized system and use different approaches in order
to show how it can be decomposed in an appropriate way. It turns out that, in the end, one
only has to solve a linear system of equations of relatively small size. This linear system,
however, looks rather strange in the beginning, but we show that the corresponding coeffi-
cient matrix is symmetric and positive definite when the smoothed minimum function is used
in the reformulation. Surprisingly, it turns out that the corresponding matrix is only positive
definite (not necessarily symmetric) when the smoothed Fischer-Burmeister function is used.
This difference implies that the underlying Newton-type method is significantly cheaper to
carry out for the smoothed minimum function, not only because the linear system can be
solved more efficiently, but also since because the (nontrivial) calculation of the coefficient
matrix is much more expensive for the smoothed Fischer-Burmeister function due to the lack
of symmetry.

Key Words. Semidefinite programs, Newton’s method, smoothing methods, symmetric
matrices, positive definite matrices.

2



1 Introduction

During the last few years, semidefinite programs have received much attention due to their
wide applicability to combinatorial optimization, control theory and many engineering prob-
lems. The interested reader is referred to the recent book [2] by Ben-Tal and Nemirovski
which describes many of these applications. Formally, a semidefinite program (in its primal
form) is a minimization problem of the form

min
X∈Sn×n

C •X s.t. Ai •X = bi (i = 1, . . . ,m), X � 0, (1)

where C, A1, . . . , Am ∈ Sn×n are symmetric matrices and b ∈ Rm is a given vector (the
notation used here is standard in the semidefinite literature and will be defined at the end
of this section). Hence a semidefinite program is a minimization problem with its variables
being symmetric matrices rather than ordinary vectors.

Corresponding to the primal problem (1), there is also the dual semidefinite program

max
λ∈Rm,S∈Sn×n

bTλ s.t.
m∑

i=1

λiAi + S = C, S � 0. (2)

Similar to linear programs, there is a duality theory relating the primal and dual semidefinite
programs. In particular, it follows from this duality theory that, under mild assumptions,
both the primal problem (1) and the dual problem (2) have a solution if and only if the
optimality conditions ∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,

X � 0, S � 0, XS = 0
(3)

have a solution.
Therefore, many interior-point methods try to solve a semidefinite program by solving

these optimality conditions, see, e.g., [1, 5, 10, 12, 14]. Usually this is done by following the
central path

τ 7→
(
Xτ , λτ , Sτ

)
for τ → 0, where

(
Xτ , λτ , Sτ

)
denotes a (typically unique) solution of the central path

conditions ∑m
i=1 λiAi + S = C,

Ai •X = bi ∀i = 1, . . . ,m,
X � 0, S � 0, XS = τ 2I,

(4)

Note that the central path conditions are obtained by introducing a slight perturbation of
the complementarity condition XS = 0 within (3) via a parameter τ > 0.

Another class of methods, which is related to interior-point methods because it may
also be viewed as a path-following method for the central path, is the class of smoothing
methods. These smoothing methods have very recently been extended from linear programs
and complementarity problems to semidefinite programs, see, e.g., [13, 3, 11, 9]. Basically,
the idea of these smoothing methods is to reformulate either the optimality conditions (3)
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or the central path conditions (4) as a nonlinear system of equations Θ(W ) = 0, to which
Newton’s method or a suitable modification of it gets applied.

In Section 2, we review one of these methods which has been investigated and tested
numerically by the authors in [9]. While [9] describes two methods based on two different re-
formulations, one based on the smoothed minimum function and one based on the smoothed
Fischer-Burmeister function, we first consider the smoothed minimum function in Sections
2, 3, and 4. The extensions for the smoothed Fischer-Burmeister function will be discussed
in Section 5.

When applying Newton’s method to the reformulated system Θ(W ) = 0, we have to
solve at each iteration a linearized system of the form ∇Θ(W )∆W = −Θ(W ). The solution
of this system is the main computational effort for Newton’s method. While it has been
shown in [9] that this system is always solvable, the structure of this system has not been
investigated further in [9].

The aim of this paper is therefore to take a closer look at this structure. To this end,
we use two different approaches, the first approach is described in Section 3 and based
on the Lyapunov operator, the second one is presented in Section 4 and uses an ordinary
matrix-vector formulation of the linearized system ∇Θ(W )∆W = −Θ(W ) (note that W
and ∆W include matrices rather than vectors). It turns out that this linearized system can
be decomposed in such a way that we have to solve only one linear system of equations of
dimension m, and the coefficient matrix of this system, which looks rather strange in the
beginning, has very nice properties. In fact, we will show that it is symmetric and positive
definite.

However, when we try to translate the investigations from Sections 3 and 4, which were
carried out for the smoothed minimum function, to the smoothed Fischer-Burmeister func-
tion in Section 5, it turns out that the analysis does not go through. In fact, we obtain the
somewhat surprising result that the corresponding matrix is still positive definite, but no
longer symmetric (in general). As far as we are aware of, this is the first time that there is a
significant theoretical difference between the smoothed minimum function and the smoothed
Fischer-Burmeister function.

