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Abstract. We consider the application of the globalized semismooth New-
ton method to the solution of (the KKT conditions of) quasi variational
inequalities. We show that the method is globally and locally superlinearly
convergent for some important classes of quasi variational inequality prob-
lems. We report numerical results to illustrate the practical behavior of the
method.
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1 Introduction

We consider the following quasi-variational inequality QVI(K,F ): Find a
vector x∗ ∈ K(x∗) such that

F (x∗)T (y − x∗) ≥ 0 ∀y ∈ K(x∗), (1)

where F : Rn → Rn is a (point-to-point) mapping and K : Rn ⇒ Rn is a
point-to-set mapping with closed and convex images. We will always assume
that F is C1 and that the feasible set mapping K is given by a parametric
set of inequality constraints:

K(x) , {y ∈ Rn | g(y, x) ≤ 0}, (2)

where g : Rn × Rn → Rm is twice continuously differentiable and, for each
i = 1, . . . ,m, gi(·, x) is convex on Rn, for each x ∈ Rn. We could easily
consider also linear equality constraints, but for simplicity of notation we
drop them from our subsequent analysis.

QVIs were introduced by Bensoussan and Lions [5, 6, 7] and they are a
powerful tool that can be used to model complex equilibrium situations that
appear in many different fields such as generalized Nash games, mechanics,
physics, economics, statistics, transportation, and biology, see e.g. [3, 4, 8,
9, 14, 26, 27, 30, 31, 33, 34, 36, 41, 42, 46, 49, 51, 54] and references therein.
The interested reader can consult the Mosco [37] and Baiocchi and Capelo [2]
monographs for a more comprehensive description of the properties of QVIs
and their applicability.

Due to the difficulty of the topic, developments of algorithms for the
solution of QVIs are still scarce and lag far behind those of methods for
Variational Inequalities (VIs). Motivated by earlier research on the implicit
complementarity problem [37, 44, 45], Chan and Pang proposed in [10] what
is probably the first globally convergent algorithm for a QVI. In this semi-
nal paper the authors use a fixed point argument to show convergence of a
projection-type algorithm in the case in which K(x) = c(x) + Q, where Q
is a closed convex set and c : Rn → Rn a mapping satisfying certain condi-
tions. Most of the subsequent papers, where globally convergent algorithms
are analyzed, consider variants or extensions of the basic setting proposed in
[10] and also follow a fixed point approach, see e.g. [38, 40, 39, 50, 52] and
references therein.

In a departure from this setting, Pang and Fukushima [46] introduced a
sequential penalty approach to the solution of general QVIs. The method
in [46] reduces the solution of a QVI to the solution of a sequence of VIs;
however, in spite of its many merits, the global convergence properties of
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this method are in jeopardy since they ultimately hinge of the capability of
solving a sequence of possibly very challenging VIs.

Another approach for the solution of QVIs is based on a reformulation as
a constrained or unconstrained global optimization problem with the help of
so-called gap functions, see [1, 15, 25, 28, 29, 35, 53] for some contributions
in this direction. In general, these gap functions are nonsmooth which makes
it difficult to solve the corresponding optimization problem. In some cases,
the gap function is smooth, cf. [15, 28, 29], but this is true only for certain
classes of QVIs, and global convergence is still difficult to guarantee.

More recently an interior point approach in [20] was shown to enjoy very
favorable global convergence properties, in that convergence can be estab-
lished not only for the case K(x) = c(x) + Q, but, for the first time, for
several other classes of interesting QVIs.

If we turn our attention to local (Newton-type) methods, the pioneer-
ing work was done by Outrata and co-workers who studied some fast local
methods using the semismooth method or other nonsmooth algorithms to
the solution of suitable reformulations of a QVI [41, 42, 43]. While local fast
convergence can be established under suitable assumptions, the globalization
of these semismooth Newton methods is difficult and not discussed in these
papers.

Very recently a so called LP-Newton method has been developed which
can successfully be applied to nonsmooth systems of equations with non-
isolated solutions [17, 18]. These features of the LP-Newton method seem
very well-suited to the solution of (the KKT conditions of) QVIs, where
nonisolatedness and nonsmoothness arise naturally. Indeed, the application
of the LP-Newton method to some particular QVIs arising from generalized
Nash equilibrium problems has been described in [16]. Although the LP-
Newton method leads to fast local methods in this case, it seems that it
is suitable only for problems which are not too large, since otherwise the
computational cost of each iteration can become excessive.

