
The Semismooth Algorithm for Large Scale
Complementarity Problems

Todd S. Munson • Francisco Facchinei • Michael C. Ferris •
Andreas Fischer • Christian Kanzow

Mathematics and Computer Sciences Division, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, IL 60439, USA

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via
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Complementarity solvers are continually being challenged by modelers demanding improved

reliability and scalability. Building upon a strong theoretical background, the semismooth

algorithm has the potential to meet both of these requirements. We discuss relevant theory

associated with the algorithm and then describe a sophisticated implementation in detail.

Particular emphasis is given to the use of preconditioned iterative methods to solve the

(nonsymmetric) systems of linear equations generated at each iteration and robust methods

for dealing with singularity. Results on the MCPLIB test suite indicate that the code is

reliable and efficient, and scales well to very large problems.

(Artificial Intelligence; Simulation; Statistical Analysis; Analysis of Algorithms; Queues)

1 Introduction

Operations researchers typically encounter complementarity conditions for the first time in

the context of linear programs. In this instance, an optimal solution is characterized by the

fact that either the dual variable (multiplier) is zero or the primal slack variable is zero. It is

less well known that such (necessary) “optimality conditions” extend not only to the domain

of nonlinear programming, but also appear quite naturally in a multiplicity of problems from
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economics and engineering (? 14). To facilitate the development of such models by general

operations researchers, extensions to the AMPL (16? ) and GAMS (3? ? ) modeling

languages have been developed for expressing complementarity conditions and a plethora

of applications have used such systems to solve realistic problems. Some successes of this

approach are documented in (? ? ? ). Many of these solutions have been calculated using

“successive linear complementarity” codes such as MILES (? ) and PATH (9).

Due to the increased ability of complementarity algorithms at solving large, difficult prob-

lems, the modeling community has become more adventurous at generating even larger and

“harder” models, some of which are poorly defined, suffer from conditioning or singularity

problems, or contain “non-convexities”. Any new algorithmic development should attempt

to meet the expectations of the modeling community; the resulting code must terminate in

all cases with appropriate solutions or error messages, and should reliably solve models from

a broad range of application areas. It is with this in mind that we have developed a new

implementation of a class of nonsmooth Newton methods.

Extensive theoretical research on the use of nonsmooth Newton methods for complemen-

tarity problems has been performed in the past few years with much emphasis on extending

the domain of local convergence. One algorithmic approach for solving complementarity

problems is to reformulate them as piecewise smooth systems of equations and applying an

iterative linearization algorithm (22; 23). For example, the normal map reformulation (? )

forms the basis for both the MILES and PATH codes. While it may be argued that piece-

wise linear maps are more effective at approximating piecewise smooth maps, generating the

“Newton” direction involves the arduous task of solving a linear complementarity problem,

typically with a derivative of the pivotal method due to ? ).

A seemingly more attractive approach is to use an algorithm based on solving a single

system of linear equations to generate each “Newton” step. Recent theoretical work has

outlined a host of methods with this property. Amongst these, the semismooth algorithm (6)

appears to have some of the strongest associated theory. The aim of this paper is to develop

a robust code based upon this semismooth algorithm for solving large complementarity

problems.

We begin by briefly discussing the theoretical foundations of the semismooth algorithm.

Many of the results contained in this paper are given without proof; instead, we provide refer-

ences to the relevant literature. We then present the implementation details of the code. The

main focus is on the numerical aspects of the code for solving the (nonsymmetric) systems of
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linear equations using preconditioned iterative solvers, methods for dealing with singularity

and ill-conditioning, and strategies to recover from finding non-optimal stationary points of

the merit function. We test the code on the problems in the MCPLIB (8) test collection,

and present results that indicate that the code is reliable and scalable. A comparison with

PATH shows comparable robustness.

Before proceeding, we recall the definition of the mixed complementarity problem (MCP),

also known as a box constrained variational inequality. Given lower bounds, `i ∈ <∪{−∞},
and upper bounds, ui ∈ <∪{+∞}, with `i < ui for all i ∈ I := {1, . . . , n} and a continuously

differentiable function,F : <n → <n, we say that x∗ ∈ <n ∩ [`, u] solves MCP(F, `, u) if and

only if one of the following holds for all i ∈ I:

x∗i = `i and Fi(x
∗) ≥ 0,

x∗i ∈ (`i, ui) and Fi(x
∗) = 0,

x∗i = ui and Fi(x
∗) ≤ 0.

Two special cases of the general mixed complementarity problem are systems of nonlinear

equations, F (x) = 0, obtained by taking `i = −∞ and ui =∞ for each i, and the (standard)

nonlinear complementarity problem, where for each i, `i = 0 and ui =∞.

As an example of a general mixed complementarity problem, consider the bound con-

strained optimization problem

min f(x) subject to ` ≤ x ≤ u

where f : <n → < is a twice continuously differentiable convex function. The first order

optimality conditions of this problem are precisely MCP(∇f, `, u). We can easily see the

meaning of the complementarity conditions in a one dimensional setting. If we are at an

unconstrained stationary point, then ∇f(x) = 0. Otherwise, if x is at its lower bound, then

the function must be increasing as x increases, so ∇f(x) ≥ 0. Further, if x is at its upper

bound, then the function must be increasing as x decreases, so that ∇f(x) ≤ 0.

For fast convergence of iterative methods for smooth nonlinear equations, the invertiblity

of the Jacobian at the limit point is typically assumed. A generalization of this concept to the

nonsmooth case is that of strong regularity (31? ). We say that a solution x∗ of MCP(F, `, u)

is strongly regular if the submatrix F ′(x∗)αα is nonsingular and the Schur-complement

F ′(x∗)α∪β,α∪β/F ′(x∗)αα := F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1
ααF ′(x∗)αβ
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has positive principal minors. Here, the index sets α and β are defined as

α := {i : `i < x∗i < ui, Fi(x
∗) = 0}, β := {i : x∗i ∈ {`i, ui}, Fi(x

∗) = 0}.

The definition of strong regularity may look odd at first sight, but it is well known that

it is a natural extension of the concept of nonsingularity of the Jacobian in the case of

systems of equations. In fact, it is not difficult to check that if `i = −∞ and ui = ∞ for

all i, so that MCP(F, `, u) reduces to the system of equations F (x) = 0, strong regularity

of a solution x∗ corresponds precisely to the nonsingularity of F ′(x∗). We note that strong

regularity is typically used in proofs of the local convergence of “Newton” type methods for

complementarity problems.

In this paper we make the standard blanket assumption that F is continuously differen-

tiable on <n.

2 Mathematical Foundation

The algorithm discussed in this paper is based on a reformulation of the mixed complemen-

tarity problem as a semismooth system of equations. In this section we present some basic

definitions related to semismoothness, followed by the reformulation used and a statement

of the basic algorithm.