A few words regarding the notation used in this manuscript: For two matrices A, B ∈
Rn×n, we set

A •B := tr(ABT ),

where tr(C) :=
∑n

i=1 cii denotes the trace of a matrix C ∈ Rn×n. It is easy to see that •
defines a scalar product on the set of matrices Rn×n. (Warning: The related symbol ◦ is
used for the composition of two mappings; it does not denote the Hadamard product of two
matrices!) We further write Sn×n for the set of symmetric matrices in Rn×n, while A � 0 and
A � 0 indicate that A is a symmetric positive semidefinite and symmetric positive definite
matrix, respectively. If A � 0, we denote by A1/2 the unique positive semidefinite square
root of A.

Finally, if E � 0 is a given symmetric positive definite matrix, the corresponding Lya-
punov operator LE is defined by

LE[X] := EX + XE (X ∈ Sn×n).
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Then it is well-known (see [7]) that the resulting Lyapunov equation LE[X] = H has a unique
solution for each symmetric H ∈ Sn×n, and we denote this solution by L−1

E [H].

2 Newton-type Method

In this section, we review the Newton-type method from [9] (which, in turn, is similar to a
previous method considered by Chen and Tseng [3]).

In order to derive this Newton-type method, let us introduce the function

φ(X, S) := X + S −
(
(X − S)2

)1/2
(X,S ∈ Sn×n). (5)

The mapping φ is usually called the minimum function since, for n = 1, it reduces to

φ(x, s) = x + s−
√

(x− s)2 = x + s− |x− s| = 2 min{x, s}.

It was noted in [13, 9] that the minimum function has the following property:

φ(X, S) = 0⇐⇒ X � 0, S � 0, XS = 0. (6)

Hence φ may be used in an obvious way in order to reformulate the optimality conditions
(3) as a nonlinear system of equations.

However, the mapping φ is nonsmooth, making a reformulation of the optimality con-
ditions (3) less favourable from a numerical point of view since we cannot apply Newton’s
method directly. To overcome this problem, we use the following approximation of φ:

φ(X, S, τ) := X + S −
√

(X − S)2 + 4τ 2I, (7)

where, for the moment, τ > 0 denotes a fixed parameter. This smoothed minimum function
has the following properties.

Proposition 2.1 Let φ be defined by (7) with τ > 0 fixed. Then the following statements
hold for any two matrices X,S ∈ Sn×n:

(a) φ satisfies the equivalence

φ(X, S, τ) = 0⇐⇒ X � 0, S � 0, XS = τ 2I.

(b) φ is continuously differentiable (in the sense of Fréchet) with

∇φ(X, S, τ)(U, V, µ) = U + V − L−1
E

[
(X − S)(U − V ) + (U − V )(X − S) + 8τµI

]
,

where E :=
(
(X − S)2 + 4τ 2I

)1/2
.

The proof of part (a) was given in [9], whereas part (b) may be found in [3, 9]. Part (a) may
be used in order to reformulate the central path conditions (4), whereas part (b) guarantees
that φ from (7) is a smooth approximation of the minimum function from (5).
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From now on, we will view the parameter τ in the definition of the smoothed minimum
function (7) as an independent variable. The algorithm to be reviewed in this section is a
Newton-type method applied to the nonlinear system of equations

Θ(X, λ, S, τ) = 0, (8)

where
Θ : Sn×n × Rm × Sn×n × R→ Sn×n × Rm × Sn×n × R

is defined by

Θ(X, λ, S, τ) :=


∑m

i=1 λiAi + S − C
Ai •X − bi (i = 1, . . . ,m)

φ(X, S, τ)
τ

 .

Then it is easy to see from (6) that (X, λ, S) is a solution of the optimality conditions (3)
if and only if (X, λ, S, τ) satisfies the nonlinear system of equations (8). (Note that the
definition of Θ immediately gives τ = 0.)

The Newton-type method for the system (8) is a predictor-corrector method. Global
convergence of this method is achieved by following a suitable neighbourhood of the central
path. The neighbourhood used here is given by

N (β) =

{
(X, λ, S, τ)

∣∣∣Ai •X = bi ∀i = 1, . . . ,m,
m∑

i=1

λiAi + S = C, ‖φ(X, S, τ)‖F ≤ βτ

}
,

where β denotes a positive number. Local fast convergence will be guaranteed by using a
suitable predictor step. In order to simplify the formulation of our algorithm, let us introduce
the abbreviations

W := (X,λ, S) and W k := (Xk, λk, Sk),

where k denotes the iteration index. We now give a detailed statement of the Newton-type
method from [9]. For some further explanations, the interested reader is referred to that
reference.

Algorithm 2.2
(S.0) (Initializiation)

Choose W 0 = (X0, λ0, S0) ∈ Sn×n × Rm × Sn×n with

m∑
i=1

λ0
i Ai + S0 = C and Ai •X0 = bi (i = 1, . . . ,m).

Choose τ0 > 0, β > 0 with ‖φ(X0, S0, τ0)‖F ≤ βτ0 and set k := 0. Choose σ̂, α1, α2 ∈
(0, 1).