The aim of this paper is to investigate the global and local convergence
behavior of a semismooth Newton method for the solution of the the KKT
system of a QVI. Although the fast local convergence rate of the semismooth
Newton methods hinges on assumptions that are stronger than those required
by the LP-Newton method, it essentially calls for the (possibily inexact) so-
lution of a linear system at each iteration, thus making it a practically attrac-
tive alternative to the computationally more intensive LP-Newton method.
Furthermore, its globalization is rather simple, thus overcoming open issues
related to the approaches in [41, 42, 43]. The globalized Newton method
is a well-established technique for the solution of KKT-like systems and its
use in the solution of the KKT system arising from a QVI is rather natu-
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ral and, in principle, simple, its applicability depending in essence on the
non-singularity of certain matrices. Unfortunately, some of the results in [19]
show that in some significant cases arising from game theory, these matrices
are inherently singular, thus questioning the use of the semismooth approach
in the solution of QVIs.

The main focus of this paper is then an in-depth analysis of these non-
singularity issues. Building on the recent results in [20], we are able to show
that nonsingularity can be guaranteed under very reasonable assumptions
for important classes of QVIs, thus providing for the first time a firm theo-
retical basis to the use of semismooth methods in the solution of the KKT
conditions of QVIs. We also report numerical experiences on the same set
of test problems used in [20]. The semismooth Newton method turns out to
be less robust than the interior-point method in [20]. However, when started
from a point near a solution, convergence is very fast and a high-precision
in the computation of a solution can be achieved, a precision which is usu-
ally impossible to get with the interior-point method. Furthermore, when
global convergence occurs, the semismooth Newton method is usually much
faster than the interior-point method. This suggests that the interior-point
method of [20] and the globalized semismooth Newton method could be suit-
ably combined to obtain a robust and efficient solution method. Preliminary
numerical results in this direction are also discussed.

The paper is organized as follows. In the next section we describe the
globalized semismooth Newton method and recall its main features. Section 3
contains the main theoretical results, all related to some nonsingularity issues
key to the globalized semismooth Newton method. In Section 4 we report the
results of our numerical tests and finally, in Section 5 we draw our conclusions.

Notation: All vector and matrix norms are l2 norms. Positive definite
matrices are not necessarily symmetric. The symbol µsm(A) denotes the min-
imum eigenvalue of the symmetric part 1

2
(A + AT ) of a matrix A ∈ Rn×n.

For a continuously differentiable function F : Rn → Rm, we write JF (x) for
the Jacobian of F at a point x ∈ Rn, whereas ∇F (x) denotes the transposed
Jacobian. If F is only locally Lipschitz continuous, then ∂F (x) is the gen-
eralized Jacobian of F at x in the sense of Clarke [11]. Similarly, given a
smooth mapping g : Rn×Rn → Rm, (y, x) 7→ g(y, x), then ∇yg(y, x) denotes
the transpose of the partial Jacobian of g with respect to the y-variables. For
a vector x ∈ Rn and a subset I ⊆ {1, . . . , n}, we write xI for the subvector
consisting of the elements xi, i ∈ I. Furthermore, for a matrix A ∈ Rn×n and
two subsets I, J ⊆ {1, . . . , n}, the symbol AIJ stands for the submatrix with
entries aij for i ∈ I, j ∈ J . On the other hand, AI• contains all rows of the
matrix A that belong to the index set I, whereas A•J consists of all columns
of A corresponding to the index set J . The matrix A ∈ Rn×n is then called
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a P -matrix if det(AII) > 0 holds for all index sets I ⊆ {1, . . . , n}. Finally,
x ◦ y is the Hadamard (pointwise) product of two vectors x, y ∈ Rn, and x−1

denotes the pointwise inverse of a vector whose components are nonzero.

2 The semismooth Newton method

In this section we briefly review the globalized semismooth Newton method as
applied to the solution of the KKT system of a QVI and taking for granted fa-
miliarity with semismoothness and related issues, see [22, 47, 48]. Although,
as far as we are aware of, this specific application has never been explicitly
considered previously, the resulting method can certainly be considered stan-
dard. Consequently, all results in this section are given without proof, since
they can be derived easily from known results, see for example [12, 13, 22],
with very minor modifications.