2.1 Semismooth Functions

Semismooth functions were introduced by (author?) (25) and have been subsequently ex-

tended to vector valued functions (29; 28). Unless otherwise noted, all of the definitions and

results in this section are taken from these references. In order to define the semismooth

property, let G : <n → <n be a locally Lipschitzian function and note that by Rademacher’s

theorem G is differentiable almost everywhere. If we indicate by DG the set where G is

differentiable, we can define the B-subdifferential of G at x as

∂BG(x) :=
{
H ∈ <n×n : ∃{xk}, xk ∈ DG, with lim

xk→x
G′(xk) = H

}
,

and the (author?) (5) subdifferential of G at x as

∂G(x) := co ∂BG(x),

where co C denotes the convex hull of a set C.
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Definition 2.1 Let G : <n → <n be locally Lipschitzian at x ∈ <n. We say that G is

semismooth at x if

lim
H∈∂G(x+tv′)

v′→v,t↓0

Hv′ (1)

exists for all v ∈ <n. G is termed a semismooth function if G is semismooth at all x ∈ <n.

Semismooth functions lie between Lipschitz functions and continuously differentiable func-

tions. It can be shown that if G is semismooth at x then it is also directionally differentiable

there with the directional derivative in the direction v given by the limit in (1). The class

of semismooth functions is rather broad. Examples include real valued functions that are

continously differentiable or convex, and those functions that can be represented as the max-

imum or minimum of a finite number of semismooth functions. Note that G : <n → <n is

semismooth at x if and only if all its component functions are semismooth at x. Furthermore,

the composition of two semismooth functions is also semismooth.

A slightly stronger notion than semismoothness is strong semismoothness.

Definition 2.2 Suppose that G is semismooth at x. We say that G is strongly semismooth

at x if for any H ∈ ∂G(x + d), and for any d→ 0,

Hd−G′(x; d) = O(‖d‖2).

Once again, G is strongly semismooth if and only if all its component functions are strongly

semismooth. In turn, continuously differentiable functions with locally Lipschitz Jacobians,

lp norms, and the max and min of affine functions are all examples of strongly semismooth

functions.

In the study of the local convergence of algorithms for solving semismooth systems of

equations, the following regularity condition plays a role similar to that of the nonsingularity

of the Jacobian in the study of algorithms for smooth systems of equations.

Definition 2.3 We say that a semismooth function G : <n → <n is BD-regular at x if all

the elements in ∂BG(x) are nonsingular.

The importance of the above definitions lies in the fact that it is possible to extend many

results related to Newton’s method for smooth systems of equations to semismooth systems.

In fact, a generalized Newton method for the solution of a semismooth system of equations,

G(x) = 0, can be defined as

xk+1 = xk − (Hk)−1G(xk), Hk ∈ ∂BG(xk); (2)
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where Hk can be any element in ∂BG(xk). The following result then holds.

Theorem 2.4 Suppose that x∗ is a solution of the system G(x) = 0 and that G is semis-

mooth and BD-regular at x∗. Then the iteration in (2) is well defined and convergent to

x∗ superlinearly in a neighborhood of x∗. If, in addition, G is directionally differentiable

in a neighborhood of x∗ and strongly semismooth at x∗, then the convergence rate of (2) is

quadratic.

This simple scheme forms the basis of the semismooth method.

2.2 Semismooth Algorithm

The notion of an NCP-function is used to reformulate the complementarity problem as a

semismooth system of equations. A mapping φ : <2 → < is called an NCP-function if it

satisfies the condition

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Two examples of such functions are the Fischer-Burmeister (15) function

φFB(a, b) :=
√

a2 + b2 − a− b (3)

and the penalized Fischer-Burmeister (4) function

φCCK(a, b) := λ
(√

a2 + b2 − a− b
)
− (1− λ) max{0, a}max{0, b}, (4)

where λ ∈ (0, 1) is a given parameter. We can easily verify that the Fischer-Burmeister

function is an NCP-function by performing some simple algebraic manipulations (after noting

that φFB(a, b) = 0 if and only if
√

a2 + b2 = a + b). In the case of the penalized Fischer-

Burmeister function we note that outside of the interior of the positive orthant it is the

Fischer-Burmeister function (multiplied by λ). Thus, to show φCCK is an NCP-function,

we only need to show that φCCK(a, b) cannot be zero in the interior of the first orthant.

But since on the interior of the first orthant ΦFB is negative, this easily follows from the

definition. These two functions will play a central role in this paper.

To reformulate the complementarity problem using these NCP-functions, we partition

the index set I = {1, . . . , n} in the following way:

I` := {i ∈ I | −∞ < `i < ui = +∞},

Iu := {i ∈ I | −∞ = `i < ui < +∞},
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I`u := {i ∈ I | −∞ < `i < ui < +∞},

If := {i ∈ I | −∞ = `i < ui = +∞}.

That is, I`, Iu, I`u and If denote the set of indices i ∈ I with finite lower bounds only, finite

upper bounds only, finite lower and upper bounds and no finite bounds on the variable xi,

respectively. Hence, the subscripts in the above index sets indicate which bounds are finite,

with the only exception of If which contains the free variables.

If φ1, φ2 are two (not necessarily different) NCP-functions that are nonpositive on the

positive orthant and nonnegative elsewhere, we can extend an idea by (author?) (2) and

define an operator Φ : <n → <n component-wise as follows:

Φi(x) :=


φ1(xi − `i, Fi(x)) if i ∈ I`,
−φ1(ui − xi,−Fi(x)) if i ∈ Iu,
φ2(xi − `i, φ1(ui − xi,−Fi(x))) if i ∈ I`u,
−Fi(x) if i ∈ If .

Then we have that

x∗ solves MCP(F, `, u) ⇐⇒ Φ(x∗) = 0.

Note that Φ is not differentiable in general. However, under suitable conditions, Φ is a

semismooth function. A standard technique to solve the mixed complementarity problem is

then to apply the semismooth Newton method outlined in the previous section to the system

Φ(x) = 0 and globalize it by considering the minimization problem

min Ψ(x),

where Ψ is the natural merit function associated with the system Φ(x) = 0:

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2.

Assuming that Ψ is continuously differentiable, we can follow the pattern from (author?)

(6) and write down the basic semismooth solver for complementarity problems.

Algorithm 2.5 (Basic Semismooth Method)

(S.0) (Initialization)

Choose x0 ∈ <n, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, and set k := 0.

(S.1) (Stopping Criterion)

If xk satisfies a suitable termination criterion: STOP.
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(S.2) (Search Direction Calculation)

Select an element Hk ∈ ∂BΦ(xk). Find a solution dk ∈ <n of the linear system

Hkd = −Φ(xk). (5)

If this system is not solvable or if the descent condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (6)

is not satisfied, set dk := −∇Ψ(xk).

