
SUCCESSIVE LINEARIZATION METHODS FOR

NONLINEAR SEMIDEFINITE PROGRAMS1

Christian Kanzow 2, Christian Nagel 2 and Masao Fukushima 3

Preprint 252 August 2003

2 University of Würzburg
Institute of Applied Mathematics and Statistics
Am Hubland
97074 Würzburg
Germany

e-mail: kanzow@mathematik.uni-wuerzburg.de
nagel@mathematik.uni-wuerzburg.de

3 Department of Applied Mathematics and Physics
Graduate School of Informatics
Kyoto University
Kyoto 606-8501
Japan

e-mail: fuku@i.kyoto-u.ac.jp

1The research of the first and third authors was supported in part by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, Sports, and Culture of Japan. The research of the
second author was supported by the DFG (Deutsche Forschungsgemeinschaft).

Abstract. We present a successive linearization method with a trust region-type global-
ization for the solution of nonlinear semidefinite programs. At each iteration, the method
solves a quadratic semidefinite program, which can be converted to a linear semidefinite
program with a second order cone constraint. A subproblem of this kind can be solved
quite efficiently by using some recent software for semidefinite and second-order cone pro-
grams. The method is shown to be globally convergent under certain assumptions. Some
numerical results are included in order to illustrate its behaviour.

Key Words. Nonlinear semidefinite programs, successive linearization method, global
convergence.

1 Introduction

In this paper, we consider the nonlinear semidefinite program

min
X∈Sn×n

f(X) s.t. g(X) ≤ 0, X � 0, (1)

where f : Sn×n → R and g : Sn×n → Rm are continuously differentiable functions, Sn×n

denotes the subset of all symmetric matrices in Rn×n, and X � 0 indicates that X is
symmetric positive semidefinite. Equality constraints may also be included, but we omit
them in order to lessen the notational overhead.

The program (1) is an extension of the standard linear semidefinite program which
has been studied extensively during the last decade, see, e.g., [19] and the references
therein. Research activities on the nonlinear program (1) are much more recent and still
in its preliminary phase. Some recent references include [11, 14, 6, 3, 13, 5, 12, 2, 10]
where different algorithms are described and investigated theoretically or numerically.
Further note that some of these references concentrate on special cases (like bilinear matrix
inequalities) of problem (1). The methods investigated in [3, 5, 2] are of the sequential
quadratic programming-type, while [13, 10] discuss augmented or modified augmented
Lagrangian techniques, and [11, 12, 14] discuss interior-point methods for the nonlinear
and possibly nonconvex problem (1). A branch-and-cut algorithm is presented in [6].
Several applications of nonlinear semidefinite programs, especially from control theory,
may be found in [15, 14, 3, 9]. Optimality conditions for nonlinear semidefinite programs
have been studied in [17, 4].

The algorithm to be investigated here is a successive linearization method. Succes-
sive linearization methods for standard nonlinear programs can be found in [8, 16, 22, 7].
These methods are typically quite robust and can usually be applied to larger problems
than sequential quadratic programming algorithms since they deal with simpler subprob-
lems. We present an extension of such a successive linearization method for the solution
of the nonlinear semidefinite program (1). Using an exact penalty function and a trust
region-type globalization, we show that our algorithm is globally convergent under certain
assumptions. A subproblem we have to solve at each iteration is a quadratic semidefi-
nite program, which can be reformulated either as a linear semidefinite program or as a
semidefinite program with an additional second-order cone constraint. Hence our subprob-
lems can be solved quite efficiently by means of the recent software developed for these
types of problems, see, e.g., [20, 18].

We next introduce some notation that will be used throughout this paper. Let gi,
i = 1, . . . ,m, be the component functions of g, and Df(X) and Dgi(X) be the Fréchet
derivatives of f and gi, respectively, at X. We call a matrix X∗ ∈ Sn×n a stationary point
of problem (1) if there exist Lagrange multipliers (λ∗, U∗) ∈ Rm × Sn×n satisfying the

3

following Karush-Kuhn-Tucker (KKT) conditions:

Df(X∗) +
m∑

i=1

λ∗i Dgi(X
∗)− U∗ = 0,

λ∗i ≥ 0, gi(X
∗) ≤ 0, λ∗i gi(X

∗) = 0 i = 1, . . . ,m,

X∗ � 0, U∗ � 0, 〈U∗, X∗〉 = 0,

(2)

where 〈·, ·〉 denotes the inner product in Rn×n. The KKT conditions are necessary opti-
mality conditions under certain constraint qualifications, and are also sufficient when the
problem functions f and gi are convex.

Associated with problem (1) is the penalized problem

min
X∈Sn×n

pα(X) s.t. X � 0, (3)

where pα : Sn×n → R is the exact `1-penalty function defined by

pα(X) := f(X) + α
m∑

i=1

max
{
0, gi(X)

}
with penalty parameter α > 0. Note that we do not include the cone constraint into this
penalty function since we will treat this constraint separately.

The penalized problem (3) is equivalent to the following constrained optimization prob-
lem:

min
X∈Sn×n,ξ∈Rm

f(X) + α
m∑

i=1

ξi

s.t. ξi ≥ 0, ξi ≥ gi(X) i = 1, . . . ,m,

X � 0,

(4)

where ξi, i = 1, . . . ,m, are auxiliary variables. The KKT conditions for this problem can
be written as

Df(X∗) +
m∑

i=1

λ∗i Dgi(X
∗)− U∗ = 0,

α− µ∗i − λ∗i = 0 i = 1, . . . ,m,

ξ∗i ≥ 0, µ∗i ≥ 0, ξ∗i µ
∗
i = 0 i = 1, . . . ,m,

λ∗i ≥ 0, gi(X
∗)− ξ∗i ≤ 0, λ∗i

(
gi(X

∗)− ξ∗i
)

= 0 i = 1, . . . ,m,

X∗ � 0, U∗ � 0, 〈U∗, X∗〉 = 0,

(5)

where (λ∗, µ∗, U∗) ∈ Rm × Rm × Sn×n are Lagrange multipliers. We call X∗ a stationary
point of the penalized problem (3) if it satisfies (5) with some ξ∗ ∈ Rm and (λ∗, µ∗, U∗) ∈
Rm × Rm × Sn×n. Clearly a stationary point X∗ of (3) that satisfies (5) with ξ∗ = 0 is a
stationary point of the original problem (1).