We say that a point x ∈ Rn satisfies the KKT conditions if multipliers
λ ∈ Rm exist such that

F (x) +∇yg(x, x)λ = 0,
λi ≥ 0, gi(x, x) ≤ 0, λigi(x, x) = 0 ∀i = 1, . . . ,m.

(3)

Note that g(x, x) ≤ 0 means that x ∈ K(x) and that by ∇yg(x, x) we
indicate the partial transposed Jacobian of g(y, x) with respect to y evaluated
at y = x. These KKT conditions parallel the classical KKT conditions
for a VI, see [22], and it is quite easy to show that if a point x, together
with a suitable vector λ ∈ Rm of multipliers, satisfies the KKT system (3),
then x is a solution of the QVI (K,F ). Vice versa, if x is a solution of
the QVI (K,F ) and the constraints g(·, x) satisfy any standard constraint
qualification, then multipliers λ ∈ Rm exist such that the pair (x, λ) satisfies
the KKT conditions (3). By “any standard constraint qualification” we mean
any classical optimization constraint qualification for g(·, x) at y = x such as
the linear independence of the active constraints, the Mangasarian-Fromovitz
constraint qualification, Slater’s one and so on.

As made clear above, there is a very close relationship between a QVI
and its corresponding KKT conditions. Our aim is then to find a solution x∗

of the QVI by solving the KKT conditions (3). To this end, let ϕ : R2 → R
denote the Fischer-Burmeister function

ϕ(a, b) :=
√
a2 + b2 − a− b,

cf. [24]. Its most interesting property is the fact that its zeros can be char-
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acterized in the following way:

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

It therefore follows that (x∗, λ∗) is a KKT point of the QVI if and only if
(x∗, λ∗, w∗) with w∗ := −h(x∗) is a solution of the nonlinear (and nonsmooth)
system of equations

H(x, λ, w) = 0, with H(x, λ, w) :=

 L(x, λ)
h(x) + w
Φ(λ,w)

 , (4)

where, for simplicity of notation, we set

L(x, λ) := F (x) +∇yg(x, x)λ,

h(x) := g(x, x),

Φi(λ,w) := ϕ(λi, wi) ∀i = 1, . . . ,m;

the mapping L defined in this way is called the Lagrangian of the QVI.
Associated with the system H(x, λ, w) = 0, we consider also its natural
merit function:

Ψ(z) :=
1

2
‖H(z)‖2, (5)

where we set z := (x, λ, w).
The following proposition collects some differentiability properties that

are central to the semismooth approach.

Proposition 2.1 Let the mapping H be defined by (4). Then the following
statements hold:

(a) If F is continuously differentiable and g is twice continuously differen-
tiable, then H is semismooth and

∂H(x, λ, w) ⊆


 JxL(x, λ) ∇yg(x, x) 0

Jh(x) 0 I
0 diag(a) diag(b)

 ,

where diag(a) := diag(a1, . . . , am), diag(b) := diag(b1, . . . , bm), (ai, bi) ∈
∂ϕ(λi, wi) ∀i = 1, . . . ,m and

∂ϕ(λi, wi) =

{ ( λi
‖(λi,wi)‖ − 1, wi

‖(λi,wi)‖ − 1
)
, if (λi, wi) 6= (0, 0),

{(ξi − 1, ζi − 1) | ‖(ξi, ζi)‖ ≤ 1}, if (λi, wi) = (0, 0)

is the usual subdifferential of the convex function ϕ.

7



(b) If, in addition, JF and ∇2gi (i = 1, . . . ,m) are locally Lipschitz, then
H is strongly semismooth.

(c) Let the merit function Ψ be defined by (5). If F is continuously dif-
ferentiable and g is twice continuously differentiable, Ψ is continuously
differentiable, and its gradient is given by

∇Ψ(z) = V TH(z)

for an arbitrary element V ∈ ∂H(z).

Essentially, the semismooth Newton method is nothing else but a standard
globalization of the semismooth Newton method from [47, 48] for the system
of equations H(z) = 0, which uses Ψ as a merit function. The algorithm
below follows closely that first proposed in [12].

Algorithm 2.2 Globalized Semismooth Method (S.0): Choose z0 = (x0, λ0, w0) ∈
Rn × Rm × Rm, ρ > 0, β ∈ (0, 1), σ ∈

(
0, 1

2

)
, p > 2, ε ≥ 0, and set k := 0.