(S.1) (Predictor step)
Let (∆W k, ∆τk) = (∆Xk, ∆λk, ∆Sk, ∆τk) ∈ Sn×n × Rm × Sn×n × R be a solution of
the system

∇Θ(W k, τk)

(
∆W
∆τ

)
= −Θ(W k, τk). (9)
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If
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, 0)

∥∥
F

= 0: STOP.

Otherwise, if
∥∥φ(Xk + ∆Xk, Sk + ∆Sk, τk)

∥∥
F

> βτk, then let

Ŵ k := W k, τ̂k := τk and ηk := 1,

else let ηk = αs
1, where s is the natural number with∥∥φ(Xk + ∆Xk, Sk + ∆Sk, αr

1τk)
∥∥

F
≤ βτkα

r
1, r = 0, 1, 2, . . . , s,∥∥φ(Xk + ∆Xk, Sk + ∆Sk, αs+1

1 τk)
∥∥

F
> βτkα

s+1
1 ,

and set

τ̂k := ηkτk and Ŵ k :=

{
W k, if s = 0,
W k + ∆W k, otherwise.

(S.2) (Corrector step)
Let (∆Ŵ k, ∆τ̂k) = (∆X̂k, ∆λ̂k, ∆Ŝk, ∆τ̂k) be a solution of

∇Θ(Ŵ k, τ̂k)

(
∆Ŵ
∆τ̂

)
= −Θ(Ŵ k, τ̂k) +

(
0

(1− σ̂)τ̂k

)
. (10)

Let η̂k be the maximum of the numbers 1, α2, α
2
2, . . . with∥∥∥φ(X̂k + η̂k∆X̂k, Ŝk + η̂k∆Ŝk, τ̂k + η̂k∆τ̂k)

∥∥∥
F
≤ (1− σ̂η̂k)βτ̂k. (11)

Set
W k+1 := Ŵ k + η̂k∆Ŵ k, τk+1 := (1− σ̂η̂k)τ̂k, k ← k + 1,

and go to (S.1).

Note that Algorithm 2.2 assumes that we solve two Newton systems at each iteration, one in
the predictor step and one in the corrector step, with possibly different matrices ∇Θ(W, τ),
and this is more costly than what is usually done by interior-point methods. However,
all convergence results remain true for the following modification of Algorithm 2.2: If the
predictor step has been accepted with ηk < 1, then skip the corrector step, i.e., set W k+1 :=
W k +∆W k, τk+1 := ηkτk, k ← k +1, and return to (S.1). This modified algorithm either has
to solve only one Newton system (in the predictor step), or it has to solve two systems, but
then these two systems involve the same Jacobian of Θ.

Apart from this modification, it is also possible to replace the Newton system (9) in the
predictor step (S.1) by

∇Θ(W k, τk)

(
∆W
∆τ

)
= −Θ(W k, 0), (12)

the difference to (9) being that τk got replaced by 0 on the right-hand side.
We next want to summarize the properties of Algorithm 2.2. To this end, we formulate

a set of assumptions.

Assumption 2.3 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (3).

7



(a) (Linear independence)
The matrices Ai (i = 1, . . . ,m) are linearly independent, i.e.,

m∑
i=1

αiAi = 0 ∧ αi ∈ R =⇒ αi = 0 ∀i = 1, . . . ,m.

(b) (Strict complementarity)
X∗ + S∗ � 0;

(c) (Nondegeneracy)
For any (∆X, ∆λ, ∆S) satisfying

m∑
i=1

∆λiAi + ∆S = 0 and Ai •∆X = 0 (i = 1, . . . ,m),

the following implication holds:

X∗∆S + ∆XS∗ = 0 =⇒ (∆X, ∆S) = (0, 0).

We next summarize the properties shown in [9] for the Newton-type method from Algorithm
2.2.

Theorem 2.4 Let Assumption 2.3 (a) be satisfied. Then the following statements hold:

(a) Algorithm 2.2 is well-defined, in particular, the Newton systems (9) (or, alternatively,
(12)) and (10) have a unique solution.

(b) All iterates (W k, τk) and (Ŵ k, τ̂k) generated by Algorithm 2.2 belong to the neighbour-
hood N (β).

(c) Algorithm 2.2 is globally convergent in the sense that every accumulation point of the
sequence {W k} is a solution of the optimality conditions (3).

(d) If, in addition, Assumptions 2.3 (b) and (c) hold, then Algorithm 2.2 converges locally
superlinearly in the sense that τk+1 = o(τk).

Note that Theorem 2.4, in particular, guarantees that the Newton system (9) in the predictor
step (or, alternatively, the variant from (12)) and the Newton system (10) from the corrector
step have a unique solution. However, knowing that there is such a solution and computing
this solution are two different things. On the other hand, the computation of these solutions
is of significant practical interest, especially because it is the main computational effort we
have to carry out when applying Algorithm 2.2 to a semidefinite program.