4

The organization of this paper is as follows: In Section 2 we present our basic succes-
sive linearization method and state some preliminary results. Section 3 investigates the
global convergence behaviour of our method and shows that any accumulation point of a
sequence generated by our method is at least a stationary point of a certain exact penalty
problem. In Section 4 we present a modified algorithm using an automatic update of the
penalty parameter with the aim that any accumulation point is feasible for the original
problem (1) and therefore a stationary point of (1). Some preliminary numerical results
are the contents of Section 5, and we conclude with some final remarks in Section 6. The
details of the reformulation of our subproblem as a linear semidefinite program or a linear
semidefinite program with a second-order cone constraint are given in Appendix A.

The notation used in this paper is quite standard in the community: We use the inner

product 〈A, B〉 := trace(ABT) in Rn×n. The corresponding norm ‖A‖ :=
(
〈A, A〉

)1/2
is

equal to the Frobenius norm for matrices. Furthermore, we define the median of three
numbers a, t, b with a ≤ b as

mid
(
a, t, b

)
:=


a, if t < a,
t, if t ∈ [a, b],
b, if t > b.

2 Successive Linearization Method

In this section, we present a successive linearization method for solving the penalized
problem (3). First let us define the function Φα : Sn×n × Sn×n → R by

Φα(X, ∆X) := f(X) + 〈Df(X), ∆X〉+ α
m∑

i=1

max
{
0, gi(X) + 〈Dgi(X), ∆X〉

}
.

This function serves as a first-order approximation of pα(X + ∆X).
We begin with a formal statement of the algorithm which is in the spirit of [8, 16, 22, 7].

Algorithm 2.1 (Successive Linearization Method)

(S.0) Choose α > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, cmax ≥ cmin > 0, c0 ∈ [cmin, cmax],
X0 � 0, and set k := 0.

(S.1) Find the (unique) solution ∆Xk ∈ Sn×n of the subproblem

min
∆X∈Sn×n

1

2
ck〈∆X, ∆X〉+ Φα(Xk, ∆X) s.t. Xk + ∆X � 0. (6)

If ∆Xk = 0, then STOP.

(S.2) Compute the ratio

rk :=
pα(Xk)− pα(Xk + ∆Xk)

pα(Xk)− Φα(Xk, ∆Xk)
.

If rk ≥ ρ1, then the kth iteration is called successful, and we set Xk+1 := Xk +∆Xk;
otherwise, the kth iteration is called unsuccessful, and we set Xk+1 := Xk.

5

(S.3) Update ck as follows:
If rk < ρ1, set ck+1 := σ2ck.
If rk ∈ [ρ1, ρ2), set ck+1 := mid

(
cmin, ck, cmax

)
.

If rk ≥ ρ2, set ck+1 := mid
(
cmin, σ1ck, cmax

)
.

(S.4) Set k ← k + 1, and go to (S.1).

We give some explanations regarding the philosophy of Algorithm 2.1. Basically, this
algorithm may be viewed as a successive linearization method for problem (1) that employs
a trust-region-type globalization technique. In fact, the subproblem (6) may be viewed
as a linearization of the penalized problem (3) at the current iteration. However, rather
than using a trust-region strategy explicitly by including an upper bound on the size of
the correction ∆X, we use the trust-region idea implicitly by adding a quadratic term to
the objective function multiplied by a parameter ck. The parameter ck plays more or less
the role of the (inverse) trust-region radius.

This approach has several advantages compared to a direct use of the trust-region idea.
In fact, the quadratic term in the objective function guarantees that the subproblem (6)
is strongly convex and therefore has a unique solution for each iteration k ∈ N (note that
the feasible set is obviously nonempty). Furthermore, this quadratic term may be viewed
as a (very rough) second-order information although this is not the main motivation. In
fact, calculating or approximating the second-order information seems to be very delicate
and costly for the nonlinear semidefinite program (1). Hence we mainly work with the
first-order information in our approach. Furthermore, since we already have the cone
constraint in the subproblem (6), the explicit use of a trust-region bound may result in
the conflicting situation where the intersection of the two constraints would be empty.
Such a situation cannot occur when using a subproblem like (6).

The remaining part of Algorithm 2.1 is standard. The ratio rk is the quotient of the
actual and the predicted reductions for the function value of the penalty function pα,
where Φα(Xk, ·) is used as a model for the function pα(Xk + ·). If this ratio is sufficiently
close to one, we accept Xk +∆Xk as the new iterate Xk+1. Otherwise, we stay at Xk and
increase the parameter ck. The precise updating rule for ck in step (S.3) is similar to those
known in trust-region methods. Note, however, that we use lower and upper bounds cmin

and cmax, respectively, whenever the iteration is successful.
In the rest of this section, we will show that Algorithm 2.1 is well-defined. To this end,

we only have to show that the denominator in the ratio rk is positive as long as ∆Xk 6= 0.
Furthermore, we will justify the termination criterion in step (S.1).

We begin with the following simple result, which will be helpful in our subsequent
analysis.

Lemma 2.2 Let Xk be a given iterate and ∆Xk be the solution of the corresponding
subproblem (6). Then

pα(Xk)− Φα(Xk, ∆Xk) ≥ 1

2
ck〈∆Xk, ∆Xk〉.

6

Proof. Since Xk � 0, the symmetric matrix ∆X := 0 is feasible for the subproblem (6).
But ∆Xk is a solution of this subproblem, so we obtain

1

2
ck〈∆Xk, ∆Xk〉+ Φα(Xk, ∆Xk) ≤ Φα(Xk, 0) = pα(Xk).

This proves our statement. 2

Lemma 2.2 ensures that the denominator in the ratio rk is always nonnegative. Note
that this implies that the sequence {pα(Xk)} is monotonically nondecreasing. We next
show that this denominator is equal to zero if and only if the termination criterion in step
(S.1) is satisfied. Hence step (S.2) is visited only if the denominator is positive, so that
Algorithm 2.1 is well-defined.

Lemma 2.3 Let Xk be a given iterate and ∆Xk be the solution of the corresponding
subproblem (6). Then pα(Xk)− Φα(Xk, ∆Xk) = 0 if and only if ∆Xk = 0.