(S.1): If ‖∇Ψ(zk)‖ ≤ ε: STOP.

(S.2): Choose an arbitrary element Vk ∈ ∂H(zk), and compute dk as a
solution of the linear system of equations

Vkd = −H(zk). (6)

If either this system is not solvable or the sufficient decrease condition

∇Ψ(zk)Tdk ≤ −ρ‖dk‖p

is not satisfied, then take dk := −∇Ψ(zk).

(S.3): Compute a stepsize tk as the maximum of the numbers β`, ` =
0, 1, 2, . . ., such that the following Armijo condition holds:

Ψ(zk + tkd
k) ≤ Ψ(zk) + σtk∇Ψ(zk)Tdk.

(S.4): Set zk+1 := zk + tkd
k, k ← k + 1, and go to (S.1).

The main global convergence result for Algorithm 2.2 is stated in the follow-
ing theorem. It assumes implicitly that ε = 0 and that Algorithm 2.2 does
not terminate after finitely many iterations with an exact stationary point.
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Theorem 2.3 Every accumulation point of a sequence {zk} = {(xk, λk, wk)}
is a stationary point of the merit function Ψ. Furthermore, let z∗ = (x∗, λ∗, w∗)
be an accumulation point of {zk} such that all elements V ∈ ∂H(z∗) are non-
singular. Then the following statements hold:

(a) The entire sequence {zk} converges to z∗.

(b) The search direction dk is eventually given by the solution of the linear
system (6).

(c) The full stepsize tk = 1 is accepted for all k sufficiently large.

(d) The rate of convergence is superlinear.

(e) If, in addition, JF and ∇2gi (i = 1, . . . ,m) are locally Lipschitz, then
the rate of convergence is quadratic.

The above theorem raises two central questions: (a) when is a stationary
point of Ψ a solution of the QVI? (b) under what conditions can we guarantee
superlinear convergence of the method? It turns out that both questions
are related to the nonsingularity of certain matrices. The study of these
nonsingularity conditions turns out to be by no means trivial and is the
subject of the following section.

3 Nonsingularity Conditions

Theorem 2.3 guarantees convergence of Algorithm 2.2 to stationary points
of the merit function Ψ. As we already mentioned, the first key question we
want to investigate is when such a stationary point is a solution of the QVI.
The following result unlocks the possibility of applying in a direct and simple
way the results in [20] to this issue.

Proposition 3.1 Let z = (x, λ, w) ∈ Rn × Rm × Rm be an arbitrary point.
Then the gradient of Ψ at z can be represented as

∇Ψ(z) = Ṽ TH(z),

where Ṽ is defined by

Ṽ :=

 JxL(x, λ) ∇yg(x, x) 0
Jh(x) 0 I

0 diag(ã) diag(b̃)


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with diag(ã) := diag(ã1, . . . , ãm), diag(b̃) := diag(b̃1, . . . , b̃m) and

ãi :=

{
∂ϕ
∂a

(λi, wi) if ϕ(λi, wi) 6= 0,
−1 if ϕ(λi, wi) = 0,

b̃i :=

{
∂ϕ
∂b

(λi, wi) if ϕ(λi, wi) 6= 0,
−1 if ϕ(λi, wi) = 0.

Proof. By Proposition 2.1 (c) we already know that ∂Ψ(z) = V TΨ(z),
for any V ∈ ∂H(z). Note that the only possible difference between an el-
ement V ∈ ∂H(z) and the matrix Ṽ is in the diagaonl entries ai, bi of V
and ãi, b̃i of Ṽ , all other entries obviously coincide. However, since we have
∇Ψ(z) = V TH(z), it follows that, in this representation, the diagonal ele-
ments ai and bi of V T get post-multiplied by the component ϕ(λi, wi). Hence,
if this element is zero, we can replace the corresponding diagonal entry ai and
bi by any number (in our case, we take −1) without changing the gradient
of Ψ. 2

Suppose now that z∗ = (x∗, λ∗, w∗) is an accumulation point of a sequence
generated by Algorithm 2.2. Then Theorem 2.3 guarantees that z∗ is a
stationary point of Ψ. Taking into account Proposition 3.1, we therefore
have 0 = ∇Ψ(z∗) = Ṽ T

