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Abstract. A class of new affine-scaling interior-point Newton-type methods are consid-
ered for the solution of optimization problems with bound constraints. The methods are
shown to be locally quadratically convergent under the strong second order sufficiency con-
dition without assuming strict complementarity of the solution. The new methods differ
from previous ones by Coleman and Li [Mathematical Programming, 67 (1994), pp. 189–
224] and Heinkenschloss, Ulbrich, and Ulbrich [Mathematical Programming, 86 (1999), pp.
615–635] mainly in the choice of the scaling matrix. The scaling matrices used here have
stronger smoothness properties and allow the application of standard results from non-
smooth analysis in order to obtain a relatively short and elegant local convergence result.
An important tool for the definition of the new scaling matrices is the correct identifica-
tion of the degenerate indices. Some illustrative numerical results with a comparison of
the different scaling techniques are also included.
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1 Introduction

We consider the nonlinear minimization problem with bound constraints

minimize f(x) subject to x ∈ B := {x ∈ Rn : li ≤ xi ≤ ui ∀i = 1, . . . , n}, (P)

where li and ui denote the lower and upper bounds, respectively, and f : Rn −→ R is the
objective function. Throughout this text, we assume that li < ui for all i = 1, . . . , n and
that f is twice continuously differentiable with a locally Lipschitz continuous Hessian in
an open neighbourhood of the feasible set B. Moreover, we assume that all bounds li and
ui are finite, but this is mainly a notational assumption since it simplifies many formulas
in our analysis like the definitions of the scaling matrices that will be introduced later.
However, it is not difficult to see that all results remain true with a suitable redefinition of
these scaling matrices if either li or ui or both are infinite for some indices i ∈ {1, . . . , n}.

The optimization problem (P) has attracted quite a few researchers during the last 15
years, and a number of different methods for its solution may be found in [4, 5, 9, 10,
15, 16, 20, 23, 24, 25, 31]. The approach we follow in this work is typically called the
affine-scaling interior-point Newton method. Following an observation by Coleman and Li
[7, 8], these methods exploit the fact that the first order optimality conditions of (P) may
be rewritten as a (bound constrained) nonlinear system of equations

G(x) = 0, x ∈ B, (1)

where G : Rn → Rn is defined by

G(x) := D(x)∇f(x)

for a certain scaling matrix D(x), i.e.,

D(x) = diag
(
d1(x), . . . , dn(x)

)
is a diagonal matrix with suitable components di(x), see Section 2 for further details.
Following [21], we call

di(x) := dCL
i (x) :=


xi − li if [∇f(x)]i > 0,
ui − xi if [∇f(x)]i < 0,
min{xi − li, ui − xi} if [∇f(x)]i = 0

(2)

the Coleman-Li scaling (the actual scaling used in [7, 8] is slightly different when [∇f(x)]i =
0). The corresponding method was shown to be locally quadratically convergent in [7, 8]
under certain assumptions including strict complementarity of the solution x∗ of problem
(P), i.e., under the assumption that, for all indices i ∈ {1, . . . , n}, we have

x∗i ∈ {li, ui} =⇒ [∇f(x∗)]i 6= 0.
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In order to avoid this strict complementarity condition, Heinkenschloss et al. [21] use a
different scaling matrix defined by

di(x) := dHUU
i (x) :=

 dCL
i (x) if |[∇f(x)]i| < min

{
xi − li, ui − xi

}p

or min
{
xi − li, ui − xi

}
< |[∇f(x)]i|p,

1 otherwise
(3)

for some constant p > 1. Extensions of these methods (sometimes to infinite-dimensional
problems arising from optimal control) may be found in [11, 29, 30], for example. In par-
ticular, [29, 30] consider other scaling matrices suitable for infinite-dimensional problems.
The class of affine-scaling interior-point Newton methods has recently also been applied
quite successfully to the solution of nonlinear systems of equations with box constraints,
see [1, 2, 3].

Here we introduce a new class of affine-scaling methods for the solution of the box con-
strained optimization problem (P). This new class differs from the previous works mainly
by using a different scaling D(x). To this end, we note that both the Coleman-Li matrix
D(x) = DCL(x) and the Heinkenschloss et al. scaling D(x) = DHUU(x) are, in general, dis-
continuous even at a solution x∗. This makes it relatively difficult to predict the behaviour
of Newton’s method. Hence we suggest another scaling matrix which is continuous (in
fact, Lipschitz continuous) around a solution of problem (P). It turns out that the use of
locally Lipschitz continuous scaling matrices simplifies the algorithm to some extend and,
in particular, allows a relatively short and straightforward convergence proof; in particular,
it is not necessary to introduce a second scaling as in Heinkenschloss et al. [21] in order to
get uniformly bounded (generalized) Jacobians. Of central importance for our new scaling
matrix, however, is the fact that we are able to identify the degenerate indices correctly,
where an index i is called degenerate at a solution x∗ of problem (P) if both x∗i ∈ {li, ui}
and [∇f(x∗)]i = 0.

The paper is organized as follows: In Section 2 we start with a negative result showing
that for a whole class of scaling matrices D(x), the (generalized) Jacobian of G is singular at
a solution x∗ of (P) whenever strict complementarity is not satisfied at x∗. This result will
later be used in order to motivate the definition of our new scaling matrix. In particular, it
turns out that we need to identify the degenerate indices correctly. A suitable technique for
doing this is therefore presented in Section 3. Exploiting this technique, we then define our
scaling matrices in Section 4, state some of its properties and give a formal description of
the affine-scaling interior-point Newton method for the solution of the bound constrained
optimization problem (P). The local quadratic convergence of this method under the strong
second order sufficiency condition is shown in Section 5. Note that strict complementarity
is not assumed in our convergence theory. Some numerical results and a short comparison
with the Coleman-Li and Heinkenschloss et al. scaling matrices are given in Section 6. We
then close with some final remarks in Section 7.

Notation: For a vector x ∈ Rn, we denote by xi and, sometimes, by [x]i its ith com-
ponent. If F : Rn → Rm is a vector-valued mapping, Fi is used for its ith component
function. In the differentiable case, F ′(x) denotes the Jacobian of F at a point x ∈ Rn,
whereas ∇F (x) is the transposed Jacobian. In particular, if m = 1, the gradient ∇F (x) is
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viewed as a column vector. Throughout this text, ‖ · ‖ denotes the Euclidean vector norm
or the corresponding matrix norm. Furthermore, PB(x) is the (Euclidean) projection of a
vector x ∈ Rn onto the feasible set B. Note that this projection can be calculated quite
easily since we are dealing with box constraints only. Finally, given a matrix A ∈ Rn×n,
we write Ai for the ith column of this matrix.