Proof. First assume that ∆Xk = 0. Then pα(Xk) − Φα(Xk, ∆Xk) = 0 since the def-
inition of Φα implies Φα(Xk, 0) = pα(Xk). Conversely, let pα(Xk) − Φα(Xk, ∆Xk) = 0.
Lemma 2.2 then implies 0 = 1

2
ck〈∆Xk, ∆Xk〉 = 1

2
ck‖∆Xk‖2 and hence ∆Xk = 0. 2

Next we have to justify our termination criterion in step (S.1). To this end, we will show
that this criterion is satisfied if and only if the current iterate Xk is a stationary point of
the exact penalty reformulation (3) of problem (1).

Before we arrive at this result, we first take a closer look at subproblem (6). Let Xk

be a given iterate and let ∆Xk be the unique solution of (6). Then it is easy to see that
the pair (∆Xk, ξk) with components

ξk
i := max

{
0, gi(X

k) + 〈Dgi(X
k), ∆Xk〉

}
i = 1, . . . ,m (7)

is the unique solution of the following optimization problem, which is equivalent to (6):

min
∆X∈Sn×n,ξ∈Rm

1

2
ck〈∆X, ∆X〉+ f(Xk) + 〈Df(Xk), ∆X〉+ α

m∑
i=1

ξi

s.t. ξi ≥ 0 i = 1, . . . ,m,

ξi ≥ gi(X
k) + 〈Dgi(X

k), ∆X〉 i = 1, . . . ,m,

Xk + ∆X � 0.

(8)

Since problem (8) is a convex program with a strictly feasible set, this problem is equivalent
to its KKT conditions. In other words, (∆Xk, ξk) is a solution of (8) if and only if there
exist Lagrange multipliers (λk, µk, Uk) ∈ Rm × Rm × Sn×n such that the following KKT

7

conditions hold:

ck∆Xk + Df(Xk) +
m∑

i=1

λk
i Dgi(X

k)− Uk = 0,

α− µk
i − λk

i = 0 i = 1, . . . ,m,

ξk
i ≥ 0, µk

i ≥ 0, ξk
i µk

i = 0 i = 1, . . . ,m,

λk
i ≥ 0, gi(X

k) + 〈Dgi(X
k), ∆Xk〉 − ξk

i ≤ 0 i = 1, . . . ,m,

λk
i

(
gi(X

k) + 〈Dgi(X
k), ∆Xk〉 − ξk

i

)
= 0 i = 1, . . . ,m,

Xk + ∆Xk � 0, Uk � 0, 〈Uk, Xk + ∆Xk〉 = 0.

(9)

Now, if ∆Xk = 0 is the unique solution of the subproblem (6), then the system (9) yields

Df(Xk) +
m∑

i=1

λk
i Dgi(X

k)− Uk = 0,

α− µk
i − λk

i = 0 i = 1, . . . ,m,

ξk
i ≥ 0, µk

i ≥ 0, ξk
i µk

i = 0 i = 1, . . . ,m,

λk
i ≥ 0, gi(X

k)− ξk
i ≤ 0, λk

i

(
gi(X

k)− ξk
i

)
= 0 i = 1, . . . ,m,

Xk � 0, Uk � 0, 〈Uk, Xk〉 = 0.

However, these conditions are nothing but the KKT conditions (5) for the penalized prob-
lem (3).

Summarizing these observations, we obtain the following result.

Theorem 2.4 Let α > 0. If ∆Xk = 0 is the (unique) solution of the subproblem (6) for
some ck > 0, then Xk is a stationary point of the penalized problem (3). Conversely, if Xk

is a stationary point of (3), then ∆Xk = 0 is the unique solution of (6) for every ck > 0.

Proof. The statements follow immediately from the preceding arguments. 2

3 Convergence Analysis

Throughout this section, we assume that Algorithm 2.1 generates an infinite sequence
{Xk}. Our aim is to establish a global convergence result for Algorithm 2.1. More pre-
cisely, we will show that any accumulation point of {Xk} is a stationary point of the
penalized problem (3).

First, note that the KKT conditions (9) of the subproblem (6) immediately yield

λk
i ∈ [0, α] and µk

i ∈ [0, α] i = 1, . . . ,m (10)

for all k ∈ N. Consequently, the sequences {λk
i } and {µk

i } are bounded for all i = 1, . . . ,m.
We exploit this fact to show the following result, which will be used in the subsequent
convergence analysis.

8

Lemma 3.1 Let {Xk} be a sequence generated by Algorithm 2.1, and let {Xk}k∈K be a
subsequence converging to some matrix X∗ in such a way that {ck‖∆Xk‖}k∈K → 0. Then
X∗ is a stationary point of the penalized problem (3).

Proof. First note that X∗ is symmetric positive semidefinite and hence feasible for
problem (3). Furthermore, since ck ≥ cmin for all k ∈ N, the assumption {ck‖∆Xk‖}k∈K →
0 implies {‖∆Xk‖}k∈K → 0. By continuity, we also have Df(Xk) → Df(X∗), gi(X

k) →
gi(X

∗) and Dgi(X
k)→ Dgi(X

∗) as k →∞, k ∈ K. This implies that

ξk
i = max

{
0, gi(X

k) + 〈Dgi(X
k), ∆Xk〉

}
→ max

{
0, gi(X

∗)
}

=: ξ∗i

on the subsequence defined by the index set K, cf. (7). In view of (10), we may further
assume without loss of generality that {λk

i }k∈K → λ∗i and {µk
i }k∈K → µ∗i for some λ∗i , µ

∗
i ∈

[0, α] such that λ∗i + µ∗i = α, see (9). Using (9) once again, we then have

Uk = ck∆Xk + Df(Xk) +
m∑

i=1

λk
i Dgi(X

k) (11)

→ Df(X∗) +
m∑

i=1

λ∗i Dgi(X
∗) =: U∗ (12)

as k →∞, k ∈ K. Therefore, taking the limit k →∞ on the subsequence K in the KKT
conditions (9), we obtain (5). Hence we conclude that X∗ is a stationary point of the
penalized problem (3). 2

Another main step toward our global convergence result is contained in the following
technical lemma.

Lemma 3.2 Let {Xk} be a sequence generated by Algorithm 2.1 and {Xk}k∈K be a sub-
sequence converging to some matrix X∗. If X∗ is not a stationary point of the penalized
problem (3), then we have lim supk→∞,k∈K ck <∞.