∗ H(z∗) for a suitable matrix Ṽ∗ as defined in that
result. Now, if this matrix Ṽ∗ is nonsingular, we would immediately obtain
that H(z∗) = 0 holds, i.e., that z∗ = (x∗, λ∗, w∗) is a KKT point and therefore
that x∗ itself is a solution of the QVI. Of course, in general, one cannot expect
the matrix Ṽ∗ to be nonsingular. However, the definition of Ṽ∗ implies that
all elements of the two diagonal matrices with entries ãi and b̃i are strictly
negative (note that a partial derivative of ϕ can be zero only if the function
value of ϕ is equal to zero). Hence Ṽ∗ has exactly the same structure as the
standard Jacobian matrices that arise within the potential-reduction interior-
point method for QVIs as discussed in the recent paper [20]. Consequently,
all the nonsingularity conditions given in [20] in that framework can now
be applied to our case in order to guarantee that a stationary point is a
solution of the underlying QVI. Proposition 3.1, together with Theorem 2.3,
therefore shows that global convergence of Algorithm 2.2 can be guaranteed
under conditions that are structurally very similar to those needed by the
interior point method in [20].

From the above there would seem to be no clear theoretical advantage to
use Algorithm 2.2 instead of the interior point method in [20]. The reason of
our interest in the semismooth method stems from the fact that, as indicated
in Theorem 2.3, this simple algorithm can achieve a superlinear, or even
quadratic, local convergence rate. Neither the interior point method in [20]
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nor any other method we are aware of has the property that it is both globally
and locally fast convergent, with the only exception of [16] where a hybrid
method for the solution of generalized Nash equilibrium problems, that can
be reformulated as QVI with a particular structure, is developed. However,
as mentioned in the introduction, the method [16] is rather complex and not
suitable for large scale problems.

We are therefore naturally led to consider the second question we asked
at the end of the previous section: under what conditions can we guarantee
the superlinear convergence of the method or, more concretely, taking into
account Theorem 2.3, under which assumptions can we guarantee that all
elements from the generalized Jacobian ∂H(z∗) are nonsingular? Answering
this question is not at all easy, and the results in the remaining part of
this section constitute the main theoretical contribution of this paper. The
leading idea is to follow the arguments given in [20], but the situation here
is different because in [20], only points z = (x, λ, w) with (λ,w) > 0 had to
be considered, whereas here we are interested in nonsingularity results at a
KKT point z = z∗ whose components λ∗ and w∗ might have zero entries.
Hence the assumptions have to be different and, furthermore, one has to
expect stronger assumptions than in [20] since, in our semismooth Newton
setting, the nonsingularity of ∂H(z∗) implies a local superlinear/quadratic
rate of convergence, whereas the corresponding nonsingularity statements in
the paper [20] only guarantee global convergence.

The first main nonsingularity result is given in the following theorem.
This theorem is still rather abstract and difficult to interpret; therefore we
will successively consider several concrete settings and show how this main
theorem can be used by exploting specific problem structures to obtain more
concrete results. These specific cases we will consider are the same ones
considered in [20] and, as it will be clear, they are of great practical interest.

Theorem 3.2 Let z∗ = (x∗, λ∗, w∗) be a KKT point and let

δ := {i | w∗i = 0} = {i | hi(x∗) = 0} = {i | gi(x∗, x∗) = 0} (7)

be the index set of active inequality constraints. Suppose that JxL(x∗, λ∗) is
nonsingular and that the submatrix M(x∗, λ∗)δδ is a P -matrix, where

M(x∗, λ∗) := Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗). (8)

Then all elements from ∂H(z∗) are nonsingular.
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Proof. Choose an arbitrary V ∈ ∂H(z∗). According to Proposition 2.1, we
have

V =

 JxL(x∗, λ∗) ∇yg(x∗, x∗) 0
Jh(x∗) 0 I

0 diag(a) diag(b)


with (ai, bi) ∈ ∂ϕ(λ∗i , w

∗
i ) for all i = 1, . . . ,m. We then define the index sets

I := {i | bi < 0} and J := {1, . . . ,m} \ I = {i | bi = 0}

(recall from Proposition 2.1 that bi ≤ 0 holds for all i = 1, . . . ,m). Moreover,
note that i 6∈ δ implies w∗i > 0, hence λ∗i = 0 in view of the KKT conditions
which, in turn, gives bi = 0, so that i 6∈ I. It therefore follows that I ⊆
δ. Furthermore, from the expression of the subdifferential for the Fischer-
Burmeister function in Proposition 2.1, we immediately obtain

bi < 0, ai ≤ 0 ∀i ∈ I, bi = 0, ai < 0 ∀i ∈ J. (9)