2 Singularity Problems of Affine-Scaling Methods

A careful convergence analysis in Heinkenschloss et al. [21] shows that the affine-scaling
interior-point Newton method using the Coleman-Li scaling matrices from (2) is, in general,
not quadratically convergent if strict complementarity does not hold at a local minimum
x∗. The aim of this section is to give another reason for the failure of a whole class of
affine-scaling methods in the absense of strict complementarity. In subsequent sections,
this result will be used in order to motivate our new choice of the scaling matrix D(x).

We first recall a simple optimality condition for the optimization problem (P).

Theorem 2.1 Let x∗ be a local minimum of the optimization problem (P). Then

[∇f(x∗)]i


= 0 if li < x∗i < ui,
≥ 0 if x∗i = li,
≤ 0 if x∗i = ui.

(4)

As noted in the introduction, the first order necessary optimality condition (4) is equiva-
lent to the nonlinear system of equations (1) using the Coleman-Li scaling matrix. This
equivalence can be extended to more general scaling matrices. More precisely, we have the
following result, cf. Heinkenschloss et al. [21].

Lemma 2.2 Let x∗ ∈ B. Then x∗ satisfies the first order optimality conditions (4) if and
only if it is a solution of the nonlinear system of equations

G(x) := D(x)∇f(x) = 0, (5)

where D(x) := diag
(
d1(x), . . . , dn(x)

)
is any scaling matrix having the following properties

on the feasible set B:

di(x)


= 0 if xi = li and [∇f(x)]i > 0,
= 0 if xi = ui and [∇f(x)]i < 0,
≥ 0 if xi ∈ {li, ui} and [∇f(x)]i = 0,
> 0 else.

(6)

Motivated by Lemma 2.2, some methods for solving the bound constrained optimization
problem (P) apply a Newton-type method to the corresponding nonlinear system (5) (tak-
ing into account explicitly the simple bound constraints x ∈ B). Unfortunately, it turns out
that the (generalized) Jacobian of the mapping G is singular under fairly mild assumptions
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if strict complementarity does not hold. This is the main result we want to show in this
section.

To this end, we assume that D(x) is at least locally Lipschitz continuous around a local
minimum x∗ of problem (P). Then the mapping G is also locally Lipschitz. Hence we can
compute its generalized Jacobian in the sense of Clarke [6]. For simplicity, we restate the
definition of this generalized Jacobian.

Definition 2.3 Let F : Rn −→ Rm be locally Lipschitz continuous in x∗ ∈ Rn and
DF := {x ∈ Rn|F differentiable in x} the set of differentiable points of F . Then the set

∂BF (x∗) :=
{
V ∈ Rm×n|∃ {xk} ⊆ DF with xk → x∗ and F ′(xk)→ V

}
is called the B-subdifferential of F in x∗, and its convex hull

∂F (x∗) := conv∂BF (x∗)

is the generalized Jacobian of F in x∗. If m = 1, the set ∂F (x∗) is called the generalized
gradient of F in x∗.

By calculating the generalized Jacobian of the mapping G, we obtain the following negative
result, where, in addition to our previous assumptions, we also assume that the scaling
matrix D(x) = diag

(
d1(x), . . . , dn(x)

)
has the property that

di(x) = 0 if xi ∈ {li, ui}. (7)

This is a rather natural condition since the components di(x) usually represent an estimate
for the distance of the component xi to the boundary of the feasible set B.

Theorem 2.4 Let x∗ be a local minimum of (P) such that strict complementarity does not
hold. Suppose further that D(x) = diag

(
d1(x), . . . , dn(x)

)
is locally Lipschitz continuous

and satisfies (6) and (7). Then:

(a) The ith component function Gi is differentiable with gradient ∇Gi(x
∗) = 0 for every

index i where strict complementarity is violated.

(b) All elements of the generalized Jacobian ∂G(x∗) are singular.

Proof. Recall that G(x) := D(x)∇f(x) is locally Lipschitz continuous. Using the product
rule from [6, Proposition 2.3.13] for the ith component Gi(x) = di(x)[∇f(x)]i, it follows
that

∂Gi(x
∗) ⊆ [∇f(x∗)]i∂di(x

∗) + di(x
∗)∂[∇f(x∗)]i.

Since strict complementarity does not hold at x∗, there is an index i0 such that both
x∗i0 ∈ {li0 , ui0} and [∇f(x∗)]i0 = 0. For this particular component, we therefore get

∂Gi0(x
∗) ⊆ [∇f(x∗)]i0︸ ︷︷ ︸

=0

∂di0(x
∗) + di0(x

∗)︸ ︷︷ ︸
=0 by (7)

∂[∇f(x∗)]i0 = {0}.
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Since the generalized gradient ∂Gi0(x
∗) is nonempty (see [6, Proposition 2.6.2]), it follows

that ∂Gi0(x
∗) = {0}. But then [6, Proposition 2.2.4] implies that Gi0 is differentiable in

x∗, and its gradient is given by ∇Gi0(x
∗) = 0. However, since we have

∂G(x∗) ⊆
{
(g1, . . . , gn)T

∣∣ g1 ∈ ∂G1(x
∗), . . . , gn ∈ ∂Gn(x∗)

}
due to [6, Proposition 2.6.2], it follows that each element V ∈ ∂G(x∗) has a zero row and
is therefore singular. This completes the proof of both statements. �

The previous proof shows that Theorem 2.4 actually holds under much weaker conditions.
In fact, the local Lipschitz continuity of the scaling matrix D(x) has been exploited only
in the degenerate components. The other components, where strict complementarity is
satisfied, are not really important. The only difficulty which arises without assuming local
Lipschitz continuity of all components di(x) is that we have to use an extended definition
for a generalized Jacobian for non-Lipschitzian functions. However, whatever this extended
definition might be, if we require that the ith row of such a more general Jacobian is equal
to the gradient of the ith component function Gi(x) whenever this function is differentiable
at the current point (and this is a very natural condition), then it follows that Theorem
2.4 still holds. Moreover, the proof of Theorem 2.4 clearly shows that the statement also
holds if property (7) is only satisfied at the local minimum x∗ of problem (P).