(S.3) (Line Search)

Compute ¯̀ as the smallest ` in {0, 1, 2, . . .} such that

Ψ(xk + β
¯̀
dk) ≤ Ψ(xk) + σβ

¯̀∇Ψ(xk)Tdk,

and set tk := β
¯̀
.

(S.4) (Update)

Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

This algorithm looks very much like a simple globalization scheme for the solution of a

smooth system of equations by Newton’s method, the only difference being that we only

assume that Φ is semismooth, and that the matrix Hk in (5) is an element of the generalized

Jacobian instead of the (potentially unavailable) Jacobian. The key assumption we had to

make in order to achieve this simplicity is the continuous differentiability of Ψ. In view of

the nonsmoothness of Φ, this would appear to be a strong requirement, but Proposition 2.6

establishes the continuous differentiability of Ψ for the cases of interest.

Algorithm 2.5 actually represents a whole class of methods since it depends heavily on

the definition of Φ that, in turn, is completely determined by the choice of the two NCP-

functions φ1 and φ2. Usually φ1 plays the central role in the definition of Φ. For example,

if there is no variable with finite lower and upper bounds (as is the case for the standard

nonlinear complementarity problem), then φ2 is not used in the definition of Φ.

For the purpose of this paper, we are particularly interested in the following two choices

of Φ. We define

ΦFB := Φ if φ1 = φ2 = φFB,
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and

ΦCCK := Φ if φ1 = φCCK , φ2 = φFB.

In the latter case, the reason for not using φ2 = φCCK is technical and is related to simplifying

an overestimate of the generalized Jacobian ∂Φ(x).

For the standard nonlinear complementarity problem, the operator ΦCCK has stronger

properties than ΦFB, both from a theoretical and a numerical point of view (4). Hence

ΦCCK will be used by default in our implementation of Algorithm 2.5. However, in some

situations, it is also helpful to have some alternative operators like ΦFB. For example, our

implementation uses ΦFB to perform restarts.

We now summarize some of the properties of ΦFB and ΦCCK as well as of their corre-

sponding merit functions

ΨFB(x) :=
1

2
ΦFB(x)TΦFB(x) and ΨCCK(x) :=

1

2
ΦCCK(x)TΦCCK(x).

The proofs of the results can be found in (author?) (10) for the case of Φ = ΦFB. Since

the proofs for Φ = ΦCCK are very similar (although quite technical and lengthy), they are

omitted here.

Proposition 2.6 Let F : <n → <n be continuously differentiable, Φ belong to {ΦFB, ΦCCK},
and Ψ be the corresponding merit function. Then the following hold:

1. Φ is semismooth and if in addition F ′ is locally Lipschitzian, then Φ is strongly semis-

mooth.

2. Ψ is continuously differentiable on <n.

3. If x∗ is a strongly regular solution of MCP, then x∗ is a BD-regular solution of Φ(x) = 0.

The previous result allows us to state convergence properties of Algorithm 2.5; the proof is

analogous to those given in (author?) (6) for ΦFB and the standard nonlinear complemen-

tarity problem.

Theorem 2.7 Suppose that F : <n → <n is continuously differentiable, Φ ∈ {ΦFB, ΦCCK},
and that {xk} is a sequence generated by Algorithm 2.5. Then any accumulation point of

this sequence is a stationary point of Ψ. Moreover, if one of these accumulation points, say

x∗, is a BD-regular solution of Φ(x) = 0, then the following statements hold:
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(a) The search direction dk is eventually given by the Newton equation (5) and the full

stepsize tk = 1 is eventually accepted in Step (S.3).

(b) The entire sequence {xk} converges to x∗.

(c) The rate of convergence is Q-superlinear.

(d) If in addition F ′ is locally Lipschitzian, then the rate of convergence is Q-quadratic.

3 The Linear System

The key advantage of the semismooth algorithm over MILES and PATH (9) is that the

former only solves a single linear system per iteration while the latter algorithms use pivotal

based codes to solve linear complementarity problems. The pivotal based codes rely upon the

availability of a direct factorization and (sparse) rank-1 updates that limit their applicability

to medium sized or large, structured problems. The semismooth algorithm spends a majority

of the total time solving the Newton systems, Hkd = −Φ(xk). The semismooth method does

not require a direct factorization and rank-1 updates and can therefore benefit from the

use of iterative methods. Effective mechanisms for solving this system using either iterative

methods or a (sparse) direct method are indispensable and have great impact upon the

success of the algorithm.

We begin by discussing the issues involved and options available when using direct meth-

ods to calculate the Newton direction. The main difficulty encountered is singularity in the

Newton system. Information on detecting singularity and using that knowledge to construct

a useful direction even in this case is presented. The effects of the techniques considered on

the singular models in the MCPLIB test set are given and our choice of strategy for solving

the linear system with direct methods is provided.

We then switch to an investigation of iterative methods for finding the Newton direction

as these will enable the algorithm to solve very large problems. Unfortunately, in general

Hk is neither symmetric nor positive definite; this restricts the choice of iterative method.

One of the keys to achieving good performance from an iterative method is to select an

appropriate preconditioner. The strategy implemented uses an incomplete LU factorization

as a preconditioner. We present three of the iterative methods considered and evaluate their

performance on the subset of the MCPLIB test set where the calculated preconditioner is

not a complete LU factorization.
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3.1 Direct Methods

When using a direct method to solve the Newton system, the software needs to have routines

to factor and solve, and should be able to detect singularity problems. For reasonably sized

problems we use the LUSOL (18) sparse factorization routines contained in the MINOS (26)

nonlinear programming solver to factor Hk and solve for the Newton direction. The authors

of this package have investigated the effects of modifying tolerances in the factorization on

general linear systems and have suggested defaults that we have adopted for all our results.

The major difficulty with the direction finding problem is dealing with those instances

where the Newton system either does not have a solution or has an infinite number of

solutions. These singularity problems frequently occur in real world applications. While

testing our semismooth code on the MCPLIB problem set, LUSOL reported that Hk was

singular for 1929 of the 16525 attempted factorizations with at least one singular system

encountered in 27 of the 88 models. However, the theoretical algorithm only provides a

crude mechanism in this case, i.e. the use of a gradient step, while other approaches may

be more effective. Clearly, any practical implementation of the semismooth algorithm must

include appropriate procedures to deal with singularity.

We first investigate the applicability of scaling in conjunction with direct methods to

avoid ill-conditioned systems. We then look at techniques to determine a useful direction

when the model is singular, including using gradient steps, diagonal perturbations of Hk,

and finding a least squares solution to the linear system. Empirical evidence is provided

upon which we evaluate each of the methods.

3.1.1 Scaling

LUSOL can detect when a matrix is singular or nearly singular. In this subsection, we

study the effects of scaling the linear problems in an effort to improve the conditioning of

the matrices that we request to factor. Our goal is to see if we can reduce the number of

occurrences where the factorization package determines that the matrix is singular. By using

scaling we hope to improve the overall reliability of the code on ill-conditioned problems.