Proof. Let K̄ :=
{
k − 1

∣∣ k ∈ K
}
. Then we have {Xk+1}k∈K̄ → X∗. We will show that

lim supk→∞,k∈K̄ ck+1 <∞. Assume the contrary. Then, by subsequencing if necessary, we
may suppose without loss of generality that

lim
k→∞,k∈K̄

ck+1 =∞. (13)

The updating rule in step (S.3) then implies that none of the iterations k ∈ K̄ with k
sufficiently large is successful since otherwise we would have ck+1 ≤ cmax for all these
k ∈ K̄. Hence we have

rk < ρ1 (14)

and Xk = Xk+1 for all k ∈ K̄ large enough. Since {Xk+1}k∈K̄ → X∗, this implies
{Xk}k∈K̄ → X∗, too. Further noticing that ck+1 = σ2ck for all unsuccessful iterations, we
also have

lim
k→∞,k∈K̄

ck =∞ (15)

9

because of (13). We now want to show that

rk → 1 as k →∞, k ∈ K̄,

which would then lead to the desired contradiction to (14). To this end, we first note that

lim inf
k→∞,k∈K̄

ck‖∆Xk‖ > 0. (16)

In fact, if ck‖∆Xk‖ → 0 on a subsequence, we would deduce from Lemma 3.1 that X∗ is a
stationary point of the penalized problem (3) in contradiction to our assumption. Hence
there is a constant γ > 0 such that

ck‖∆Xk‖ ≥ γ k ∈ K̄.

By Lemma 2.2, this implies

pα(Xk)− Φα(Xk, ∆Xk) ≥ 1

2
ck‖∆Xk‖2 ≥ 1

2
γ‖∆Xk‖

for all k ∈ K̄ sufficiently large.
We further note that {‖∆Xk‖}k∈K̄ → 0. Otherwise, it would follow from (15) that

ck‖∆Xk‖2 → ∞ on a suitable subsequence. This, in turn, would imply that the optimal
value of the subproblem (6) tends to infinity. However, this cannot be true since the feasible
matrix ∆X := 0 would give a smaller objective value. Hence we have {‖∆Xk‖}k∈K̄ → 0.

Taking this into account, and using {Xk}k∈K̄ → X∗ and the fact that f, gi are contin-
uously differentiable, we obtain through standard calculus arguments∣∣Φα(Xk, ∆Xk)− pα(Xk + ∆Xk)

∣∣ = o(‖∆Xk‖) as k →∞, k ∈ K̄.

Summarizing these observations, we get

∣∣rk − 1
∣∣ =

∣∣∣∣pα(Xk)− pα(Xk + ∆Xk)

pα(Xk)− Φα(Xk, ∆Xk)
− 1

∣∣∣∣
=

∣∣∣∣Φα(Xk, ∆Xk)− pα(Xk + ∆Xk)

pα(Xk)− Φα(Xk, ∆Xk)

∣∣∣∣
≤ o(‖∆Xk‖)

1
2
γ‖∆Xk‖

→ 0

as k →∞, k ∈ K̄. This contradiction to (14) completes the proof. 2

As a direct consequence of this lemma, we obtain the following result.

Lemma 3.3 Let {Xk} be a sequence generated by Algorithm 2.1. Then there are infinitely
many successful iterations.

10

Proof. If not, there would exist an index k0 ∈ N with rk < ρ1 and Xk = Xk0 for all
k ≥ k0. This implies ck →∞ due to the updating rule in (S.3). However, since Xk0 is not
a stationary point of problem (3) (otherwise we would have stopped in (S.1), cf. Theorem
2.4) and {Xk} → Xk0 , we get a contradiction to Lemma 3.2. 2

We are now in the position to prove the main convergence result for Algorithm 2.1.

Theorem 3.4 Let {Xk} be a sequence generated by Algorithm 2.1. Then any accumula-
tion point of this sequence is a stationary point of the penalized problem (3).

Proof. Let X∗ be an accumulation point and {Xk}k∈K be a subsequence converging
to X∗. Since Xk = Xk+1 for all unsuccessful iterations k and since there are infinitely
many successful iterations by Lemma 3.3, we may assume without loss of generality that
all iterations k ∈ K are successful.

Assume that X∗ is not a stationary point of problem (3). Lemma 3.2 then implies

lim sup
k→∞,k∈K

ck <∞.

Hence there is a constant γ > 0 such that

ck ≤ γ k ∈ K. (17)

Since each iteration k ∈ K is successful, we also have rk ≥ ρ1. Consequently, we obtain
from Lemma 2.2

pα(Xk)− pα(Xk+1) ≥ ρ1

(
pα(Xk)− Φα(Xk, ∆Xk)

)
≥ 1

2
ρ1ck〈∆Xk, ∆Xk〉

≥ 1

2
ρ1cmin‖∆Xk‖2

(18)

for all k ∈ K. Since {pα(Xk)} is monotonically nonincreasing and bounded from be-
low by, e.g., pα(X∗), we have pα(Xk) − pα(Xk+1) → 0 as k → ∞. Therefore we obtain
{∆Xk}k∈K → 0 from (18). By (17), this also implies {ck‖∆Xk‖}k∈K → 0. But then
Lemma 3.1 shows that X∗ is a stationary point of (3) in contradiction to our assumption.
This completes the proof. 2

4 Feasibility Issues

Theorem 3.4 guarantees that every accumulation point of a sequence {Xk} generated by
Algorithm 2.1 is a stationary point of the penalized problem (3). On the one hand, this
result is quite nice because it holds without any assumptions. On the other hand, however,

11

we are more interested in getting stationary points of the original program (1). This relies
on the asymptotic feasibility of the generated sequence {Xk}, which may be achieved
under certain assumptions by using an automatic updating rule for the penalty parameter
α.

In this section, we investigate the convergence properties of the following modification
of Algorithm 2.1.

Algorithm 4.1 (Successive Linearization Method with Penalty Update)

(S.0) Choose α0 > 0, δ > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, cmax ≥ cmin > 0,
c0 ∈ [cmin, cmax], X0 � 0, and set k := 0.

(S.1) Find the (unique) solution ∆Xk ∈ Sn×n of the subproblem

min
∆X∈Sn×n

1

2
ck〈∆X, ∆X〉+ Φαk

(Xk, ∆X) s.t. Xk + ∆X � 0. (19)

(S.2) Let ξk ∈ Rm be the vector with components

ξk
i := max

{
0, gi(X

k) + 〈Dgi(X
k), ∆Xk〉

}
i = 1, . . . ,m.