In the following two sections, we therefore provide some strategies for the solution of the
Newton systems (9) (or (12)) and (10). We also prove some interesting properties of these
Newton systems.
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3 Lyapunov-Formulation of Newton Systems

In this section, we show that the Newton systems (9), (12), and (10) may be solved by using
the inverse Lyapunov function. To this end, we consider the Newton system (12) and provide
all the details for this system. The arguments for (9) and (10) are similar and therefore not
considered here.

Let us introduce the residuals

RC := C −
m∑

j=1

λjAj − S,

rb,i := bi − Ai •X (i = 1, . . . ,m),

rb :=
(
rb,1, . . . , rb,m

)T
.

Then the Newton system (12) becomes

m∑
j=1

∆λjAj + ∆S = RC , (13)

Ai •∆X = rb,i (i = 1, . . . ,m), (14)

∇φ(X, S, τ)(∆X, ∆S, ∆τ) = −φ(X, S, 0), (15)

∆τ = 0, (16)

where we dropped the iteration index k in order to simplify the notation. Using Proposition
2.1 (b) and taking into account (16), it follows from (15) that

∆X + ∆S − L−1
E

[
(X − S)(∆X −∆S) + (∆X −∆S)(X − S)

]
= −φ(X,S, 0), (17)

where, of course,

E :=
(
(X − S)2 + 4τ 2I

)1/2

is the symmetric positive definite matrix from Proposition 2.1. Applying the Lyapunov
operator LE on both sides of (17) yields

LE[∆X] + LE[∆S]− (X − S)(∆X −∆S)− (∆X −∆S)(X − S) = −LE

[
φ(X,S, 0)

]
.

Rearranging terms gives

LE−(X−S)[∆X] + LE+(X−S)[∆S] = −LE

[
φ(X, S, 0)

]
.

Using the notation

AE := E − (X − S) and BE := E + (X − S), (18)

this equation may be rewritten as

LAE
[∆X] + LBE

[∆S] = −LE

[
φ(X, S, 0)

]
. (19)
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Noting that AE from (18) is symmetric positive definite (the same holds for BE), we obtain

∆X = −L−1
AE

[
LBE

[∆S] + LE

[
φ(X,S, 0)

]]
. (20)

Substituting ∆S from (13) and rearranging terms yields

∆X =
m∑

j=1

∆λjL
−1
AE

[
LBE

[Aj]
]
− L−1

AE

[
LBE

[RC ] + LE

[
φ(X, S, 0)

]]
.

Taking inner products with Ai (i = 1, . . . ,m) and using (14), we obtain∑m
j=1 ∆λjL

−1
AE

[
LBE

[Aj]
]
• Ai = Ai •∆X + L−1

AE

[
LBE

[RC ] + LE

[
φ(X, S, 0)

]]
• Ai

= rb,i + L−1
AE

[
LBE

[RC ] + LE

[
φ(X, S, 0)

]]
• Ai

(21)

for i = 1, . . . ,m. This expression may be reformulated further by applying the following
result which states some properties of the Lyapunov operator.

Lemma 3.1 Let A, B ∈ Sn×n
++ be two symmetric positive definite matrices and LA, LB be the

corresponding Lyapunov operators, with L−1
A , L−1

B denoting their inverses. Then the following
statements hold:

(a) LA, LB, L−1
A , and L−1

B are self-adjoint.

(b) L−1
A ◦ LB and L−1

B ◦ LA are strongly monotone.

(c) If A and B commute, then LA ◦ LB = LB ◦ LA.

Proof. Statements (a) and (b) have been shown in, e.g., [9]. Hence we consider part (c)
only. Let A and B two commuting matrices, i.e., AB = BA. Then we obtain(

LA ◦ LB

)
[X] = LA

[
LB[X]

]
= LA

[
BX + XB

]
= A

(
BX + XB

)
+
(
BX + XB

)
A

= ABX + AXB + BXA + XBA

= BAX + BXA + AXB + XAB

= B
(
AX + XA

)
+
(
AX + XA

)
B

=
(
LB ◦ LA

)
[X]

for any matrix X ∈ Sn×n. Consequently, we have LA ◦LB = LB ◦LA. (Note that statement
(c) is independent of the positive definiteness of A and B.) 2

Applying Lemma 3.1 with A := AE and B := BE and recalling that these two matrices from
(18) are symmetric positive definite, we see that (21) is equivalent to

m∑
j=1

∆λjLBE
[Aj] • L−1

AE
[Ai] = rb,i +

(
LBE

[RC ] + LE

[
φ(X, S, 0)

])
• L−1

AE
[Ai], i = 1, . . . ,m .

(22)
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This is a linear equation in the variables ∆λ ∈ Rm with coefficient matrix M ∈ Rm×m defined
elementwise by

mij := LBE
[Aj] • L−1

AE
[Ai] (i, j = 1, . . . ,m). (23)

After solving this system, we immediately get ∆S from (13). Note that ∆S is obviously
symmetric since RC and all Ai are symmetric. In view of (20), ∆X can then be obtained
as a solution of a Lyapunov equation with a symmetric right-hand side and is therefore also
symmetric, cf. [7, Theorem 2.2.3]. The solution of this Lyapunov equation may be computed
by using a spectral decomposition, see [7, p. 100].