Two different scaling schemes were tested on the problems in the MCPLIB test set along

with the default of no scaling. The first technique is the diagonal scaling used in the PATH

solver. In this case, we define a row scaling by looking at elements of the diagonal of Hk

that are large. Formally, we define a diagonal matrix R such that if |(Hk)i,i| > 100 then
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Table 1: The effects of scaling on the linear system solution
Scaling Singular matrices detected Failures Time (secs)
none 1929 29 15,891
diagonal 1899 29 16,403
matrix 1371 31 15,240

Ri,i = 10
|(Hk)i,i| and Ri,i = 1 otherwise. We then try to factor the scaled matrix RHk.

Alternatively, we define a matrix scaling using the following diagonal matrices R,C ∈
<n×n with diagonal entries:

Ri,i =
1

max
{√

Φi(xk)2 +
∑

j(Hk)2
i,j, 10−10

} , (7)

Cj,j =
1

max
{√∑

i(RHk)2
i,j, 10−10

} . (8)

We then solve the linear system RHkCC−1d = −RΦ(xk) by defining d̃ := C−1d, solving the

system RHkCd̃ = −RΦ(xk), and recovering the Newton direction as d = Cd̃. This procedure

scales the rows and then the columns so that each has a two norm of 1. The constants in

the max operator are used to avoid division by zero errors.

There are costs associated with scaling. Of the two methods, matrix scaling is more

expensive per iteration because it requires looking at the data twice. We tested all of these

scalings on the models in the MCPLIB test set and report in Table 1 the number of detected

singular solves, failures of the algorithm to find a solution, and the accumulated total time

in seconds spent in the code over the entire test set. When a singular model was detected

we use the least squares recovery method detailed in Section 3.1.2. Since diagonal scaling

does not cause a significant decrease in the number of singular systems encountered when

compared to no scaling, we disregard this method. The reason for this poor behavior is

probably due to the fact that the diagonal elements do not necessarily reflect the actual

scaling of the problem and to the heavy scale dependence of the test on the magnitude of

the diagonal elements. Matrix scaling significantly reduces the number of singular systems

detected. However, it does result in additional failures of the algorithm. In the next section,

we look at recovery techniques and report results for both no scaling and matrix scaling

because of the differences in the number of singular matrices detected.

Before continuing, we note that the scaling investigated here is not very exhaustive and

more complex schemes might be tested. Furthermore, the scaling is being performed on
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Table 2: The overall effects of using gradient steps
Scaling Failures Time (secs)
none 44 6,732
matrix 41 4,978

the linear model, when it might be more appropriate to look at the nonlinear model to

determine the scaling. Finally, we did not investigate modifying other parameters, such as

those encountered in the nonlinear model in Section 4, in conjunction with scaling which

might lead to improved reliability and performance.

3.1.2 Singularity

Having looked at scaling we need to establish procedures to recover from the singularity

problem and generate a reasonable direction. We have investigated three techniques. The

first is the theoretical standby of using only gradient steps when the Newton system is

unsolvable. A second technique is to use a diagonal perturbation of Hk to regularize the

problem. The final method is to calculate a least squares solution of the system at hand.

Gradient Steps An initial recovery technique, and the simplest of those considered, is to

simply resort to a gradient step whenever a singular model is detected. This approach is

theoretically justified, but in practice frequently leads to a stationary point that does not

solve the complementarity problem. However, we use this approach as the baseline against

which we evaluate the rest of the methods. The results are given in Table 2 where we report

the number of times the algorithm failed and total time for both scaled and unscaled models.

In this case, matrix scaling performs better than no scaling in both the number of failures

and total time.

Perturbation Perturbation involves replacing the linear model with one that does not

have a singularity problem. We investigated using a diagonal perturbation where we replace

Hk with Hk + ∆I for some ∆ > 0. ∆ was chosen in the interval [10−8, 1], with ∆ = Ψ
10

whenever possible. When the perturbation is insufficient to overcome the singularity, we

increase ∆ to δ∆ for some δ > 1. We currently use δ = 10, and allow the perturbation to

increase only one time per iteration.
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Table 3: The overall effects of different perturbations
Scaling Strategy Failures Time (secs)
none decreasing 43 5,079

on-demand 40 5,488
matrix decreasing 37 4,352

on-demand 38 4,854

The other choice to make is when to add the perturbation. There are two options

investigated:

• When the first singular model is encountered, calculate a value for ∆ and monotonically

decrease it from one iteration to the next. The new value is min {0.4∆, 0.1Ψ}. This

perturbation scheme is used in the PATH code, and uses a “decreasing” perturbation

from one iterate to the next.

• Every time a singular model is encountered, calculate a value for ∆. Essentially, this

is an “on-demand” perturbation.

When scaling was used, we first perturbed the problem and then scaled it.

To test these strategies, we ran the MCPLIB test set using each of the strategies. We

report the number of failures in the algorithm and total time in Table 3. When the per-

turbation fails to find a non-singular matrix, the least squares method (to be described in

the next section) was used to calculate a direction. In general, the use of perturbation leads

to fewer total failures than only using the gradient method. Scaling the problem leads to a

decrease in both total time and number of failures.

Least Squares Method Finally, we investigate the use of the LSQR iterative scheme (27)

to find a solution to the least squares problem min
∥∥∥Hkd + Φ(xk)

∥∥∥2
and use the resulting d

as our Newton direction. The practical termination rules mentioned in 3.2.3 were used for

these tests. As discussed in the section on iterative methods, the linear model passed to

LSQR is scaled using the matrix scaling option and preconditioned with the incomplete LU

factorization calculated as in Section 3.2.1.

We investigated using matrix scaling and no scaling in the linear model that we try to

factor. We present the results on MCPLIB in Table 4 where we report the total number of

failures in the algorithm and time. The major downside to using the iterative technique to
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Table 4: The overall effects of using LSQR to combat singularities
Scaling Failures Time (secs)
none 29 15,891
matrix 31 15,240

solve the least squares problem is that it is fairly slow because we allow a larger number of

iterations and have strict termination tolerances. We did not study the effect of changing

the termination criteria. However, the results indicate that this method is better than both

the gradient step and perturbation schemes in terms of reliability.

3.2 Iterative Techniques

Three iterative techniques for finding the Newton direction were investigated: LSQR, GM-

RES, and TFQMR. We recall that the systems of equations solved will generally be neither

symmetric nor positive definite. Therefore, we cannot directly use the popular techniques

from optimization algorithms such as conjugate gradients. The algorithms tested are a

representative set of those meeting our requirements and are all directly coded in our imple-

mentation.

LSQR (27) is based upon the bidiagonalization method developed in (author?) (19) that

implicitly solves the least squares problem, min
∥∥∥Hkd + Φ(xk)

∥∥∥2
. The method is essentially a

reliable variant of conjugate gradients applied to the normal equation, HT
k Hkd = −HT

k Φ(xk).