If ξk = 0, then the kth iteration is called feasible, and we go to (S.3). Otherwise,
the kth iteration is called infeasible, and we set Xk+1 := Xk, αk+1 := αk + δ,
ck+1 := mid

(
cmin, ck, cmax

)
, k ← k + 1, and go to (S.1).

(S.3) If ∆Xk = 0, then STOP. Otherwise, compute the ratio

rk :=
pαk

(Xk)− pαk
(Xk + ∆Xk)

pαk
(Xk)− Φαk

(Xk, ∆Xk)
.

If rk ≥ ρ1, then the kth iteration is called successful, and we set Xk+1 := Xk +∆Xk.
Otherwise, the kth iteration is called unsuccessful, and we set Xk+1 := Xk.

(S.4) Update ck as follows:
If rk < ρ1, set ck+1 := σ2ck.
If rk ∈ [ρ1, ρ2), set ck+1 := mid

(
cmin, ck, cmax

)
.

If rk ≥ ρ2, set ck+1 := mid
(
cmin, σ1ck, cmax

)
.

(S.5) Set αk+1 := αk, k ← k + 1, and go to (S.1).

The results shown in Section 2 remain valid for Algorithm 4.1 if we just replace the fixed
penalty parameter α by αk everywhere.

To prove suitable global convergence results for Algorithm 4.1, we make the following
assumptions.

(A.1): The sequence {Xk} generated by Algorithm 4.1 is bounded.

(A.2): The sequence {ck∆Xk} generated by Algorithm 4.1 is bounded.

12

(A.3): The sequence {∆Xk} generated by Algorithm 4.1 converges to 0.

(A.4): For any given X∗ � 0, if (λ∗, U∗) ∈ Rm × Sn×n satisfies∑
i:gi(X∗)≥0

λ∗i Dgi(X
∗)− U∗ = 0, λ∗ ≥ 0, U∗ � 0, 〈X∗, U∗〉 = 0, (20)

then we must have λ∗ = 0 and U∗ = 0.

Assumption (A.1) is standard in the constrained optimization literature, whereas As-
sumptions (A.2) and (A.3) are more restrictive and satisfied, for example, if the sequence
{ck∆Xk} tends to 0. Finally, Assumption (A.4) corresponds to the extended Mangasarian-
Fromovitz constraint qualification for ordinary nonlinear programs.

Our first result shows that these assumptions imply that there are only finitely many
infeasible iterations.

Proposition 4.2 Suppose that Assumptions (A.1), (A.2), and (A.3) hold and suppose
that Assumption (A.4) holds at any accumulation point of a sequence {Xk} generated by
Algorithm 4.1. Then there are only finitely many infeasible iterations.

Proof. For the proof, it will be convenient to write the Lagrangian of problem (8) as

Lk(∆X, ξ, λ, µ, U) :=
1

2
ck〈∆X, ∆X〉+ f(Xk) + 〈Df(Xk), ∆X〉+ αk

m∑
i=1

ξi − αk

m∑
i=1

µiξi

+ αk

m∑
i=1

λi

(
gi(X

k) + 〈Dgi(X
k), ∆X〉 − ξi

)
− 〈Xk + ∆X, U〉,

where the fifth and the sixth terms are multiplied by αk to normalize the Lagrange multi-
pliers µi and λi, respectively. Then (∆Xk, ξk) is a solution of (8) if and only if there exist
multipliers (λk, µk, Uk) ∈ Rm × Rm × Sn×n such that the following KKT conditions hold:

ck∆Xk + Df(Xk) + αk

m∑
i=1

λk
i Dgi(X

k)− Uk = 0,

1− µk
i − λk

i = 0 i = 1, . . . ,m,

ξk
i ≥ 0, µk

i ≥ 0, ξk
i µk

i = 0 i = 1, . . . ,m,

λk
i ≥ 0, gi(X

k) + 〈Dgi(X
k), ∆Xk〉 − ξk

i ≤ 0 i = 1, . . . ,m,

λk
i

(
gi(X

k) + 〈Dgi(X
k), ∆Xk〉 − ξk

i

)
= 0 i = 1, . . . ,m,

Xk + ∆Xk � 0, Uk � 0, 〈Uk, Xk + ∆Xk〉 = 0.

(21)

To prove the proposition by contradiction, let us assume that there are infinitely many
iterations k ∈ K such that ξk 6= 0 for all k ∈ K. Then, for each k ∈ K, there exists an
index ik such that ξk

ik
> 0. Subsequencing if necessary, we may assume without loss of

generality that ik ≡ j for all k ∈ K and some index j ∈ {1, . . . ,m} independent of k.
Since (21) gives

0 =
(
1− µk

j − λk
j

)
ξk
j =

(
1− λk

j

)
ξk
j ,

13

we have λk
j = 1 for all k ∈ K. Since (21) implies λk

i ∈ [0, 1] for all k ∈ N and all
i ∈ {1, . . . ,m}, we may also assume that {λk}k∈K → λ∗ for some vector λ∗ ≥ 0. Note that
we must have λ∗j = 1 for the particular index j.

Dividing the first equality in (21) by αk yields

1

αk

(
ck∆Xk + Df(Xk)

)
+

m∑
i=1

λk
i Dgi(X

k)− 1

αk

Uk = 0. (22)

Let X∗ be an accumulation point of the subsequence {Xk}k∈K and assume without loss
of generality that {Xk}k∈K → X∗. Then, Assumptions (A.1) and (A.2) together with the
fact that {αk} → ∞ (since we have ξk 6= 0 for all k ∈ K, cf. the updating rule in step
(S.2)) imply

1

αk

(
ck∆Xk + Df(Xk)

)
+

m∑
i=1

λk
i Dgi(X

k) →
m∑

i=1

λ∗i Dgi(X
∗)

as k →∞, k ∈ K. This together with (22) gives

1

αk

Uk → U∗ as k →∞, k ∈ K

for some U∗ � 0, and hence we obtain

m∑
i=1

λ∗i Dgi(X
∗)− U∗ = 0.

Moreover, by Assumption (A.3), the last equality in (21) yields

0 =
1

αk

〈Uk, Xk + ∆Xk〉 → 〈U∗, X∗〉.