We note that both the Coleman-Li scaling dCL
i (x) as well as the Heinkenschloss et al.

scaling dHUU
i (x) satisfy (6). Moreover, dCL

i (x) has the property (7) which turned out to be
quite negative in the discussion by Heinkenschloss et al. [21]. Here we introduce another
scaling matrix DMIN(x) = diag

(
dMIN

1 (x), . . . , dMIN
n (x)

)
defined by

dMIN
i (x) := min

{
xi−li+γ max{0,−[∇f(x)]i}, ui−xi+γ max{0, [∇f(x)]i}

}
∀i = 1, . . . , n

(8)
for some constant γ > 0. This scaling matrix will play an important role in this work,
and it has the advantage of being locally Lipschitz continuous. Moreover, it is easy to see
that it satisfies (6). Furthermore, (7) also holds at a local minimum x∗ of problem (P).
Therefore, we obtain the following result as a direct consequence of Theorem 2.4 (and the
previous notes).

Corollary 2.5 Let x∗ be a local minimum of (P) such that strict complementarity does not
hold. Suppose further that D(x) = DMIN(x) denotes the scaling matrix with its components
defined by (8). Then all elements of the generalized Jacobian ∂GMIN(x∗) are singular.

We note that we cannot apply Theorem 2.4 directly to the Coleman-Li scaling since DCL(x)
is, in general, discontinuous (and therefore not locally Lipschitz continuous). Nevertheless,
a related singularity problem was also observed for this scaling in Heinkenschloss et al.
[21, pp. 621–622]. In fact, this observation was the main motivation to introduce another
scaling matrix. However, the Heinkenschloss et al. scaling is also discontinuous in general,
even around a local minimum x∗ (namely in those components where [∇f(x∗)]i = 0). Since
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the behaviour of Newton’s method is usually less predictable for discontinuous functions
than for smooth ones, we prefer to work with scaling matrices which are at least locally
Lipschitz continuous around a local minimum x∗. Hence the scaling matrix from (8) is a
natural candidate, but in view of Corollary 2.5, it has to be modified in order to avoid the
strict complemementarity assumption.

3 Identification of Active and Degenerate Indices

The analysis from our previous section shows that it is quite important for fast local
convergence to identify the degenerate indices in a local minimum of problem (P). The
aim of this section is therefore to describe a simple and computationally efficient technique
for the identification of these indices. To this end, we begin with the following definition.

Definition 3.1 Let x ∈ B and the index set I := {1, . . . , n} be given. Then we call

I0(x) :=
{
i ∈ I|xi ∈ {li, ui}

}
the set of active indices and

I00(x) :=
{
i ∈ I0(x)|[∇f(x)]i = 0

}
the set of degenerate indices.

In order to identify the index set I00(x
∗) exactly in a neighbourhood of a local minimum

x∗ of (P), we use an idea from Facchinei et al. [14] and specialize or modify their results
to our situation. The fundamental definition from [14] is the following one.

Definition 3.2 A function ρ : Rn −→ R+ is called an identification function for (P) if,
for an isolated x∗ ∈ B satisfying (4), the following properties hold:

(i) ρ is continuous in x∗,

(ii) ρ(x∗) = 0,

(iii) limx→x∗, x 6=x∗
ρ(x)

‖x−x∗‖ = +∞.

Note that, in Definition 3.2, we call a vector x∗ satisfying (4) isolated if there is a whole
neighbourhood around this point such that x∗ is the only vector satisfying the first order
optimality conditions (4) in this neighbourhood. In our local convergence analysis to
be presented in Section 5, this local uniqueness condition is a consequence of another
assumption (strong second order sufficiency condition) and, therefore, not as restrictive as
it might appear in the beginning.
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Later in this section, we will give two examples of suitable identification functions. For
the moment, however, we assume that we have such an identification function ρ. Using
this identification function ρ, we define an estimate of the active indices I0(x) by

A0(x) :=
{
i ∈ I|xi − li ≤ ρ(x) or ui − xi ≤ ρ(x)

}
=

{
i ∈ I|min{xi − li, ui − xi} ≤ ρ(x)

}
.

(9)
Then we have the following result which shows that A0(x) is equal to the set I0(x

∗) in a
sufficiently small neighbourhood of a solution x∗ of (P), i.e., we are able to identify the set
of active indices correctly.

Theorem 3.3 Let ρ be an identification function for problem (P) and x∗ ∈ B be an isolated
vector satisfying (4). Then there exists an ε > 0 such that

A0(x) = I0(x
∗)

holds for all x ∈ Bε(x
∗).

Proof. The proof is similar to [14, Theorem 2.3] and is presented here for the sake of
completeness.

First let i ∈ I0(x
∗). Then we either have x∗i = li or x∗i = ui. Consider the case x∗i = li

and define gi(x) := xi − li (the argument is similar if x∗i = ui). Since gi(x
∗) = 0 and gi is

Lipschitz continuous with constant L = 1, we get

gi(x) ≤ gi(x
∗) + ‖x− x∗‖ = ‖x− x∗‖

for all x ∈ Rn. Using the definition of an identification function, we therefore obtain

xi − li = gi(x) ≤ ‖x− x∗‖ ≤ ρ(x) ∀x ∈ Bε1(x
∗)

for some ε1 > 0 sufficiently small. Hence we have i ∈ A0(x) for all x ∈ Bε1(x
∗).

Conversely, take an arbitrary index i 6∈ I0(x
∗). Then we have li < x∗i < ui. Using

ρ(x∗) = 0 and a continuity argument, it follows that ρ(x) < min{xi − li, ui − xi} for all
x ∈ Bε2(x

∗) for some ε2 > 0 sufficiently small (note that the choice of ε2 depends on
the index i, but since there are only finitely many i ∈ {1, . . . , n}, we may choose ε2 > 0
independent of i). Hence i 6∈ I0(x

∗) implies i 6∈ A0(x) for all x ∈ Bε2(x
∗), and this is

equivalent to A0(x) ⊆ I0(x
∗) for all x ∈ Bε2(x

∗).
Using ε := min{ε1, ε2}, we therefore obtain the desired result. �

Now we are able to estimate the active constraints exactly, but since we want to identify
the degenerate ones, we also use the set

A+(x) := {i ∈ A0(x)|λi(x) > ρ(x)} (10)

where λ(x) is a multiplier function, i.e., λ(x) is continuously differentiable (local Lipschitz
continuity would be enough for our purpose) and has the property that

λ(x∗) = λ∗
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for any vector x∗ satisfying (4) and the corresponding (unique) Lagrange multiplier λ∗ for
problem (P). The interested reader is referred to [13, 12] for some suitable examples of
multiplier functions. Note that these multiplier functions can be evaluated quite easily in
the case of bound constrained optimization problems.