The GMRES (32) method uses the Arnoldi procedure to construct an orthonormal basis

for the Krylov subspace Km

(
Hk,−Φ(xk)

)
, where

Km(A, r) := span
{
r, Ar, . . . , Am−1r

}
for some matrix A ∈ <n×n and a vector r ∈ <n. We then use this basis to find a vector in

the generated subspace minimizing the residual,
∥∥∥Hkd + Φ(xk)

∥∥∥2
. Our implementation uses

Householder reflections for the orthogonalization process to preserve stability, maintains the

current optimal value of the residual at each iteration using plane rotations, and restarts after

m iterations. We remark that because our matrices are not guaranteed to be positive definite,

restarted GMRES can stagnate and make no progress. The main difficulty with GMRES

lies in choosing the restart frequency. If it is too small, we can fail to converge entirely, and

if it is too large, the per iteration cost and storage requirements become significant.
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The TFQMR (32) algorithm uses the Lanczos biorthogonalization algorithm to construct

bases for the Krylov subspaces

Km

(
Hk,−Φ(xk)

)
and Km

(
HT

k ,−Φ(xk)
)

satisfying a biorthogonality condition. These bases are used to find a vector with approximate

minimum residual in Km

(
Hk,−Φ(xk)

)
.

Scaling the linear system is crucial to the success of the iterative methods. Therefore,

we will always apply the matrix scaling to Hk and use the resulting scaled matrix. Scaling

significantly reduces the number of iterations required in all cases and thus the total time

spent in the iterative method. The other key to achieving good performance from an iterative

method is to select an appropriate preconditioner. The strategy discussed in the sequel

calculates an incomplete LU factorization as a preconditioner.

3.2.1 Preconditioner

The preconditioner used in all of our tests of the iterative methods uses an incomplete LU

factorization of Hk. We limit the number of nonzeros in the incomplete factorization to a

small multiple of the number of nonzeros in∇F (x). As the factorization progresses, elements

with an absolute magnitude less than a drop tolerance are removed from the factorization.

For large problems with sparse LU factorizations, this strategy amounts to using an exact

preconditioner. We must also explicitly treat the cases where the incomplete LU factorization

routine terminates because of “singularity”. In this case, we add a diagonal perturbation to

Hk for the purposes of constructing the preconditioner. The complete algorithm follows.

Algorithm 3.1 (Preconditioner Calculation)

(P.0) (Initialize)

Let j = 0, ν0,0 = 10−12, ∆0,0 = 0.

(P.1) (Scale)

Calculate the diagonal matrices R and C defined in (7) and (8) and use them to scale

Hk.

(P.2) (Factor)

Perform an incomplete factorization of RHkC +∆k,jI using νk,j as the drop tolerance.
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(P.3) (Success)

If incomplete factorization is successful, use the incomplete LU factorization as the

preconditioner and go to P.8.

(P.4) (Unsuccessful)

If j ≥ 5, use the identity matrix as the preconditioner and go to P.8.

(P.5) (Memory)

If the factorization routine terminated due to the memory restriction, increase the drop

tolerance, νk,j+1 =
√

νk,j, and set ∆k,j+1 = ∆k,j.

(P.6) (Singular)

If the factorization routine terminated because the matrix was deemed singular, set

νk,j+1 = νk,j and update the perturbation.

(P.6a) If ∆k,j = 0, then ∆k,j+1 = 1.

(P.6b) Otherwise, ∆k,j+1 = max{10∆k,j,
√

νk,j}.

(P.7) (Update)

Let j = j + 1 and go to P.2.

(P.8) (Termination)

Let νk+1,0 = max{ν2
k+1,j, 10−12}. If ∆k,j > 10−5 then ∆k+1,0 =

∆k,j

10
. Otherwise,

∆k+1,0 = 0.

This preconditioning algorithm is guaranteed to terminate in a finite number of steps. In

the unsuccessful case, no preconditioning will be used in the iterative method. Steps P.5 and

P.6 are used to update the drop tolerance and perturbation respectively when the incomplete

factorization fails. The square root is used in the drop tolerance update because it increases

rapidly towards one. The initial value for the perturbation is chosen to be rather large in

Step P.6a in an attempt to prevent RHkC + ∆k,jI from being poorly conditioned. In Step

P.8, it is possible for small perturbations to be zeroed out, resulting in a large increase (to

1) at the next pass. This proved to be useful in some singular models.

Furthermore, we do not want to attempt a large number of incomplete factorizations

every time we calculate a Newton direction. Therefore, we use the final values of the drop

tolerance and perturbation from the current preconditioner calculation in the next attempt,
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Table 5: Statistics of models used for iterative method testing
bai haung bratu obstacle uruguay

Dimension 4,900 5,625 2,500 2,281
Number of nonzeros 29,120 33,750 15,000 90,206
Drop tolerance 1.7e-2 3.0e-4 3.0e-4 3.0e-4

as outlined in Step P.8. The drop tolerance and perturbation are slowly decreased in this

step so that the complete LU factorization will eventually be used if possible.

We note that iterative methods converge much faster if a good preconditioner is used. In

fact, these methods typically have a very good numerical behaviour for certain discretized

partial differential equations where good preconditioners are available. Our experience with

the MCPLIB test set indicates that the incomplete LU factorization chosen works well for the

majority of the problems in this test set. Alternative preconditioners specific to a particular

application can easily be added to the code.

3.2.2 Evaluation

Four problems in the MCPLIB test set were encountered where the preconditioner calculated

with Algorithm 3.1 resulted in an incomplete LU factorization (i.e. ν > 10−12) and for which

all the Hk encountered are known to be nonsingular. These four models, bai haung, bratu,

obstacle, and uruguay, are used to evaluate each of the iterative techniques. Table 5 pro-

vides the size of the problem, number of nonzeros, and drop tolerance used when calculating

the preconditioner for each of these models. For all of these models, no perturbation was

required.

To condense the results, we only show the performance of the iterative methods on the

first linear system. The termination criteria for these tests was based upon the relative

residual,
‖H0di+Φ(x0)‖

‖Φ(x0)‖ . The iterative methods terminated when the relative residual is less

than 10−8. In all cases, we chose an initial guess of d0 := 0 since, at least locally, the next

iterate generated by the semismooth method is close to the current iterate.

When using the GMRES method, we need to choose the restart frequency m (see de-

scription earlier in this section). We varied the value of m by choosing values between 10

and 50. The results for each value of m tested are given in the accompanying tables.