We next take a closer look at the matrix M = (mij) defined by (23). Although, in the
beginning, this matrix looks rather ugly, we will show that the matrix M has very nice
properties. In fact, it is the aim of this section to show that M is symmetric and positive
definite. The symmetry plays a crucial role because it implies that we can save a significant
amount of work in calculating the matrix elements mij. Knowing that M is (symmetric
and) positive definite, on the other hand, allows us to apply a Cholesky factorization (or a
conjugate gradient method) in order to solve the linear system (22) for ∆λ.

Surprisingly, it seems easier to prove the positive definiteness of M than its symmetry.
We therefore begin with the following result.

Theorem 3.2 Suppose Assumption 2.3 (a) holds. Then the matrix M ∈ Rm×m with entries
mij given by (23) is positive definite.

Proof. Let d ∈ Rm be an arbitrary vector. Then

dTMd =
m∑

i,j=1

didjmij

=
m∑

i,j=1

didj

(
LBE

[Aj] • L−1
AE

[Ai]
)

=
m∑

i,j=1

LBE
[djAj] • L−1

AE
[diAi]

=
m∑

i,j=1

(
L−1

AE
◦ LBE

)
[djAj] • [diAi]

=
m∑

j=1

(
L−1

AE
◦ LBE

)
[djAj] •

( m∑
i=1

diAi

)
=

(
L−1

AE
◦ LBE

)[ m∑
j=1

djAj

]
•
[ m∑

i=1

diAi

]
≥ 0

due to Lemma 3.1 (a), (b). Moreover, Lemma 3.1 (b) implies that equality can hold only
for
∑m

i=1 diAi = 0, and this immediately implies di = 0 for all i = 1, . . . ,m in view of the
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assumed linear independence of the matrices A1, . . . , Am. 2

We now want to show that the matrix M is also symmetric. To this end, we recall the
following standard result, see, e.g., [6].

Proposition 3.3 Let A, B ∈ Sn×n be two symmetric matrices. Then the following two
statements are equivalent:

(a) A and B commute.

(b) A and B have a simultaneous spectral decomposition, i.e., there is an orthogonal matrix
Q ∈ Rn×n and two diagonal matrices DA, DB ∈ Rn×n such that A = QTDAQ and
B = QTDBQ.

In order to apply Lemma 3.1 (c), we next show that the two matrices AE and BE from (18)
commute.

Lemma 3.4 The two matrices AE = E − (X − S) and BE = E + (X − S) from (18)

commute, where E :=
(
(X − S)2 + 4τ 2I

)1/2
.

Proof. We have to show that AEBE = BEAE. In order to verify this equality, we invoke
Proposition 3.3 and show that the two matrices AE and BE have a simultaneous spectral
decomposition. To this end, let

X − S = QTDQ

be a spectral decomposition of the symmetric matrix X − S. Then(
X − S

)2
= QTD2Q

is a spectral decomposition of
(
X − S

)2
, and we therefore obtain(

X − S
)2

+ 4τ 2I = QT
(
D2 + 4τ 2I

)
Q

and
E =

((
X − S

)2
+ 4τ 2I

)1/2
= QT

(
D2 + 4τ 2I

)1/2
Q.

Consequently, we get

AE = E −
(
X − S

)
= QT

((
D2 + 4τ 2I

)1/2 −D
)
Q

and
BE = E +

(
X − S

)
= QT

((
D2 + 4τ 2I

)1/2
+ D

)
Q,

showing that AE and BE have a simultaneous spectral decomposition. 2

We are now in the position to prove the symmetry of the matrix M .

Theorem 3.5 Let M = (mij) be the matrix with entries mij from (23). Then M is sym-
metric.
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Proof. According to Lemma 3.4, the two symmetric positive definite matrices AE =
E−(X−S) and BE = E+(X−S) commute. Hence Lemma 3.1 (c) implies that LAE

◦LBE
=

LBE
◦ LAE

or, equivalently,
L−1

AE
◦ LBE

= LBE
◦ L−1

AE
. (24)

Since (by Lemma 3.1 (a)) the symmetry of M may be rewritten as

mij = mji ⇐⇒ LBE
[Aj] • L−1

AE
[Ai] = LBE

[Ai] • L−1
AE

[Aj]

⇐⇒
(
L−1

AE
◦ LBE

)
[Aj] • Ai = Ai •

(
LBE
◦ L−1

AE

)
[Aj]

⇐⇒
(
L−1

AE
◦ LBE

)
[Aj] • Ai =

(
LBE
◦ L−1

AE

)
[Aj] • Ai,

the symmetry of M therefore follows from (24). 2

4 Matrix-Vector-Formulation of Newton Systems

In this section, we derive a formulation of the Newton systems (9), (12), and (10) as an
ordinary linear system, i.e., we reformulate these Newton systems as matrix vector-products.
To this end, we need to transfrom matrices into vectors. For a general (not necessarily
symmetric) matrix A ∈ Rn×n, this can be done by using the mapping vec : Rn×n → Rn2

defined by
vec(A) :=

(
a11, a21, . . . , an1, a12, a22, . . . , an2, . . . , ann

)T ∈ Rn2

,

i.e., vec stacks the columns of A into a vector of length n2. For a symmetric matrix, we
are not interested in all entries of A. It suffices to consider the lower triangular part of A,

and the corresponding transformation can be done using the mapping svec : Sn×n → R
n(n+1)

2

defined by

svec(A) :=
(
a11,
√

2a21, . . . ,
√

2an1, a22,
√

2a32, . . . ,
√

2an2, . . . , ann

)T ∈ R
n(n+1)

2 .