Theorem 3.4 Let ρ be an identification function for problem (P) and x∗ ∈ B be an isolated
vector satisfying (4). Then there exists an ε > 0 such that

A+(x) = I0(x
∗)\I00(x

∗)

holds for all x ∈ Bε(x
∗).

Proof. The technique of proof is taken from [14, Theorem 2.4] and included here for the
sake of clarity.

First consider an index i ∈ I0(x
∗) \ I00(x

∗). Since i ∈ I0(x
∗), Theorem 3.3 shows that

i ∈ A0(x) for all x sufficiently close to x∗. Furthermore, since i 6∈ I00(x
∗) and I00(x

∗)
may be rewritten as I00(x

∗) = {i ∈ I0(x
∗)|λ∗i = 0} in terms of the multipliers λ∗i , we have

λi(x
∗) = λ∗i > 0, whereas ρ(x∗) = 0 holds. By continuity, this implies λi(x) > ρ(x) for all

x ∈ Bε1(x
∗) for a suitable constant ε1 > 0, so that i ∈ A+(x).

To prove the converse inclusion, suppose that i ∈ I00(x
∗). Then λi(x

∗) = λ∗i = 0.
Moreover, since the multiplier function is continuously differentiable and, therefore, locally
Lipschitz continuous around x∗, there is a constant c > 0 such that

λi(x) ≤ |λi(x)− λi(x
∗)| ≤ ‖λ(x)− λ(x∗)‖ ≤ c‖x− x∗‖ ≤ ρ(x)

for all x sufficiently close to x∗. Hence we have i 6∈ A+(x) for all these x. Hence A+(x) ⊆
I0(x

∗) \ I00(x
∗) for all x ∈ Bε2(x

∗) and a suitable constant ε2 > 0.
Consequently, the statement holds with ε := min{ε1, ε2}. �

Using Theorems 3.3 and 3.4, it follows that

A00(x) := A0(x)\A+(x) (11)

is an exact estimation of the set of degenerate indices in the sense that an ε > 0 exists
such that

A00(x) = I00(x
∗) (12)

holds for all x ∈ Bε(x
∗), where x∗ is any isolated vector satisfying the optimality conditions

(4).
Hence we have reached our goal provided that we have an identification function ρ.

In the remaining part of this section, we therefore introduce two suitable mappings which
turn out to be identification functions under certain assumptions. The main assumption
that will be used here is the strong second order sufficiency condition which we restate in
the following definition. We note that weaker conditions are possible for the definition of
identification functions, however, the strong second order sufficiency condition will also be
used in our local convergence analysis of Section 5, so this condition is needed in any case.

9



Definition 3.5 A point x∗ ∈ B with (4) is said to satisfy the strong second order suffi-
ciency condition (SSOSC for short) if

dT∇2f(x∗)d > 0

holds for all nonzero d ∈ T (x∗) := {z ∈ Rn|zi = 0 ∀i ∈ I0(x
∗)\I00(x

∗)}.

Note that SSOSC is equivalent to saying that the submatrix ∇2f(x∗)J̄ J̄ is positive definite,
where

J := I0(x
∗) \ I00(x

∗) and J̄ := {1, . . . , n} \ J. (13)

We therefore get the following consequence from the definition of SSOSC.

Lemma 3.6 Let x∗ ∈ B be a point satisfying (4) and SSOSC. Then the vectors

ei (i ∈ J) and [∇2f(x∗)]i (i ∈ J̄)

are linearly independent, where the index sets J and J̄ are defined in (13), and ei denotes
the ith unit vector in Rn.

Proof. Consider an arbitrary linear combination∑
i∈J

αiei +
∑
i∈J̄

αi[∇2f(x∗)]i = 0. (14)

Without loss of generality, we may assume that J = {1, . . . , r} with r := |J |. Then we can
rewrite (14) as

Mα = 0 with M :=

(
Ir ∇2f(x∗)JJ̄

0 ∇2f(x∗)J̄ J̄

)
,

where α := (α1, . . . , αn)T . In view of our assumption, however, the block matrix ∇2f(x∗)J̄ J̄

is positive definite and, therefore, nonsingular. This implies that the matrix M is also non-
singular. Consequently, we obtain α = 0, thus giving the desired result. �

We now present our first identification function.

Theorem 3.7 Let x∗ ∈ B be a point satisfying (4) and SSOSC. Define

ρ1(x) :=
√
‖φ1(x)‖

with
φ1(x) := x− PB

(
x−∇f(x)

)
.

Then ρ1 is an identification function for problem (P).
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Proof. It is obvious or well-known that ρ1 satisfies the two conditions (i) and (ii) of
Definition 3.2. In order to verify requirement (iii), we note that SSOSC and [17, Proposition
6.2.4] imply that there is a constant γ > 0 such that

‖x− x∗‖ ≤ γ‖φ1(x)‖ (15)

holds for all x in a sufficiently small neighbourhood of x∗. More precisely, note that our
mapping φ1 is identical to what is called the natural residual in [17], and that SSOSC im-
plies (for box constrained optimization problems) strong regularity in the sense of Robinson
(see [28]). However, strong regularity implies semistability (see [17, p. 434]), and therefore
[17, Proposition 6.2.4] can be applied.

As a consequence of (15), we get

ρ1(x)

‖x− x∗‖
=

√
‖φ1(x)‖
‖x− x∗‖

≥
√
‖φ1(x)‖

γ‖φ1(x)‖
=

1

γ
√
‖φ1(x)‖

→ +∞

for x→ x∗, x 6= x∗. Hence ρ1 is an identification function. �

Our second identification function is given by

ρ2(x) :=
√
‖φ2(x)‖, (16)

where the components φ
(2)
i of φ2 are defined by

φ
(2)
i (x) := 2xi − li − ui − |xi − li − [∇f(x)]i|+ |xi − ui − [∇f(x)]i|, i = 1, . . . , n. (17)

It turns out, however, that ρ2 is not much different from ρ1. In fact, an elementary
calculation shows that φ2 = 2φ1. Hence we immediately obtain the following result from
Theorem 3.7.