Now consider the homogeneous linear system V q = 0 with a suitably parti-
tioned vector q =

(
q(1), q(2), q(3)

)
; we get

JxL(x∗, λ∗)q(1) +∇yg(x∗, x∗)q(2) = 0, (10)

Jh(x∗)q(1) + q(3) = 0, (11)

diag(a)q(2) + diag(b)q(3) = 0. (12)

In view of (9), we obtain from (12) that

q
(2)
J = 0 (13)

and
q
(3)
I = −diag(bI)

−1diag(aI)q
(2)
I . (14)

Since JxL(x∗, λ∗) is nonsingular, we obtain

q(1) = −JxL(x∗, λ∗)−1∇yg(x∗, x∗)q(2) (15)

from (10). Inserting this into (11) yields

−Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)q(2) + q(3) = 0. (16)

Looking only at the components in the index set I, we obtain from (16)

0 = −
[
Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)q(2)

]
I

+ q
(3)
I

= −
[
Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)

]
II
q
(2)
I

−
[
Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)

]
IJ
q
(2)
J + q

(3)
I

= −
[
Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)

]
II
q
(2)
I + q

(3)
I ,
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where the last equality follows from (13). Together with (14), we get

0 =

([
Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗)

]
II

+ diag(bI)
−1diag(aI)

)
q
(2)
I

=
(
M(x∗, λ∗)II + diag(bI)

−1diag(aI)
)
q
(2)
I .

(17)
Since M(x∗, λ∗)δδ is a P -matrix and I ⊆ δ, it follows that M(x∗, λ∗)II is
also a P -matrix. Since diag(bI)

−1diag(aI) is a positive semidefinite diagonal
matrix, it therefore follows from a known characterization of P -matrices, see,
e.g., [32], that M(x∗, λ∗)II + diag(bI)

−1diag(aI) is nonsingular. Hence (17)

yields q
(2)
I = 0 which, together with (13), immediately gives q(1) = 0 in view

of (15). We then also have q(3) = 0 because of (11). Hence q = 0, so that V
is nonsingular. 2

Note that the matrix (or suitable submatrices of) M(x∗, λ∗) also plays a cen-
tral role in the related semismooth Newton works by Outrata and co-workers
[41, 43]. These papers use a completely different reformulation of the QVI,
and the authors therefore need some assumptions which are different from
ours, but a central condition also exploited in that paper (though written
down using a different notation) is the nonsingularity of certain submatrices
of M(x∗, λ∗).

3.1 Moving Set Case

We now consider the most popular class of QVIs, where the set K(x) is
defined by

K(x) = c(x) +Q

for some function c : Rn → Rn and a fixed set Q ⊆ Rn which we assume to
have a representation of the form

Q = {x ∈ Rn | q(x) ≤ 0}

with another mapping q : Rn → Rm such that each component function qi is
convex. Throughout this subsection, we assume that c is at least continuously
differentiable and q is at least twice continuously differentiable. It is easy to
see that we can rewrite the set K(x) as

K(x) = {y ∈ Rn | q(y − c(x)) ≤ 0}.
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Putting this into our general framework, this means that we are dealing with
QVIs whose constraints are given by the function

g(y, x) := q(y − c(x)), (18)

so that the mapping h is given by

h(x) := q(x− c(x)). (19)

We now exploit this particular structure in order to derive a nonsingularity
result in the moving set case from the general condition given in Theorem 3.2.

The proof of the subsequent result uses the fact that the inverse of a pos-
itive definite matrix is again positive definite. In principle, this statement is
well-known. However, we recall that, in our case, we do not require symme-
try when speaking of a positive definite matrix. That the above statement
also holds in the possibly nonsymmetric case can be seen as follows: Let A
be positive definite. Since dTAd = dTATd for all d ∈ Rn, this implies that
AT is also positive definite. It therefore follows from

dTA−1d = dTA−1ATA−Td = (A−Td)TAT (A−Td) > 0 ∀d 6= 0

that A−1 is indeed positive definite. This observation allows us to state the
following result.