Furthermore, we have λ∗i = 0 for all i ∈ {1, . . . ,m} such that gi(X
∗) < 0. In fact, if

gi0(X
∗) < 0 for some index i0, then it is not difficult to deduce from (21) together with

Assumption (A.3), λk
i ∈ [0, 1] and ξk

i ≥ 0 that λ∗i0 = 0. Hence it follows that the pair
(λ∗, U∗) satisfies (20). Assumption (A.4) then implies λ∗ = 0, a contradiction to λ∗j = 1. 2

As a consequence of Proposition 4.2, we get the following corollary.

Corollary 4.3 Under the assumptions of Proposition 4.2, the following statements hold:

(a) The sequence of penalty parameters {αk} stays constant eventually.

(b) Every accumulation point X∗ of {Xk} is feasible for the original program (1).

14

Proof. Statement (a) follows immediately from Proposition 4.2 together with the up-
dating rule in step (S.2). Hence it remains to prove part (b). To this end, let X∗ be an
accumulation point of the sequence {Xk}, and {Xk}k∈K be a subsequence converging to
X∗. From Proposition 4.2, we have

0 = ξk
i ≥ gi(X

k) + 〈Dgi(X
k), ∆Xk〉 i = 1, . . . ,m

for all k ∈ N sufficiently large. Then, by Assumption (A.3), taking the limit in the above
inequalities yields

gi(X
∗) ≤ 0 i = 1, . . . ,m.

Since Xk � 0 for all k ∈ N, we also obtain X∗ � 0. Hence X∗ is feasible for the original
program (1). 2

Corollary 4.3 means that, under the given assumptions, Algorithm 4.1 eventually coincides
with Algorithm 2.1. This observation allows us to state the following global convergence
result.

Theorem 4.4 Under the assumptions of Proposition 4.2, every accumulation point X∗ of
a sequence {Xk} generated by Algorithm 4.1 is a stationary point of the original program
(1).

Proof. Since the sequence {αk} stays constant eventually, we may argue as in the anal-
ysis of Algorithm 2.1 that any accumulation point X∗ of {Xk} is a stationary point of the
penalized problem (3), cf. Theorem 3.4. Hence there exist a vector ξ∗ ∈ Rm and Lagrange
multipliers (λ∗, µ∗, U∗) ∈ Rm×Rm×Sn×n that satisfy (5). Moreover, by Proposition 4.2,
we have ξ∗ = 0, which implies that (5) reduces to the KKT conditions (2) for the original
program (1). This completes the proof. 2

5 Numerical Results

To test the numerical performance of Algorithm 4.1, we implemented the method in Matlab
(Version 6.5) [20, 21] using the SDPT3-Solver (Version 3.0) for the corresponding subprob-
lems. More details on the reformulation of the subproblem (19) as a linear semidefinite
program with a second-order cone constraint are given in Appendix A.

The parameters in Algorithm 4.1 were set to the following values:

α0 = 50, δ = 25, ρ1 = 0.1, ρ2 = 0.75,

σ1 = 0.5, σ2 = 2, c0 = 0.01, cmin = 0.001, cmax = 1.

We stopped the algorithm if either∥∥svec(∆Xk)
∥∥
∞ < 10−4 and

∥∥ξk
∥∥
∞ < 10−4

15

Table 1: Numerical results for linear SDPs

problem n m k αk ck ‖ξk‖∞
∥∥svec(∆Xk)

∥∥
∞ λmin(Xk) SDPT3 exit

random 10 10 4 50 1.00e-03 1.58e-12 3.24e-06 -3.14e-10 0
norm min 20 6 2 50 2.50e-03 1.22e-12 1.37e-06 -4.08e-12 0
maxcut 10 10 2 50 2.50e-03 1.48e-12 5.90e-05 1.75e-12 0
etp 20 10 6 50 1.00e-03 2.24e-06 8.00e+00 -4.49e-06 -1
lovasz 10 28 1 50 5.00e-03 8.85e-12 6.18e-05 1.00e-11 0
log cheby 60 6 2 50 2.50e-03 2.17e-11 1.59e-07 5.55e-12 0

were satisfied or if SDPT3 failed to solve a subproblem correctly.
As preliminary experiments, we first tested the algorithm on six linear test examples

from SDPT3 [20], by writing an interface to the special block structure of these examples.
The computational results are shown in Table 1, where n denotes the dimension of X ∈
Rn×n, m is the number of constraints, and k denotes the number of iterations spent by
the algorithm. When the SDPT3 solver could solve all subproblems, the exit code is
zero. Otherwise, the negative SDPT3 exit code is shown to indicate a failure in solving a
subproblem.

Table 1 shows that Algorithm 4.1 successfully solved all the test examples except prob-
lem etp for which the SDPT3 encountered an error when solving a subproblem because
there was not enough progress in the predictor phase of SDPT3. Moreover, for the first
four test examples in Table 1, Algorithm 4.1 obtained the same objective function value as
the one produced by applying SDPT3 directly to these linear SDP examples, whereas for
problem log cheby, the objective function value achieved by Algorithm 4.1 was slightly
larger.

The main aim of our numerical experiments consists in examining the performance of
the algorithm on nonlinear semidefinite programs. Unfortunately, however, there is no
standard test problem library (such as SDPLIB [1] for linear SDPs) available for nonlinear
SDPs. So we have constructed the following three nonlinear test problems by ourselves:

1. Nonlinear objective function with linear constraints: Let n = 4, m = 4 and

f(X) := exp(− tr(X)),

g(X) := (tr(X)− 3, X(1, 1)− 1,−X(1, 2), X(3, 3))T .

2. Nonlinear objective function with linear constraints: Let n = 5, m = 1 and

f(X) := cos(X(1, 1)) + X(2, 2)− sin(X(3, 3))−X(4, 4) + exp(X(5, 5)),

g(X) := tr(X)− 100.

3. Nonlinear objective function with nonlinear constraints: Let n = 5, m = 6 and

f(X) := exp(tr(X)),

g(X) := (X(1, 1), X(2, 2)3,−X(3, 3) + 3, X(5, 5)− 2,−2X(5, 5) + 3, tr(X)− 1000)T .

16

Table 2: Numerical results for nonlinear SDP

problem n m k αk ck ‖ξk‖∞
∥∥svec(∆Xk)

∥∥
∞ λmin(Xk) SDPT3 exit

example 1 4 4 8 50 1.00e-03 3.18e-12 8.73e-05 3.32e-12 0
example 2 5 1 3 50 2.50e-03 0.00e+00 8.20e-07 -3.16e-08 0
example 3 5 6 3 100 1.00e-02 1.82e-09 6.39e-08 2.08e-10 0

The computational results for these three nonlinear test problems are shown in Table 2. As
can be seen from Table 2, the algorithm was able to solve all three examples successfully.
The number of iterations is relatively small for all three problems. Finally, note that the
penalty parameter had to be updated twice for the third example.