Theorem 3.8 Let x∗ ∈ B be a point satisfying (4) and SSOSC. Let ρ2 be defined as in
(16), (17). Then ρ2 is an identification function for problem (P).

We close this section by noting that both Theorems 3.7 and 3.8 hold under weaker assump-
tions. In fact, the central result used in order to prove Theorem 3.7 was Proposition 6.2.4
from [17], and this result holds for any isolated vector x∗ satisfying (4) and a condition
called semistability in [17]. We refer the interested reader to [17] for further details on
semistability.

4 Affine-Scaling Interior-Point Newton Method

In this section, we present our affine-scaling interior-point Newton method for the solution
of the bound constrained optimization problem (P). Basically, it is a Newton-type method
applied to the reformulation (5) of the optimality conditions (4) for a suitable scaling
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matrix D(x). The condition x ∈ B is guaranteed by generating strictly feasible iterates
only. This, in turn, is done by incorporating a projection step as described, for example,
in [21], although other choices would also be possible, see, e.g., [22].

In order to state our choice of the scaling matrix, we assume that we have an identifi-
cation function ρ which allows us to define a set A00(x) via (11) which then identifies the
set of degenerate indices I00(x

∗) in a neighbourhood of a local minimum x∗ of problem (P).
Examples of suitable functions ρ having this property under the SSOSC assumption were
given in Section 3.

Now, having a suitable identification function and a corresponding set A00(x), we define
our scaling matrix by

D(x) = diag
(
d1(x), . . . , dn(x)

)
with di(x) :=

{
1, if i ∈ A00(x),
dMIN

i (x) if i 6∈ A00(x),
(18)

where the components dMIN
i (x) are given in (8). Eventually, this definition differs from the

one in (8) only in the degenerate indices. Then it is easy to see that D(x) has the property
(6). Moreover, we will see below that it is locally Lipschitzian around a local minimum
x∗ of (P) under suitable assumptions. However, it does not have the natural property
from (7). On the other hand, in view of Corollary 2.5, we know that this property must
be violated in order to have a chance to get nonsingular (generalized) Jacobians in the
absense of strict complementarity.

We summarize these obervations and some related properties in the following result,
where the notion of a strongly semismooth function is used. We do not restate the definition
and the properties of (strongly) semismooth functions here, but refer the interested reader
to the papers [26, 27] and the corresponding discussion in the recent book [18] for more
details.

Lemma 4.1 Let x∗ be an isolated vector satisfying (4) and suppose that A00(x) = I00(x
∗)

holds in a neighbourhood of x∗. Then the scaling matrix D(x) defined in (18) is locally
Lipschitz continuous and strongly semismooth in a neighbourhood of x∗.

Proof. Note that D(x) is locally Lipschitz and strongly semismooth if and only if each
component function di(x) is locally Lipschitz and strongly semismooth. Therefore, the
local Lipschitz property follows simply from the fact that the set A00(x) does not change
locally. Similarly, this also implies the strong semismoothness of each di(x) since the min-
and max-functions and the composition of strongly semismooth functions are known to be
strongly semismooth, see [19]. �

We note that the scaling matrix D(x) is not necessarily Lipschitz continuous if we are
far away from a local minimum x∗ of (P). In fact, in this case the function might even
become discontinuous. However, since we are only interested in the local analysis, Lemma
4.1 states a desirable property of our scaling matrix D(x) around a local minimum x∗ of
(P). In general, this property holds neither for the Coleman-Li scaling DCL(x) nor for the
Heinkenschloss et al. matrix DHUU(x).

12



Having defined our scaling matrix D(x), we now want to apply a Newton-type method
to the corresponding function G(x) = D(x)∇f(x). The problem is that this mapping is
not differentiable everywhere. As a suitable replacement of the Jacobian, we take

M(x) := D(x)∇2f(x) + S(x) (19)

where S(x) := diag
(
s1(x), . . . , sn(x)

)
is a diagonal matrix with si(x) ≈ d′i(x)[∇f(x)]i

(d′i(x) being the partial derivative of the mapping di with respect to the component xi)
being given by

si(x) :=

{
0, if i ∈ A00(x),
δi[∇f(x)]i for an arbitrary δi ∈ ∂di(x), if i 6∈ A00(x).

(20)

Note that the entry si(x) of the matrix S(x) corresponds to the exact derivative of the
mapping di(x)[∇f(x)]i at a continuously differentiable point. In general, we have the
following simple but important result.

Theorem 4.2 Let x∗ be an isolated vector satisfying (4) and suppose that A00(x) = I00(x
∗)

holds in a neighbourhood of x∗. Then the function G(x) := D(x)∇f(x) with D(x) being
defined by (18) is strongly semismooth in a neighbourhood of x∗. Moreover, every element
M(x) ∈ ∂BG(x) has a representation of the form (19) with S(x) being the matrix from
(20).

Proof. Since the product of two strongly semismooth functions in again strongly semi-
smooth, the first statement follows from Lemma 4.1 together with our general smoothness
assumption on the mapping f . The remaining statements follow directly from the defi-
nition of the B-subdifferential, see Definition 2.3 (note, however, that, usually, (19), (20)
contain more elements than those belonging to ∂BG(x)). �

We are now in the position to state our Newton-type method for the solution of the bound
constrained optimization problem (P).

Algorithm 4.3 (Projected Affine-Scaling Interior-Point Newton Method)

(S.0) Choose x0 ∈ int(B), σ ∈ (0, 1), and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Compute M(xk) := D(xk)∇2f(xk) + S(xk) with D(xk) and S(xk) being given by
(18) and (20), respectively.

(S.3) Let dk ∈ Rn be a solution of the linear system M(xk)d = −G(xk).

(S.4) Compute σk := max
{
σ, 1− ‖PB(xk + dk)− xk‖

}
.

(S.5) Set xk+1 := xk + σk

(
PB(x

k + dk)− xk
)
.
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(S.6) Set k ← k + 1, and go to (S.1).