All of the trials were run on the same machine using the same executable so that we

can make a valid comparison. Table 6 reports the results on the four test problems. The
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Table 6: Iterative method results on problems using incomplete preconditioner
bai haung bratu obstacle uruguay

Method Its Res Its Res Its Res Its Res
LSQR 553 1.1e-6 31 3.4e-9 15 9.1e-10 21 8.1e-11
GMRES 10 70 1.1e-9 10 2.3e-9 8 1.5e-9 6 2.4e-9
GMRES 20 60 1.2e-10 13 6.9e-10 8 1.5e-9 6 2.4e-9
GMRES 50 36 3.6e-8 13 6.9e-10 8 1.5e-9 6 2.4e-9
TFQMR 49 2.7e-8 15 7.8e-10 9 1.1e-10 6 1.5e-6

total iterations (Its) and relative residual (Res) at the solution are given for the first linear

system. The relative residual reported was calculated using the actual iterate generated by

the method, as opposed to the updated residual vector.

The evidence on the nonsingular systems reported suggest that both GMRES and TFQMR

are quite effective at solving the systems. LSQR also appears to be robust, but it may require

a large number of iterations in order to converge. Note that results shown later demonstrate

the robustness of these methods on the entire test suite. The robustness and effectiveness of

LSQR is also in accordance with the results of (author?) (7).

3.2.3 Termination Rules

While the termination rule given above is reasonable for evaluation, we now return to the

subject of practical termination rules. The relative residual calculated above is not applicable

as a termination criterion unless we know a priori that the linear model has a solution. This

is an unreasonable assumption to make because, as demonstrated in the direct methods

section, some of the systems can be singular.

GMRES and TFQMR were terminated when the relative residual becomes less than 10−8

or the algorithm breaks down. While this is somewhat stringent, lesser values proved not

to generate good directions. A break down of the method is detected when we encounter

division by small constants. In addition, TFQMR is terminated when the difference between

the iterates (i is the linear solver iteration counter),
∥∥∥dk

i − dk
i+1

∥∥∥, is less than 10−10 for 10

consecutive iterations.

The implementation of LSQR uses the termination rules developed in (author?) (27).

They are to terminate if any of the following holds:

1. cond(Hk) ≥ CONLIM
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Table 7: Iterative method results on the MCPLIB test set
Method Failures Total time (secs)
LSQR 30 15,100
GMRES 10 33 11,053
GMRES 20 33 13,326
GMRES 50 32 11,964
GMRES 100 33 14,155
GMRES 200 34 16,734
TFQMR 31 20,872

2. ‖ri‖ ≤ BTOL
∥∥∥Φ(xk)

∥∥∥ + ATOL ‖Hk‖ ‖di‖

3.
‖HT

k ri‖
‖Hk‖‖ri‖ ≤ ATOL

where ri = −(Hkdi + Φ(xk)). Justification of these rules and a demonstration of their

effectiveness is given in (author?) (27). We note that LSQR builds up estimates of ‖Hk‖
and cond(Hk) by performing a small amount of additional computations per iteration of the

code. The exact tolerances used are ATOL = ε
2
3 , BTOL = ε

2
3 , and CONLIM = 1

10
√

ε
where

ε is the machine precision.

Furthermore, an iteration limit of min{100000, 20n} was used for all of the methods. The

termination tolerances force us to find a point close to the exact solution of the linear system

if it exists. We did not investigate using less stringent termination criteria.

The descent test in the semismooth algorithm description is used to verify that the

direction provided by the iterative method is in fact a descent direction for the merit function.

In cases where the descent test is not satisfied, we use the gradient direction.

Table 7 presents results over all of MCPLIB for each of the iterative methods imple-

mented. This table reports the number of failures and total time used to solve the problems.

The most reliable choice is LSQR on the MCPLIB test set, but all of the methods perform

quite well.

3.3 Summary

The empirical results given above provides clear choices. For both large scale work and

calculating a direction when the Newton system is singular we will use an iterative technique.

We chose preconditioned LSQR as our default iterative method. GMRES or TFQMR can

also be used by setting a run-time option. We remark that while this is the most reliable
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choice, it is perhaps not the most efficient method. The effects of scaling the model we try

to factor are indeterminant and we made the decision to use no scaling to achieve simplicity

in the code. The effect of choices made in the nonlinear model that are discussed in the

next section have a great impact upon the success of the algorithm. However, we did not

investigate modifying those strategies in conjunction with the strategies in the linear solver.

4 The Nonlinear Model

At the nonlinear level of the algorithm, we are concerned with properties of the algorithm

affecting convergence. These include numerical issues related to the merit function and

calculation of Hk as well as crashing and the recourse taken when a stationary point of the

merit function is encountered. These issues are discussed in the following subsections. We

then summarize the results and present the final strategies chosen.

A difficulty with the semismooth code occurs when F is ill-defined because no guarantee is

made that the iterates will remain feasible with respect to the box [l, u]. Such problems arise

when using log functions or real powers that frequently occur in applications. Backtracking

away from places where the function is undefined and restarting is typically sufficient for

these models.

4.1 Φ(xk) and Hk

As mentioned in Section 2, our implementation will use the penalized Fischer-Burmeister

merit function. The value of λ chosen in (4) can have a significant impact upon the perfor-

mance of the semismooth algorithm. We note that small values of λ, say less than 0.5, should

not be used. In the case of a standard nonlinear complementarity problem (i.e., li = 0 and

ui = +∞ for all i = 1, . . . , n), emphasis would placed upon the max{0, Fi(x
k)}max{0, xk

i }
term of the penalized Fischer-Burmeister function. This term is related to the complemen-

tarity error, but does not enforce Fi(x
k) ≥ 0 and xk

i ≥ 0. If we were to solve the problem

exactly, we would not be concerned. However, we use inexact arithmetic and terminate when

the merit function is small, i.e. less than 10−12. This criteria opens the possibility of finding

a point satisfying the termination tolerance that is not close to a solution. The default choice

in our implementation is to have λ = 0.8.

Furthermore, despite the fact that the penalized Fischer-Burmeister function is typically

superior, there are some situations where the original function might be more appropriate.
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Therefore, when using restarts (see Section 4.3.2) we also might change the merit function.

The calculation of φ(a, b) should be done carefully due to possible roundoff errors. To

illustrate this point, assume that we have a machine with 6 decimal places of accuracy, and

let a = 10−4 and b = 104. Then a naive calculation of φ(a, b) =
√

a2 + b2 − a − b would

produce zero leading us to believe that we are at a solution to the problem when in fact we

are not as the following calculation indicates:

√
10−8 + 108 − 10−4 − 104

=
√

108 − 10−4 − 104

= 104 − 10−4 − 104

= 104 − 104

= 0.

The actual value of φ(a, b) should be on the order of −10−4. We note that most machines

have more than 6 decimal places of accuracy. However, some models in the MCPLIB test

set were encountered where this type of roundoff error occurs.