6 Final Remarks

We introduced a successive linearization method for the solution of nonlinear semidefinite
programs. Using an exact penalty function and a trust region-type globalization, the
method is shown to be globally convergent under certain assumptions. Some preliminary
numerical results indicate that the method works quite reasonable. Of course, further
numerical experiments are necessary in order to get a more complete picture regarding
the behaviour of our algorithm. Furthermore, we would like to weaken Assumptions (A.2)
and (A.3) used in Section 4.

A Reformulation of Subproblems

In order to solve nonlinear semidefinite programs of the form (1) by Algorithm 4.1, we
have to be able to deal with a subproblem given by

min
1

2
ck〈∆X, ∆X〉+ f(Xk) + 〈Df(Xk), ∆X〉

+ αk

m∑
i=1

max{0, gi(X
k) + 〈Dgi(X

k), ∆X〉} (23)

s.t. ∆X ∈ Sn×n, Xk + ∆X � 0,

cf. (19). For this purpose, we would like to use the SDPT3 solver (version 3.0) from [20].
This software is designed to solve linear semidefinite programs with cone constraints of

17

the form

min
ns∑

j=1

〈Cs
j , X

s
j 〉 +

nq∑
i=1

(cq
i)

Txq
i + (cl)Txl

s.t.
ns∑

j=1

(As
j)

T svec(Xs
j) +

nq∑
i=1

(Aq
i)

Txq
i + (Al)Txl = b,

Xs
j ∈ S

sj×sj

+ ∀j, xq
i ∈ Kqi

q ∀i, xl ∈ Rnl
+ ,

(24)

where Cs
j , Xs

j are symmetric matrices of dimension sj, cq
i , xq

i are vectors in Rqi , Ssj×sj

+

denotes the sj-dimensional positive semidefinite cone defined by Ssj×sj

+ := {X ∈ Ssj×sj :
X � 0}, Kqi

q denotes the qi-dimensional second-order cone defined by Kqi
q := {x =

(x1, x
T
2:qi

)T ∈ Rqi : x1 ≥ ‖x2:qi
‖}, cl and xl are vectors in Rnl , As

j are s̄j×m matrices with
s̄j = sj(sj+1)/2, Aq

i and Al are qi×m and l×m matrices, respectively, and svec is the opera-
tor defined by svec(X) := (X(1, 1),

√
2X(1, 2), X(2, 2),

√
2X(1, 3),

√
2X(2, 3), X(3, 3), . . .)T ∈

Rn(n+1)/2 for any symmetric matrix X ∈ Sn×n.
We now want to rewrite the problem (23) in the form (24). To this end, we need to

make some reformulations, which will be described step by step in the following.
First, we drop the constant f(Xk) from the objective function without affecting the

problem. Next, we introduce the auxiliary variable S ∈ Sn×n and set Xk + ∆X = S.
Because ∆X needs only to be symmetric and not to be positive semidefinite, we set
∆x = svec(∆X) and write the problem in terms of ∆x ∈ Rn̄ with n̄ := n(n + 1)/2. Then
problem (23) is equivalent to

min
1

2
ck ‖∆x‖2 + svec(Df(Xk))T∆x

+ αk

m∑
i=1

max{0, gi(X
k) + svec(Dgi(X

k))T∆x}

s.t. svec(Xk) + ∆x = svec(S),

∆x ∈ Rn̄, S � 0.

(25)

By introducing the second-order cone constraint ‖∆x‖ ≤ t, problem (25) can be further
rewritten as

min
1

2
ckt

2 + svec(Df(Xk))T∆x

+ αk

m∑
i=1

max{0, gi(X
k) + svec(Dgi(X

k))T∆x}

s.t. svec(Xk) + ∆x = svec(S), ‖∆x‖ ≤ t,

∆x ∈ Rn̄, S � 0, t ∈ R.

(26)

Unfortunately, the term t2 is not linear as required in (24). So we replace t2 by the new
variable s ≥ 0 and add the constraint t2 ≤ s. But this constraint can be rewritten as the
semidefinite constraint (

s t
t 1

)
� 0.

18

Introducing once again an auxiliary variable, problem (26) and hence the original sub-
problem (23) is equivalent to

min
1

2
cks + svec(Df(Xk))T∆x

+ αk

m∑
i=1

max{0, gi(X
k) + svec(Dgi(X

k))T∆x}

s.t. ∆x− svec(S) = − svec(Xk), ‖∆x‖ ≤ t,(
s t
t 1

)
−W = 0,

∆x ∈ Rn̄, W � 0, S � 0, t ∈ R, s ∈ R+.

(27)

In the next step, we replace the max-terms in the objective function by auxiliary variables
ξi. This leads us to the following problem formulation:

min
1

2
cks + svec(Df(Xk))T∆x + αk

m∑
i=1

ξi

s.t. ∆x− svec(S) = − svec(Xk), ‖∆x‖ ≤ t,(
s t
t 1

)
−W = 0,

ξi − gi(X
k)− svec(Dgi(X

k))T∆x ≥ 0 i = 1, . . . ,m,

∆x ∈ Rn̄, W � 0, S � 0, t ∈ R, s ∈ R+, ξ = (ξ1, . . . , ξm)T ∈ Rm
+ .

(28)

Once again, we rewrite the inequality constraints as equalities by setting ωi = ξi−gi(X
k)−

svec(Dgi(X
k))T∆x. Moreover, we write the equality constraint(

s t
t 1

)
−W = 0

in the svec-notation. Then we get

min
1

2
cks + svec(Df(Xk))T∆x + αk

m∑
i=1

ξi

s.t. ∆x− svec(S) = − svec(Xk), ‖∆x‖ ≤ t, s√
2t
1

− svec(W) = 0,

ξi − gi(X
k)− svec(Dgi(X

k))T∆x− ωi = 0 i = 1, . . . ,m,

∆x ∈ Rn̄, W � 0, S � 0, t ∈ R, s ∈ R+,

ξ = (ξ1, . . . , ξm)T ∈ Rm
+ , ω = (ω1, . . . , ωm)T ∈ Rm

+ .