Note that steps (S.4) and (S.5) obviously guarantee the strict feasibility of all iterates xk.
There are two differences between Algorithm 4.3 and the corresponding method from

Heinkenschloss et al. [21]: First, we use a different way to compute the entries di(x) and
si(x) by using the identification results from Section 3. Second, we do not use a further
scaling of the matrices M(x) as done in [21]. This further scaling was important in [21] in
order to carry out a local convergence analysis.

In particular, the exact identification result incorporated in our method turns out to
be quite helpful also in order to simplify the local convergence analysis. This will be done
in the following section.

5 Local Convergence Analysis

The aim of this section is to show that Algorithm 4.3 is locally quadratically convergent
under the SSOSC assumption; in particular, we do not need the strict complementarity
condition. Hence the local convergence result is identical to the one shown in Heinken-
schloss et al. [21] for their algorithm. However, our method of proof is completely different.
Rather than using relatively lengthy and technical calculations, we heavily apply standard
results from nonsmooth analysis and, in this way, obtain a relatively simple proof for local
quadratic convergence.

Throughout this section, we assume implicitly that we have chosen an identification
function such that the corresponding index set A00(x) has the exact identification property
(12) under the SSOSC assumption. Suitable candidates for such an identification function
were given in Section 3.

We begin with the following result.

Theorem 5.1 Let x∗ ∈ B be a vector satisfying (4) and SSOSC. Then the mapping G is
differentiable at x∗ with G′(x∗) = M(x∗) being nonsingular. Moreover, there is a neigh-
bourhood of x∗ and a constant c > 0 such that M(x) is nonsingular with

‖M(x)−1‖ ≤ c

for all x in this neighbourhood.

Proof. Taking into account the definition of M(x∗) in (19), (20), it follows after some
elementary calculations that the ith column vector Ai of A := M(x∗)T is given by

Ai =


[∇f(x∗)]iei, if x∗i = li and [∇f(x∗)]i > 0,
−[∇f(x∗)]iei, if x∗i = ui and [∇f(x∗)]i < 0,
[∇2f(x∗)]i, if i ∈ I00(x

∗),
di(x

∗)[∇2f(x∗)]i, if i 6∈ I0(x
∗).
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In particular, each column Ai is single-valued. Consequently, G is differentiable in x∗ with
∂BG(x∗) = {M(x∗)}, cf. [6, Proposition 2.2.4].

Now consider the equation Aα = 0 for some α ∈ Rn. In view of the above representation
of the columns of A, this may be rewritten as

0 =
∑

i:x∗i =li,[∇f(x∗)]i>0

αi[∇f(x∗)]iei −
∑

i:x∗i =ui,[∇f(x∗)]i<0

αi[∇f(x∗)]iei + . . .

. . .
∑

i∈I00(x∗)

αi[∇2f(x∗)]i +
∑

i6∈I0(x∗)

αidi(x
∗)[∇2f(x∗)]i.

Furthermore, using SSOSC and Lemma 3.6, we obtain

αi[∇f(x∗)]i = 0 ∀i : x∗i = li, [∇f(x∗)]i > 0,

−αi[∇f(x∗)]i = 0 ∀i : x∗i = ui, [∇f(x∗)]i < 0,

αi = 0 ∀i ∈ I00(x
∗),

αidi(x
∗) = 0 ∀i 6∈ I0(x

∗).

Since di(x
∗) > 0 for all i 6∈ I0(x

∗), we get α = 0. Consequently, the matrix A and, therefore,
M(x∗) itself is nonsingular.

Using this nonsingularity as well as ∂BG(x∗) = {M(x∗)} and Theorem 4.2, it follows
from [26, Lemma 2.6] that there is a constant c > 0 and a neighbourhood of x∗ such that
M(x) is nonsingular with ‖M(x)−1‖ ≤ c for all x in this neighbourhood. �

We are now in the position to prove our main local convergence result.

Theorem 5.2 Let x∗ ∈ B be a vector satisfying (4) and SSOSC. Then there is a neighbour-
hood of x∗ such that, for any starting point x0 ∈ int(B) from this neighbourhood, Algorithm
4.3 is well-defined and generates a sequence {xk} which converges to x∗ with a quadratic
rate of convergence.

Proof. The proof is more or less standard, and we state it here only for the sake of
completeness.

In view of Theorem 5.1, there are constants ε1 > 0 and c > 0 such that

‖M(x)−1‖ ≤ c ∀x ∈ Bε1(x
∗). (21)

Furthermore, Theorem 4.2 and standard properties of (strongly) semismooth functions
(see, for example, [18, Theorem 7.4.3]) imply that there is a constant ε2 > 0 such that

‖G(x)−G(x∗)−M(x)(x− x∗)‖ ≤ 1

4c
‖x− x∗‖ ∀x ∈ Bε2(x

∗). (22)

Using the definition of σk in (S.4) of Algorithm 4.3, we also see that there is an ε3 > 0
such that

σk ≥
3

4
∀xk ∈ Bε3(x

∗) (23)
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(to this end, note that ‖PB(xk + dk)− xk‖ = ‖PB(xk + dk)− PB(x
k)‖ ≤ ‖dk‖ is very small

in a neighbourhood of the solution x∗ since then G(xk) is small and, therefore, the same
holds for dk in view of the nonsingularity of M(xk)). Now choose x0 ∈ int(B)∩Bε(x

∗) with
ε := min{ε1, ε2, ε3}. Then M(x0) is nonsingular, d0 from (S.3) of Algorithm 4.3 exists, and
we obtain

‖x0 + d0 − x∗‖ ≤ ‖x0 − x∗ −M(x0)−1G(x0)‖
≤ ‖M(x0)−1‖ ‖G(x0)−G(x∗)−M(x0)(x0 − x∗)‖

≤ 1

4
‖x0 − x∗‖

from (21) and (22). The definition of x1 in Algorithm 4.3 together with (23) and the
nonexpansiveness of the projection operator then implies

‖x1 − x∗‖ =
∥∥x0 + σ0

(
PB(x

0 + d0)− x0
)
− x∗

∥∥
=

∥∥σ0

(
PB(x

0 + d0)− x∗
)

+ (1− σ0)(x
0 − x∗)

∥∥
≤ σ0

∥∥PB(x
0 + d0)− PB(x

∗)
∥∥ + (1− σ0)‖x0 − x∗‖

≤ ‖x0 + d0 − x∗‖+
1

4
‖x0 − x∗‖

≤ 1

2
‖x0 − x∗‖.