The reason for the loss of precision has to do with the subtraction of two large positive

numbers. We can avoid such subtractions in the calculation of the Fischer by using the

following evaluation suggested by (author?) (33) as Exercise 8 in Chapter 21:

φ(a, b) :=


√

a2 + b2 − (a + b) if a + b ≤ 0
−2ab√

a2 + b2 + (a + b)
otherwise.

This expression is obtained by multiplying the original Fischer function definition by

√
a2 + b2 + (a + b)√
a2 + b2 + (a + b)

and simplifying the result. Since there is no subtraction of positive quantities, the calculation

will be accurate to machine precision every time. The square root operation needed is

computed by defining s = |a| + |b|. If s = 0 then the value is zero, otherwise s
√

(a
s
)2 + ( b

s
)2

is the value computed. This eliminates overflow problems.

When the Fischer-Burmeister function is in use, the calculation of Hk uses the procedure

developed in (author?) (2, 6). When the penalized function is in use, a modification of the

method in (author?) (4) is extended to MCP models for calculating Hk.
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4.2 Crashing

Projected gradient crashing before starting the main algorithm can improve the performance

of the algorithm by taking us to a more reasonable starting point. To do this, we use

a technique already tested in (author?) (7) and add a new step, S.0a, to the algorithm

between S.0 and S.1. Let [·]B be the projection of (·) onto the box B = [l, u]. In this new

step, we start with j = 0 and perform the following:

1. Calculate dj = −∇Ψ(xj).

2. Let ¯̀ be the smallest ` in {0, 1, 2, . . . , b log τ
log β
c} such that

Ψ([xj + β
¯̀
dj]B) ≤ Ψ(xj)− σ∇Ψ(xj)T (xj − [xj + β

¯̀
dj]B)

and set tj := β
¯̀
. If no such ¯̀ exists, stop and set x0 = xj.

3. Otherwise let xj+1 = [xj + tjd
j]B and j = j + 1. Go to 1.

In the code τ = 10−5 and β = 0.5; furthermore, we only allow 10 iterations of the projected

gradient crash method.

The crashing technique presented has iterates that remain feasible and improve upon

the initial point with respect to the merit function. We believe that this is the key benefit

from crashing – all iterates remain in B. Otherwise poor values of x0 can frequently lead to

failures in the semismooth algorithm. The crashing technique also gives us the opportunity

to significantly affect the iterates generated during a restart.

4.3 Stationary Points

While stationary point termination is typically adequate for nonlinear optimization, deter-

mining a stationary point of the merit function that is not a zero is considered a “failure”

by complementarity modelers. Much theoretical work has been carried out determining the

weakest possible assumptions that can be made on the problem (and/or the algorithm) in

order to guarantee that a stationary point of the merit function is in fact a solution of the

complementarity problem. Some of these results restrict the problem class considered by

employing convenient assumptions that cannot be easily verified for arbitrary models. Other

techniques (such as nonmonotone linesearching) rely on a combination of heuristics and the-

ory, while others are entirely heuristic in nature. The basic strategies we used to improve
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the reliability of the semismooth solver include non-monotone linesearching and restarting.

The positive effects of these strategies have been demonstrated in the literature and we just

present the basic idea and any modifications made.

4.3.1 Non-monotone Linesearch

The first line of defense against convergence to stationary points is the use of a non-monotone

linesearch (20; 21; 11). In this case we define a reference value, Rk and we use this value to

replace the test in step S.3 of the algorithm with the non-monotone test:

Ψ(xk + tkd
k) ≤ Rk + tk∇Ψ(xk)Tdk.

Depending upon the choice of the reference value, this allows the merit function to increase

from one iteration to the next. This strategy can not only improve convergence, but can

also avoid local minimizers by allowing such increases.

In most cases, the reference value chosen by the code is the largest of the m best values of

Ψ encountered so far. We begin by letting {M1, . . . ,Mm} be a finite set of values initialized

to values κΨ(x0), where κ is used to determine the initial set of acceptable merit function

values. The value of κ defaults to 1 in the code; κ = 1 indicates that we are not going to

allow the merit function to increase beyond its initial value.

Having defined the values of {M1, . . . ,Mm} (where the code by default uses m = 4),

we can now calculate a reference value. We must be careful when we allow gradient steps

in the code. Assuming that dk is the Newton direction (or a least squares solution to the

Newton system in the presence of singularity, see 3.1.2), we define i0 = argmax Mi and

Rk = Mi0 . After the nonmonotone linesearch rule above finds tk, we update the memory so

that Mi0 = Ψ(xk + tkd
k), i.e. we remove an element from the memory having the largest

merit function value.

When we decide to use a gradient step, it is beneficial to let xk = xbest where xbest is

the iterate having the smallest value of Ψ. We then recalculate dk = −∇Ψ(xk) using the best

point and let Rk = Ψ(xk). That is to say that we force decrease from the best iterate found

whenever a gradient step is performed. After a successful step we set Mi = Ψ(xk + tkd
k) for

all i ∈ [1, . . . ,m]. This prevents future iterates from returning to the same problem area.
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Table 8: The performance of restart settings over the complete MCPLIB test set
Restart number Failures
0 (first run) 67
1 (no crash) 63
2 (no crash, looser linesearch) 80
3 (no crash, φFB, strict linesearch) 89

4.3.2 Restarting

The rules for non-monotone linesearching and crashing are extremely useful in practice, but

do not preclude convergence to a non-optimal stationary point. One observation relevant for

complementarity solvers is that we know a priori the optimal value of the merit function at

a solution if one exists. If the code detects that the current iterate is a stationary point that

is not a solution, a recovery strategy can be invoked. One successful technique is the restart

strategy of (author?) (13) where the recovery mechanism involves starting over from the

user supplied starting point with a different set of parameters, thus leading to a different

sequence of iterates being investigated. For the semismooth algorithm, the first restart turns

the projected gradient crash method off. If no crash iterations were performed in the first

attempt, the code will set λ = 0.95 to avoid wasting computational resources (by generating

the same sequence of iterates as before). The second restart turns the projected gradient

crash method off, sets λ = 0.95, and uses a less restrictive non-monotone linesearch criteria

with κ = 5. The final restart uses φFB for in the definition of Φ, turns off the projected

crash method, and uses κ = 1 in the non-monotone linesearch.

We caution that the restarts should be applicable to general models, otherwise they are

not likely to be beneficial to the unseen problems encountered in the real world. That is, if

we were to use the restart definition as the default, we should still solve most problems in the

test set. We present in Table 8 the numbers of failures on the test set when restarts were used.

Note in particular that the restarts (0, 1 and 2) that use the penalized Fischer-Burmeister

function given in equation (4) outperform the one that uses the standard Fischer-Burmeister

function defined in equation (3).
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5 Numerical Results

Our implementation of the semismooth algorithm uses an enhanced version of the basic

framework developed in (author?) (13) that helps to provide portability across platforms

and interfaces to the algorithm from the AMPL (16) and GAMS (3) modeling languages,

and the NEOS (12) and MATLAB (24) tools. The LUSOL (18) sparse factorization routines

contained in the MINOS (26) nonlinear programming solver were used for factorization and

preconditioning purposes. All codes were executed on the same 330 Mhz SUN Ultrasparc

machine.