The reason for the
√

2 factor in front of all nondiagonal elements is due to the fact that this
is consistent with the inner product, i.e.,

A •B = svec(A)T svec(B) ∀A, B ∈ Sn×n. (25)

Having introduced vec and svec, the next question is how an ordinary matrix product can
be expressed in terms of vec and svec. To this end, let us define the Kronecker product of
two (not necessarily symmetric) matrices G, K ∈ Rn×n by

G⊗K :=
[
gijK

]
∈ Rn2×n2

.

Then it can easily be verified that(
G⊗K

)
vec(H) = vec

(
KHGT

)
(H ∈ Rn×n).

13



Similarly, we define the symmetric Kronecker product by(
G⊗s K

)
svec(H) :=

1

2
svec

(
KHGT + GHKT

)
(S ∈ Sn×n). (26)

Alternatively, the symmetric Kronecker product can also be defined by using the Kronecker
product directly, see [12] for details.

Some properties of the symmetric Kronecker product are summarized in the following
result. The proofs of these properties are elementary and may be found, among other things,
in the appendix of the paper [12] by Todd, Toh, and Tütüncü.

Lemma 4.1 The symmetric Kronecker product ⊗s defined by (26) has the following prop-
erties:

(a) G⊗s K = K ⊗s G.

(b) G⊗s I is symmmetric if and only if G is.

(c)
(
G⊗s K

)(
H ⊗s L

)
= 1

2

(
GH ⊗s KL + GL⊗s KH

)
.

(d) If G and K are symmetric positive definite, then so is G⊗s K.

We now consider the Newton system (12), i.e., we consider the system (13)–(16) from the
previous section. The arguments for the Newton systems (9) and (10) are similar and
therefore not presented here.

The first two equations (13) and (14) may be reformulated in matrix-vector notation in
exactly the same way as described in [12], resulting in the two equations

AT∆λ + svec(∆S) = svec(RC) (27)

and
A svec(∆X) = rb, (28)

respectively, where

A :=
(
svec(A1), . . . , svec(Am)

)T ∈ Rm×n(n+1)
2 . (29)

Hence it remains to consider the third block (15). Following the previous section, we may
reformulate this equation as

AE∆X + ∆XAE + BE∆S + ∆SBE = −LE

[
φ(X,S, 0)

]
,

cf. (19), where, of course, AE and BE denote the two symmetric and positive definite matrices
from (18). Applying 1

2
svec on both sides then gives

1

2
svec

(
AE∆X + ∆XAE

)
+

1

2
svec

(
BE∆S + ∆SBE

)
= −1

2
svec

(
LE

[
φ(X, S, 0)

])
.

14



Using the definition (26) of svec, we have

1

2
svec

(
AE∆X + ∆XAE

)
=

(
I ⊗s AE

)
svec(∆X),

1

2
svec

(
BE∆S + ∆SBE

)
=

(
I ⊗s BE

)
svec(∆S).

Setting
E := I ⊗s AE and F := I ⊗s BE, (30)

we therefore get

Esvec(∆X) + Fsvec(∆S) = −1

2
svec

(
LE

[
φ(X,S, 0)

])
. (31)

Summarizing our discussion, we obtain the following result as a consequence of (27), (28),
and (31).

Theorem 4.2 The triple
(
∆X, ∆λ, ∆S

)
∈ Sn×n × Rm × Sn×n satisfies the Newton sys-

tem (12) if and only if the vector
(
svec(∆X), ∆λ, svec(∆S)

)
satisfies the linear system of

equations  0 AT I
A 0 0
E 0 F

 svec(∆X)
∆λ

svec(∆S)

 =

 svec(RC)
rb

−1
2
svec

(
LE

[
φ(X, S, 0)

])
 . (32)

Note that the linear system (32) looks very similar to the one obtained for interior-point
methods by Todd, Toh, and Tütüncü [12], however, the reader should be careful because the
matrices E and F have a different meaning here.

Our next aim is to show that the linear system (32) has a unique solution, and how this
solution can be computed. To this end, we need the following result.

Lemma 4.3 The matrices E and F from (30) are symmetric positive definite. Furthermore,
the matrix E−1F is also symmetric positive definite.

Proof. We first recall that the two matrices AE and BE from (18) are symmetric positive
definite. Hence it follows from the definitions of E and F in (30) together with Lemma 4.1
(a), (b), and (d) that E and F are also symmetric and positive definite.