(24)

In particular, x1 is also in the ball with radius ε around x∗. By induction, it follows that
{xk} ⊆ int(B) is well-defined and satisfies

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ ∀k ∈ N.

Hence the sequence {xk} converges (at least linearly) to x∗.
In order to verify the local quadratic rate of convergence, we recall that the strong

semismoothness of G (see Theorem 4.2) implies that

‖G(xk)−G(x∗)−M(xk)(xk − x∗)‖ = O(‖xk − x∗‖2),

see [18, Theorem 7.4.3]. Using (21), we therefore get

‖xk + dk − x∗‖ = ‖xk − x∗ −M(xk)−1G(xk)‖
≤ ‖M(xk)−1‖ ‖G(xk)−G(x∗)−M(xk)(xk − x∗)‖
= O(‖xk − x∗‖2).

Following (24), this implies

‖xk+1 − x∗‖ ≤ σk‖PB(xk + dk)− PB(x
∗)‖+ (1− σk)‖xk − x∗‖

≤ ‖xk + dk − x∗‖+ (1− σk)‖xk − x∗‖
= O(‖xk − x∗‖2) + (1− σk)‖xk − x∗‖.
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Exploiting once again the local Lipschitz continuity of the mapping G around x∗ (see
Theorem 4.2), we get from (S.3) of Algorithm 4.3 together with (21)

1− σk = ‖PB(xk + dk)− xk‖
≤ ‖dk‖
= O(‖G(xk)‖)
= O(‖G(xk)−G(x∗)‖)
= O(‖xk − x∗‖).

Altogether, we therefore have ‖xk+1 − x∗‖ = O(‖xk − x∗‖2). �

6 Numerical Examples

In this section, we want to illustrate the local behaviour of the different scaling strategies
using two standard test problems. To this end, we implemented Algorithm 4.3 in MATLAB
using σ = 0.9995 and the termination criterion ‖G(x)‖ ≤ 10−25. This is a relatively small
tolerance, however, since we compare the pure local behaviour of some methods only, we
prefer to have a small tolerance in order to see some interesting effects.

We then consider the following three methods which differ in the choice of the matrix
M(x) = D(x)∇2f(x) + S(x) from (19):

• Coleman-Li [7, 8]: Here di(x) = dCL
i (x) is defined by (2) and si(x) := sCL

i (x) :=
|[∇f(x)]i| for all i = 1, . . . , n;

• Heinkenschloss et al. [21]: Here we take di(x) = dHUU
i (x) from (3) and

si(x) := sHUU
i (x) :=


|[∇f(x)]i| if |[∇f(x)]i| < min{xi − li, ui − xi}p or

min{xi − li, ui − xi} < |[∇f(x)]i|p
0 else

with p = 2;

• new method: Here di(x) and si(x) are defined by (18) (using γ = 10−3) and (20),
respectively. In order to define the index set A00(x) for these choices of di(x) and
si(x), we use the identification function ρ2 from (16), (17) and take a suitable multi-
plier function λ(x) from [12, Proposition 5] (using the parameters γ1 = γ2 := 0.1 in
that reference).

Note that Heinkenschloss et al. [21] use a further scaling of the matrix M(x) in order to
verify theoretically the uniform nonsingularity of certain Jacobian-type matrices, but that
this additional scaling is not necessary for the algorithm since it can be cancelled on both
sides of the corresponding linear systems to be solved in their method, see [21, Algorithm
1]. Hence our implementation is equivalent to their method.

17



Our first test example is the famous Rosenbrock-function

f(x) = 100(x2 − x2
1)

2 + (1− x1)
2.

This function has a unique global minimum at x∗ := (1, 1)T . Therefore we use l := (0, 0)T

and u := (1, 1)T to obtain the degenerate set I00(x
∗) = {1, 2}. Since we are inter-

ested in the local convergence properties, we change the standard starting point to x0 :=
(0.999, 0.999)T . Table 1 contains the corresponding numerical results for the Coleman-Li
scaling. For each iteration k, we report the size of the stopping criterion ‖G(xk)‖ as well
as the distance of the current iterate (and its components) to the known solution.

k ‖G(xk)‖ |xk
1 − x∗1| |xk

2 − x∗2| ‖xk − x∗‖
0 3.994004e-01 1.000000e-03 1.000000e-03 1.414214e-03
1 3.967247e-04 9.945479e-04 1.987114e-03 2.222104e-03
2 5.463162e-07 5.425928e-04 1.085095e-03 1.213194e-03
3 1.296976e-07 2.714348e-04 5.429716e-04 6.070379e-04
4 3.162359e-08 1.357598e-04 2.716074e-04 3.036467e-04
5 7.809617e-09 6.789056e-05 1.358342e-04 1.518554e-04
6 1.940620e-09 3.394796e-05 6.792478e-05 7.593576e-05
7 4.836979e-10 1.697465e-05 3.396431e-05 3.796989e-05
8 1.207434e-10 8.487491e-06 1.698263e-05 1.898545e-05
9 3.016327e-11 4.243788e-06 8.491436e-06 9.492851e-06
...

...
...

...
...

31 1.659987e-24 1.011746e-12 2.024603e-12 2.263326e-12
32 4.003273e-25 5.058176e-13 1.012301e-12 1.131638e-12
33 1.000818e-25 2.529088e-13 5.061507e-13 5.658192e-13
34 2.359936e-26 1.264544e-13 2.531308e-13 2.829593e-13

Table 1: Numerical results for the Rosenbrock function
using the Coleman-Li scaling

The results in Table 1 indicate a relatively slow (linear) rate of convergence. The
situation is significantly better for the Heinkenschloss et al. method, and the corresponding
results are given in Table 2, where we include one further column which gives the index
set

Ã00(x) :=
{
i
∣∣ |[∇f(x)]i| < min{xi − li, ui − xi}p or min{xi − li, ui − xi} < |[∇f(x)]i|p

}
which, in view of the definition of their scaling matrices in (3), may be viewed as the
counterpart of our index set A00(x).

k ‖G(xk)‖ |(xk)1 − x∗1| |(xk)2 − x∗2| ‖xk − x∗‖ Ã00(x
k)