All of the linear algebra and other basic mechanisms are exactly the same between the

semismooth algorithm and PATH. Therefore, the comparison made is as close to a true

comparison of the algorithms as we can make. We note that the PATH code (version 4.4) is

much more mature than the semismooth implementation. Both codes are continually being

improved when deficiencies are uncovered.

To test the semismooth algorithm, we ran the code on all of the problems in the MCPLIB

(8) suite of test problems; see Tables 9 and 10. The MCPLIB suite is being constantly

updated, and several of the problems tested in this paper have been added recently to enhance

the difficulty of the test suite. The time limits used in our testing were those provided in

the problem description by the model developers and remain the same for all codes. The

number of successes is reported first, followed by the number of failures in parenthesis. (Note

that some test problems from the MCPLIB library have more than one starting point, e.g.,

problem eppa has 8 different starting points, while problem electric has only one starting

point; this information is useful in order to understand the entries in Tables 9 and 10.) The

“Direct” columns correspond to the semismooth algorithm that uses a direct factorization

and only uses LSQR when Hk is reported singular.

In order to test the reliability of the iterative method, we ran all of the models in GAM-

SLIB and MCPLIB using only the iterative LSQR technique to calculate the Newton di-

rection. For comparison purposes, we also show the performance of PATH 4.4 (10) on the

same problems. These latter two results are given in the columns labeled “Iterative” and

“PATH” respectively. In order to condense the information in the table, we have grouped

several similar models together whenever this grouping results in no loss of information; for

example, problems colvdual and colvnlp are grouped together as example colv*. We split

the results into those that allow restarts and those that do not.
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These results indicate that while the semismooth implementation is not quite as reliable

as PATH, it does exceedingly well and is very robust. Furthermore, the results indicate that

the iterative method is also robust. We note that the restart heuristic significantly improves

the robustness of both semismooth and PATH.

We currently do not have any results on very large problems, but believe that based on

the evidence, the code will scale well to the larger problems. In particular, the iterative

version of the semismooth code requires significantly less memory than PATH, allowing the

possibility of solving huge models. The current drawback of the semismooth code is the

time taken by LSQR to solve the linear systems. We designed the code for robustness, and

therefore chose parameters in the code to enhance reliability. This results in the PATH solver

being much faster than the semismooth code - over the complete test suite, PATH took 2473

seconds, while the direct version of semismooth took 17650 seconds, of which 10117 seconds

occurred in the failures, and the iterative only version took 14656 seconds, of which 8881

seconds occurred in the failures. Reducing this time, using for example some more aggressive

algorithmic choices (see Table 3) is the subject of future research.
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Table 9: Comparative results
Problem Without Restarts With Restarts

Direct Iterative PATH Direct Iterative PATH
asean9a, hanson 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
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bai haung 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
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bertsekas, gafni 9(0) 9(0) 9(0) 9(0) 9(0) 9(0)
billups 0(3) 0(3) 0(3) 1(2) 0(3) 0(3)
bishop 0(1) 1(0) 1(0) 0(1) 1(0) 1(0)
bratu, obstacle 9(0) 9(0) 9(0) 9(0) 9(0) 9(0)
choi, nash 5(0) 5(0) 5(0) 5(0) 5(0) 5(0)
colv* 9(1) 9(1) 8(2) 10(0) 10(0) 10(0)
cycle, explcp 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
denmark 27(11) 26(12) 38(0) 38(0) 36(2) 38(0)
dirkse* 0(2) 0(2) 1(1) 0(2) 0(2) 1(1)
duopoly 0(1) 0(1) 0(1) 0(1) 0(1) 0(1)
eckstein 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
ehl k* 12(0) 12(0) 10(2) 12(0) 12(0) 12(0)
electric 1(0) 1(0) 0(1) 1(0) 1(0) 1(0)
eppa 8(0) 8(0) 8(0) 8(0) 8(0) 8(0)
eta2100 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
force* 0(2) 0(2) 2(0) 0(2) 0(2) 2(0)
freebert 7(0) 7(0) 7(0) 7(0) 7(0) 7(0)
games 25(0) 25(0) 23(2) 25(0) 25(0) 25(0)
gei 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
golanmcp 0(1) 0(1) 1(0) 0(1) 0(1) 1(0)
hanskoop 8(2) 8(2) 10(0) 10(0) 10(0) 10(0)
hydroc*, methan08 1(2) 1(2) 3(0) 3(0) 3(0) 3(0)
jel, jmu 2(1) 2(1) 2(1) 2(1) 2(1) 3(0)
josephy, kojshin 16(0) 16(0) 16(0) 16(0) 16(0) 16(0)
keyzer 4(2) 4(2) 5(1) 5(1) 5(1) 6(0)
kyh* 0(4) 0(4) 2(2) 0(4) 0(4) 3(1)
lincont 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
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Table 10: Comparative results (cont.)
Problem Without Restarts With Restarts

Direct Iterative PATH Direct Iterative PATH
markusen 17(1) 17(1) 18(0) 18(0) 18(0) 18(0)
mathi* 13(0) 13(0) 13(0) 13(0) 13(0) 13(0)
mrtmge 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
multi-v* 0(3) 0(3) 3(0) 2(1) 3(0) 3(0)
ne-hard 0(1) 0(1) 1(0) 1(0) 1(0) 1(0)
olg 0(1) 0(1) 1(0) 1(0) 1(0) 1(0)
opt cont* 5(0) 5(0) 5(0) 5(0) 5(0) 5(0)
pgvon* 3(9) 3(9) 10(2) 3(9) 3(9) 10(2)
pies 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
powell* 10(2) 10(2) 12(0) 12(0) 12(0) 12(0)
ralph 7(0) 7(0) 7(0) 7(0) 7(0) 7(0)
romer 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
scarf* 12(0) 12(0) 12(0) 12(0) 12(0) 12(0)
shubik 28(20) 36(12) 45(3) 45(3) 45(3) 48(0)
simple-* 1(1) 1(1) 1(1) 2(0) 2(0) 1(1)
sppe,tobin 7(0) 7(0) 7(0) 7(0) 7(0) 7(0)
tin* 129(3) 129(3) 123(9) 129(3) 129(3) 132(0)
trade12 2(0) 2(0) 2(0) 2(0) 2(0) 2(0)
trafelas 2(0) 1(1) 2(0) 2(0) 1(1) 2(0)
uruguay 4(0) 4(0) 4(0) 4(0) 4(0) 4(0)
xu* 35(0) 35(0) 35(0) 35(0) 35(0) 35(0)
Total 439(74) 446(67) 482(31) 482(31) 480(33) 504(9)
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