(29)

19

We are now in a position to give the explicit correspondence between the parameters,
variables and input data in our last problem formulation (29) and those of the SDPT3
standard form (24). The problem parameters are given by

ns := 2, nq := 1, s1 := n, s2 := 2, q1 := 1 + n̄, l := 1 + 2m.

The variables are given by

Xs
1 := S ∈ Sn×n

+ ,

Xs
2 := W ∈ S2×2

+ ,

xq
1 := (t, ∆xT)T ∈ K1+n̄

q ,

xl := (s, ξT , ωT)T ∈ R1+2m.

The input data in the objective function are given by

Cs
1 := 0 ∈ Sn×n,

Cs
2 := 0 ∈ S2×2,

cq
1 :=

(
0, svec(Df(Xk))T

)T ∈ R1+n̄,

cl :=
(

1
2
ck, αke, 0

)
∈ R1+2m

with
e = (1, . . . , 1)T ∈ Rm.

Finally, the matrices As
1 ∈ Rn̄×(n̄+3+m), As

2 ∈ R3×(n̄+3+m), Aq
1 ∈ R(1+n̄)×(n̄+3+m), Al ∈

R(1+m+m)×(n̄+3+m) and the vector b ∈ Rn̄+3+m are given by

()As
1 = −I 0 0 ,

()As
2 = 0 −I 0 ,

Aq
1 =




0 0
√

2 0 0 · · · 0
0 0 0

I
...

...
... − svec(Dg1(X

k)) · · · − svec(Dgm(Xk)) ,
0 0 0

Al =

()0 1 0 0 0 · · · 0
0 0 I ,
0 0 −I

()b = − svec(Xk)T 0 0 −1 g(Xk)T T .

This is the desired reformulation.

20

It may be worth mentioning that problem (25) can also be reformulated as

min
1

2
ckt + svec(Df(Xk))T∆x + αk

m∑
i=1

max{0, gi(X
k) + svec(Dgi(X

k))T∆x}

s.t. svec(Xk) + ∆x = svec(S), ‖∆x‖2 ≤ t,

∆x ∈ Rn̄, S � 0, t ∈ R.

(30)

Since the constraint ‖∆x‖2 ≤ t is equivalent to(
t ∆xT

∆x I

)
� 0,

problem (30) can further be reformulated as a linear semidefinite program that involves
a semidefinite cone constraint instead of a second-order cone constraint. However, such
a semidefinite representation is much more expensive in terms of memory requirement.
Therefore we adopted the reformulation (29) in our numerical experiments reported in
Section 5.

References

[1] B. Borchers: SDPLIB 1.2, A library of semidefinite programming test problems.
Optimization Methods and Software 11, 1999, pp. 597–611.

[2] R. Correa and H. Ramirez: A global algorithm for nonlinear semidefinite pro-
gramming. Research Report 4672, INRIA, Le Chesnay Cedex, France, 2002.

[3] B. Fares, D. Noll and P. Apkarian: Robust control via sequential semidefinite
programming. SIAM Journal on Control and Optimization 40, 2002, pp. 1791–1820.

[4] A. Forsgren: Optimality conditions for nonconvex semidefinite programming,
Mathematical Programming 88, 2000, pp. 105–128.

[5] R.W. Freund and F. Jarre: A sensitivity analysis and a convergence result for
a sequential semidefinite programming method. Technical Report, Bell Laboratories,
Murray Hill, New Jersey, 2003.

[6] M. Fukuda and M. Kojima: Branch-and-cut algorithms for the bilinear matrix in-
equality eigenvalue problem. Computational Optimization and Applications 19, 2001,
pp. 79–105.

[7] M. Fukushima, K. Takazawa, S. Ohsaki and T. Ibaraki: Successive lin-
earization methods for large-scale nonlinear programming problems. Japan Journal of
Industrial and Applied Mathematics 9, 1992, pp. 117–132.

21

[8] R.E. Griffith and R.A. Stewart: A nonlinear programming technique for the
optimization of continuous processing systems. Management Science 7, 1961, pp. 379–
392.

[9] C.W.J. Hol, C.W. Scherer, E.G. van der Meché and O.H. Bosgra: A
nonlinear SDP approach to fixed-order controller synthesis and comparison with two
other methods applied to an active suspension system. European Journal of Control
9, 2003, pp. 11–26.

[10] X.X. Huang, K.L. Teo and X.Q. Yang: Approximate augmented Lagrangian
functions and nonlinear semidefinite programs. Technical Report, Department of Ap-
plied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 2003.

[11] F. Jarre: An interior method for nonconvex semidefinite programs. Optimization
and Engineering 1, 2000, pp. 347–372.

[12] F. Jarre: Some aspects of nonlinear semidefinite programs. System Modeling and
Optimization XX, F.W. Sachs and R. Tichatschke (eds.), Kluwer Academic Publish-
ers, 2003.

[13] M. Kočvara and M. Stingl: PENNON: A code for convex nonlinear and semidef-
inite programming. Optimization Methods and Software 18, 2003, pp. 317–333.

[14] F. Leibfritz: An LMI-based algorithm for designing suboptimal static H2/H∞ out-
put feedback controllers. SIAM Journal on Control and Optimization 39, 2001, pp.
1711–1735.

[15] Z.-Q. Luo: Optimal transceiver design via convex programming. Technical Report,
Department of Electrical and Computer Engineering, McMaster University, Hamilton,
Canada, 1999.

[16] F. Palacios-Gomez, L. Lasdon and M. Engquist: Nonlinear optimization by
successive linear programming. Management Science 28, 1982, pp. 1106–1120.

[17] A. Shapiro: First and second order analysis of nonlinear semidefinite programs.
Mathematical Programming 77, 1997, pp. 301–320.

[18] J.F. Sturm: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software 11–12, 1999, pp. 625–653.

[19] M.J. Todd: Semidefinite optimization. Acta Numerica 10, 2001, pp. 515–560.

[20] K.C. Toh, R.H. Tütüncü and M.J. Todd: SDPT3 version 3.02 – a MATLAB
software for semidefinite-quadratic-linear programming. updated in December 2002,
http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

[21] R.H. Tütüncü, K.C. Toh and M.J. Todd: Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming 95, 2003, pp. 189–217.

22

[22] J. Zhang, N.-H. Kim and L. Lasdon: An improved successive linear programming
algorithm. Management Science 31, 1985, pp. 1312–1331.

23