0 3.994004e-01 1.000000e-03 1.000000e-03 1.414214e-03 ∅
1 2.394061e-03 9.945479e-04 1.987114e-03 2.222104e-03 {1, 2}
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2 2.644000e-04 4.972739e-07 1.587753e-06 1.663803e-06 {1, 2}
3 4.481673e-10 5.981726e-11 1.208688e-10 1.348605e-10 {1, 2}
4 0 0 0 0 {1, 2}

Table 2: Numerical results for the Rosenbrock function
using the Heinkenschloss et al. scaling

Table 2 clearly shows the local quadratic convergence of the Heinkenschloss et al.
method. The same is true for our scaling technique, and the corresponding numerical
results are given in Table 3. In fact, we need one iteration less than the Heinkenschloss et
al. method. According to our experience, this is mainly due to the fact that our identifica-
tion technique for the degenerate indices I00(x

∗) is more effective. In fact, comparing the
results in Tables 2 and 3, we see that we are able to identify the correct set from the very
beginning, whereas this is not true for the Heinkenschloss et al. scaling.

k ‖G(xk)‖ |(xk)1 − x∗1| |(xk)2 − x∗2| ‖xk − x∗‖ A00(x
k)

0 4.481984e-01 1.000000e-03 1.000000e-03 1.414214e-03 {1, 2}
1 2.245015e-04 5.000000e-07 5.000000e-07 7.071068e-07 {1, 2}
2 1.587703e-10 3.536060e-13 3.536060e-13 5.000744e-13 {1, 2}
3 0 0 0 0 {1, 2}

Table 3: Numerical results for the Rosenbrock function
using the new scaling

To illustrate this point further, we take the Wood-function

f(x) := 100(x2 − x2
1) + (1− x1)

2 + 90(x4 − x3)
2 + (1− x3)

2 + 10(x2 + x4 − 2)2

+ 0.1(x2 − x4)
2

as our second test problem. It has an unconstrained minimum in x∗ := (1, 1, 1, 1)T , and
we use the bounds l := (1, 1, 1, 0.99)T and u := (3, 3, 3, 3)T . Hence I00(x

∗) = {1, 2, 3} is
the degenerate set. Note, however, that also the fourth component is almost degenerate.
As a very good local starting point, we take x0 := 1.001 · (1, 1, 1, 1)T . The corresponding
numerical results using the Coleman-Li scaling are given in Table 4.

k ‖G(xk)‖ ‖xk − x∗‖
0 4.255314e-01 2.000000e-03
1 3.088548e-04 2.021504e-03
2 7.816318e-05 1.012668e-03
3 1.964852e-05 5.069441e-04
4 4.925803e-06 2.536260e-04
5 1.233169e-06 1.268516e-04
6 3.085074e-07 6.343543e-05
7 7.715390e-08 3.172013e-05
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8 1.929178e-08 1.586067e-05
9 4.823369e-09 7.930485e-06
...

...
...

34 5.684342e-14 2.366777e-13
35 5.684342e-14 1.182266e-13
36 5.684342e-14 5.933163e-14
37 2.327831e-26 2.994722e-14

Table 4: Numerical results for the Wood function using
the Coleman-Li scaling

Again, we see that the convergence of the Coleman-Li method is rather slow. On
the other hand, we get much faster convergence for the Heinkenschloss et al. scaling, as
documented in Table 5. However, we also see that the estimation Ã00(x

k) of the degenerate
index set I00(x

∗) is sometimes incorrect even very close to the solution.

k ‖G(xk)‖ ‖xk − x∗‖ Ã00(x
k)

0 4.255314e-01 2.000000e-03 {}
1 2.428585e-04 2.021504e-03 {2}
2 6.143252e-05 1.012668e-03 {2}
3 1.543420e-05 5.069441e-04 {2}
4 3.868204e-06 2.536260e-04 {1, 2, 3}
5 8.814318e-03 1.268516e-04 {1, 2, 3}
6 2.824142e-06 2.268045e-08 {1, 2, 3}
7 3.067384e-13 5.874748e-16 {1, 2, 3}
8 5.684342e-14 1.110223e-16 {1, 2}
9 0 0 {1, 2, 3}

Table 5: Numerical results for the Wood function using
the Heinkenschloss et al. scaling

The situation is significantly better when using our new scaling technique. Table 6
gives the results obtained with our method. Although the fourth index is initially viewed
as being degenerate (as is to be expected), our technique eventually finds the correct index
set and converges much faster than the Heinkenschloss et al. method.

k ‖G(xk)‖ ‖xk − x∗‖ A00(x
k)

0 5.823476e-01 2.000000e-03 {1, 2, 3, 4}
1 1.391926e-03 9.067386e-06 {1, 2, 3, 4}
2 2.574718e-08 1.609195e-10 {1, 2, 3}
3 0 0 {1, 2, 3}

Table 6: Numerical results for the Wood function using
the new scaling
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7 Final Remarks

We have introduced a new scaling technique for the solution of bound constrained opti-
mization problems by affine-scaling interior-point Newton methods. Using this scaling tech-
nique, the strict complementarity condition is not needed in order to prove local quadratic
convergence. Moreover, this new scaling allows a much simpler local convergence proof by
using standard results from nonsmooth analysis.

The analysis carried out in this paper is completely local. We believe, however, that
a globalization using either line search or trust-region techniques are possible, but leave
this topic as part of our future research since the globalization was not the main intention
of this work. It should be noted, however, that a standard globalization technique may
not work in our framework since our scaling matrix fails to have some properties that are
commonly used in, say, trust-region globalizations like in [7, 8].

Acknowledgement. The authors would like to thank one of the referees for some very
detailed comments on a previous version of this paper.
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S. Schäffler (eds.): Applied Mathematics and Parallel Computing. Festschrift for
Klaus Ritter. Physica, Heidelberg, 1996, pp. 97–107.

[12] G. Di Pillo: Exact penalty methods. In: E. Spedicato (ed.): Algorithms for Con-
tinuous Optimization, The State of the Art. Kluwer, 1994, pp. 209–254.

[13] G. Di Pillo and L. Grippo: A continuously differentiable exact penalty function for
nonlinear programming problems with inequality constraints. SIAM Journal on Control
and Optimization 23, 1985, pp. 72–84.

[14] F. Facchinei, A. Fischer, and C. Kanzow: On the accurate identification of
active constraints. SIAM Journal on Optimization 9, 1999, pp. 14–32.
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