Moreover, we know from Lemma 3.4 that the matrices AE and BE commute. Using
Lemma 4.1 (c) and (a), this implies

EF =
(
I ⊗s AE

)(
I ⊗s BE

)
=

1

2

(
I ⊗s AEBE + BE ⊗s AE

)
=

1

2

(
I ⊗s BEAE + AE ⊗s BE

)
=

(
I ⊗s BE

)(
I ⊗s AE

)
= FE ,
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so that E and F also commute. This, in turn, implies

FE−1 = E−1F .

But then (
E−1F

)T
= FT

(
E−1
)T

= FE−1 = E−1F ,

i.e., the matrix E−1F is symmetric. Moreover, E−1F is positive definite since it is similar to
the symmetric and positive definite matrix F1/2E−1F1/2, where F1/2 denotes the symmetric
positive definite square root of F . 2

Using Lemma 4.3, we now obtain from Todd, Toh, and Tütüncü [12, Theorem 3.1] that the
coefficient matrix of the linear system (32) is nonsingular.

Theorem 4.4 Suppose Assumption 2.3 (a) holds. Then the matrix from (32) is nonsingular.

We next show how our previous results may be used in order to solve the linear system (32).
To this end, let us write down this 3× 3 block system as

AT∆λ + svec(∆S) = svec(RC), (33)

Asvec(∆X) = rb, (34)

Esvec(∆X) + Fsvec(∆S) = −1

2
svec

(
LE

[
φ(X, S, 0)

])
. (35)

Since E is nonsingular by Lemma 4.3, we obtain from (35)

svec(∆X) = −E−1
(
Fsvec(∆S) +

1

2
svec

(
LE

[
φ(X, S, 0)

]))
. (36)

Substituting svec(∆S) from (33) gives

svec(∆X) = −E−1
(
Fsvec(RC)−FAT∆λ +

1

2
svec

(
LE

[
φ(X, S, 0)

]))
.

Left-multiplication with A and using (34) yields

AE−1FAT∆λ = rb +AE−1
(
Fsvec(RC) +

1

2
svec

(
LE

[
φ(X, S, 0)

]))
. (37)

The procedure for solving the linear system (32) is therefore as follows: First compute ∆λ
from (37). The matrix of this linear system is symmetric and positive definite because of
Lemma 4.3 and because A has full rank (under Assumption 2.3 (a)). Then we may obtain
svec(∆X) and svec(∆S) from (36) and (33), respectively.

We next investigate the relation between the matrix

A := AE−1FAT ∈ Rm×m (38)

occuring in (37) and the corresponding matrix M from Section 3 defined elementwise in (23).
In fact, we claim that these two matrices are identical. To this end, let us calculate the entry
aij of A. Using the definition of A, we obtain

aij = svec(Ai)
TE−1Fsvec(Aj).
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Now it follows from (26) that

Fsvec(Aj) =
(
I ⊗s BE

)
svec(Aj) =

1

2
svec

(
BEAj + AjBE

)
=

1

2
svec

(
LBE

[Aj]
)
.

Hence we obtain

aij =
1

2
svec(Ai)

T
(
I ⊗s AE

)−1
svec(LBE

[Aj]). (39)

On the other hand, we have

AEL−1
AE

[Ai] + L−1
AE

[Ai]AE = Ai

in view of the definition of the inverse Lyapunov operator. Consequently, (26) yields

1

2
svec(Ai) =

1

2
svec

(
AEL−1

AE
[Ai] + L−1

AE
[Ai]AE

)
=

(
I ⊗s AE

)
svec

(
L−1

AE
[Ai]
)
.

Hence we have
1

2

(
I ⊗s AE

)−1
svec(Ai) = svec

(
L−1

AE
[Ai]
)
.

Substituting this into (39) and using (25) gives

aij = svec
(
L−1

AE
[Ai]
)T

svec
(
LBE

[Aj]
)

= svec
(
LBE

[Aj]
)T

svec
(
L−1

AE
[Ai]
)

= LBE
[Aj] • L−1

AE
[Ai].

However, the last expression is identical to mij from (23). Summarizing our previous discus-
sion, we therefore get the following result.

Theorem 4.5 The two matrices M = (mij) from (23) and A = (aij) from (38) are identical.

5 Results for the Fischer-Burmeister Function

Algorithm 2.2 may also be applied to another operator Θ if we replace the smoothed mini-
mum function from (7) by the mapping

φ(X, S, τ) := X + S −
(
X2 + S2 + 2τ 2I

)1/2
. (40)

For n = 1, this is the so-called smoothed Fischer-Burmeister function, see [4, 8]. It was
noted in [9] that Proposition 2.1 (a) also holds for the smoothed Fischer-Burmeister function.
Moreover, the smoothed Fischer-Burmeister function is also continuously differentiable with

∇φ(X, S, τ)(U, V, µ) = U + V − L−1
E [XU + UX + SV + V S + 4τµI] , (41)

where
E :=

(
X2 + S2 + 2τ 2I

)1/2
, (42)
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cf. [3, 9]. Now the question is which results still hold if we replace the smoothed minimum
function everywhere by the smoothed Fischer-Burmeister function. Usually, these two func-
tions are viewed as being equal in the sense that they have the same theoretical and similar
numerical properties. Indeed, it was noted in [9] that the main convergence result from
Theorem 2.4 also holds for the smoothed Fischer-Burmeister function.