Theorem 3.3 Consider the above setting, and let z∗ = (x∗, λ∗, w∗) be a
KKT point. Suppose that JF (x∗) is positive definite, the gradients ∇qi(x∗−
c(x∗)) (i ∈ δ) are linearly independent, with δ being the index set from (7),
and that

‖Jc(x∗)‖ < µsm(JF (x∗)−1)

‖JF (x∗)−1‖
(20)

holds. Then all elements V ∈ ∂H(z∗) are nonsingular.

Proof. First note that (20) implies that ‖Jc(x∗)‖ < 1, hence I − Jc(x∗) is
nonsingular. We claim that

(I − Jc(x∗))JF (x∗)−1 is positive definite. (21)

In fact, we have for all v ∈ Rn \ {0} that

vTJc(x∗)JF (x∗)−1v ≤ ‖Jc(x∗)‖ ‖JF (x∗)−1‖ ‖v‖2

< µsm(JF (x∗)−1)‖v‖2 from (20)

≤ vTJF (x∗)−1v,
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which immediately gives (21). Hence the corresponding inverse matrix

JF (x∗)(I − Jc(x∗))−1

is also positive definite. Since we are in a KKT point, we also have λ∗i ≥ 0,
and the convexity of qi yields the positive semidefiniteness of the Hessians
∇2qi(x

∗ − c(x∗)). We therefore obtain that the matrix

JxL(x∗, λ∗)(I − Jc(x∗))−1 = JF (x∗)(I − Jc(x∗))−1 +
m∑
i=1

λ∗i∇2qi(x
∗ − c(x∗))

is positive definite, too. In particular, this matrix is nonsingular, which in
turn implies that JxL(x∗, λ∗) is nonsingular. In view of Theorem 3.2, it there-
fore remains to show that the submatrix M(x∗, λ∗)δδ is a P -matrix, where
M(x∗, λ∗) is defined by (8) and δ denotes the index set of active inequalities
from (7).

To investigate the properties of the matrix M(x∗, λ∗), recall that we have

M(x∗, λ∗) = Jh(x∗)JxL(x∗, λ∗)−1∇yg(x∗, x∗),

with

∇yg(x∗, x∗) = ∇q(x∗ − c(x∗)) and Jh(x∗) = Jq(x∗ − c(x∗))(I − Jc(x∗))

by (18), (19). We can therefore rewrite the matrix M(x∗, λ∗) as

M(x∗, λ∗) = Jq(x∗ − c(x∗))(I − Jc(x∗))JxL(x∗, λ∗)−1∇q(x∗ − c(x∗)).

This implies

[M(x∗, λ∗)]δδ = Jq(x∗ − c(x∗))δ•(I − Jc(x∗))JxL(x∗, λ∗)−1∇q(x∗ − c(x∗))•δ.

Since (I − Jc(x∗))JxL(x∗, λ∗)−1 is the inverse of a matrix that was already
shown to be positive definite, we obtain that the submatrix M(x∗, λ∗)δδ is
positive definite, hence a P -matrix, from the assumed linear independence
constraint qualification. 2

Note that in condition (20) neither the function q nor the variables λ and w
are involved. The fact that q is not involved indicates that the nonsingularity
of ∂H is not related to the shape of the set Q, but only to the trajectory
the moving set follows. More precisely, condition (20) stipulates that the
trajectory described by c be not “too steep”, where the exact meaning of
“too steep” is given by (20).
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We also note that the other assumptions, namely the positive definiteness
of JF (x∗) and the linear independence condition, are also used in the related
framework discussed in [41, 43]. Hence, although there are no well-accepted
assumptions for QVIs that guarantee local fast convergence, simply because
there are not many methods with this property, it seems that these two
conditions are somewhat natural. In fact, both assumptions will also be
used in the subsequent results (at least implicitly), whereas the condition on
the mapping c (or g, in the general setting) and therefore on the shape of
the feasible set will be different since it depends very much on the particular
structure of the parameterized set K(x).

3.2 Constraints with Variable Right-hand Side

Here we consider the case where the set K(x) is defined by

K(x) := {y ∈ Rn | g(y, x) := q(y)− c(x) ≤ 0}

for some twice continuously differentiable mappings c, q : Rn → Rm such that
each component qi is convex. Hence the set K(x) is described by the system
of inequalities q with a variable right-hand-side c(x) depending on x.

For constraints given in this form, we have the following nonsingularity
result.