Surprisingly, however, it turns out that not all of our new results from Sections 3 and
4 hold for the smoothed Fischer-Burmeister function. To this end, let us first consider the
approach from Section 3. Using the expression (41), we may rewrite the block equation from
(15) as

∆X + ∆S − L−1
E

[
X∆X + ∆XX + S∆S + ∆SS

]
= −φ(X, S, 0),

where E denotes the matrix from (42). After some algebraic manipulations, similar to those
in Section 3, we obtain

LAE
[∆X] + LBE

[∆S] = −LE

[
φ(X, S, 0)

]
,

where
AE := E −X and BE := E − S. (43)

Using these definitions of AE and BE, we see that we can compute ∆λ ∈ Rm by solving the
linear system (22) with matrix M = (mij) ∈ Rm×m and elements mij defined by (23). Since
AE and BE from (43) are obviously positive definite, it follows from Theorem 3.2 that the
matrix M is positive definite also for the smoothed Fischer-Burmeister function.

However, the matrices AE and BE from (43) do not commute in general. This means
that the approach used in Section 3 in order to show the symmetry of the matrix M is no
longer applicable for the Fischer-Burmeister function. In fact, it turns out that the matrix
M is not symmetric in general. To this end, consider the following counterexample.

Example 5.1 Choose n = 3, m = 2, τ = 1, φ the smoothed Fischer-Burmeister function
and

A1 =

 1 0 0
0 0 0
0 0 0

 , A2 =

 0 0 0
0 1 0
0 0 0

 .

Matrices Ai of this type occur in the constraints of the MAXCUT problem. We now consider
the iterates

X =

 0 1 0
1 0 0
0 0 1

 , S =

 0 0 1
0 1 0
1 0 0

 .

An easy computation shows that

E = (X2 + S2 + 2τ 2I)1/2 =

 2 0 0
0 2 0
0 0 2

 .

We therefore get

AE =

 2 −1 0
−1 2 0
0 0 1

 , BE =

 2 0 −1
0 1 0
−1 0 2

 .
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This yields

LBE
[A1] =

 4 0 −1
0 0 0
−1 0 0

 , LBE
[A2] =

 0 0 0
0 2 0
0 0 0

 .

Moreover, we have

L−1
AE

[A1] =


7
24

1
12

0
1
12

1
24

0

0 0 0

 , L−1
AE

[A2] =


1
24

1
12

0
1
12

7
24

0

0 0 0


because

L−1
AE

[A1] · AE + AE · L−1
AE

[A1]

=


7
24

1
12

0
1
12

1
24

0

0 0 0


 2 −1 0

−1 2 0

0 0 1

+

 2 −1 0

−1 2 0

0 0 1




7
24

1
12

0
1
12

1
24

0

0 0 0



=

 1 0 0

0 0 0

0 0 0

 = A1

and, similarly, for L−1
AE

[A2]. Then it is easy to verify that

M =

(
7
6

1
12

1
6

7
12

)
,

which is a non-symmetric matrix.

Now let us look at the results in Section 4, again with φ being the smoothed Fischer-
Burmeister function from (40) and with AE, BE being the matrices from (43). Then we
may follow all arguments from Section 4 up to Lemma 4.3. The proof of Lemm 4.3 is
again based on the fact that AE and BE commute. Since this is no longer true for the
Fischer-Burmeister function, it follows that the matrix E−1F is still positive definite, but
not necessarily symmetric. Hence the corresponding linear system (32) still has a solution,
and the matrix AE−1FAT from (37) is still positive definite, but Theorem 4.5 together with
Example 5.1 shows that this matrix is no longer symmetric in general.

Consequently, the amount of work for computing either the matrix M from Section 3
or the matrix A from Section 4 is significantly cheaper when using the smoothed minimum
function. Moreover, for the smoothed Fischer-Burmeister function it is no longer possible
to apply a Cholesky factorization or a conjugate gradient method for the solution of these
linear systems, i.e., the solution procedure itself is also more costly when using the smoothed
Fischer-Burmeister function.
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6 Final Remarks

In this manuscript we have shown that certain linearized systems occuring in the context
of Newton-type methods for the solution of semidefinite programs can be decomposed in
such a way that, in the end, only one linear system of equations of dimension m has to
be solved. The corresponding matrix, although strange looking in the beginning, turned
out to be symmetric positive definite when the smoothed minimum function is used in the
Newton-type method, whereas it is only positive definite (not necessarily symmetric) when
the smoothed Fischer-Burmeister function is taken.

These results suggest to use an inexact Newton method rather than Newton’s method
itself. However, this idea raises a couple of other interesting questions, namely how to
compute the solution of Lyapunov equations by iterative solvers efficiently, and how to
compute matrix square roots by iterative solvers. When answering these questions, one
should take into account that, at least locally, our matrices do not differ much from one
outer iteration to the next.
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