Theorem 3.4 Consider the above setting, and let z∗ = (x∗, λ∗, w∗) be a
KKT point. Suppose that JF (x∗) is positive definite, and that

‖Jc(x∗)δ•‖ <
µsm([Jq(x∗)JxL(x∗, λ∗)−1∇q(x∗)]δδ)
‖JxL(x∗, λ∗)−1‖ ‖Jq(x∗)δ•‖

(22)

holds, where δ denotes the index set from (7). Then all elements V ∈ ∂H(z∗)
are nonsingular.

Proof. We have

∇yg(x∗, x∗) = ∇q(x∗), Jh(x∗) = Jq(x∗)− Jc(x∗),
JxL(x∗, λ∗) = JF (x∗) +

∑m
i=1 λ

∗
i∇2qi(x

∗).

Since all Hessian matrices ∇2qi(x
∗) are positive semidefinite due to the as-

sumed convexity of each qi, and since λ∗i ≥ 0 for all i = 1, . . . ,m since we
are in a KKT point, it follows immediately from the positive definiteness of
JF (x∗) that the Jacobian JxL(x∗, λ∗) is also positive definite, hence nonsin-
gular. In view of Theorem 3.2, it therefore suffices to show that the submatrix
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[M(x∗, λ∗)]δδ is a P -matrix, where M(x∗, λ∗) denotes the matrix defined in
(8) which, in our current setting, is given by

M(x∗, λ∗) =
(
Jq(x∗)− Jc(x∗)

)
JxL(x∗, λ∗)−1∇q(x∗),

hence we have

M(x∗, λ∗)δδ =
(
Jq(x∗)δ• − Jc(x∗)δ•

)
JxL(x∗, λ∗)−1Jq(x∗)Tδ•.

For an arbitrary nonzero vector v ∈ R|δ|, we obtain from (22)

vTJc(x∗)δ•JxL(x∗, λ∗)−1Jq(x∗)Tδ•v

≤ ‖Jc(x∗)δ•‖ · ‖JxL(x∗, λ∗)−1‖ • ‖Jq(x∗)δ•‖ · ‖v‖2

< µsm
(
Jq(x∗)δ•JxL(x∗, λ∗)−1Jq(x∗)Tδ•

)
· ‖v‖2

≤ vTJq(x∗)δ•JxL(x∗, λ∗)−1Jq(x∗)Tδ•v.

This implies vT [M(x∗, λ∗)]δδv > 0 for all nonzero v, so that, in particular,
[M(x∗, λ∗)]δδ is a P -matrix. 2

In the linear case where q(y) = Ey − b for some matrix E ∈ Rm×n and a
fixed vector b ∈ Rm, we have JxL(x, λ) = JF (x) and Jq(y) = E. Hence we
obtain the following special case as an immediate corollary of Theorem 3.4.

Corollary 3.5 Consider the linear case with q(y) = Ey − b, and let z∗ =
(x∗, λ∗, w∗) be a KKT point. Suppose that JF (x∗) is positive definite, and
that

‖Jc(x∗)δ•‖ <
µsm([EJF (x∗)−1ET ]δδ)

‖JF (x∗)−1‖ ‖Eδ•‖
(23)

holds, where δ denotes the index set from (7). Then all elements V ∈ ∂H(z∗)
are nonsingular.

The meaning of the conditions (22) and (23) is that the right-hand-side c(x)
should not vary “too quickly”. In contrast to the moving set case, considered
in the previous subsection though, this does not necessarily imply that K(x)
changes “slowly” with x, since a polyhedron, for example, can have abrupt
changes when the right-hand side changes even slightly.

Let us close this section with a few of comments on the condition (23)
(similar comments hold for the nonlinear case (22)).

Given a matrix A ∈ Rn×n and arbitrary index sets I, J ⊆ {1, . . . , n}, it
is easy to see that ‖AIJ‖ ≤ ‖A‖ and µsm(AII) ≥ µsm(A). Consequently, the
condition

‖Jc(x∗)‖ < µsm(EJF (x∗)−1ET )

‖JF (x∗)−1‖ · ‖E‖
(24)

17



implies that the central assumption (23) from the previous result holds. Note,
however, that the condition from (24) is typically much stronger than the
requirement from (23). We further note that assumption (23) can hold only
if the matrix Eδ• has full rank.

3.3 Bilinear Constraints

In this subsection, we consider the case where the feasible set K(x) is defined
by the mapping

g(y, x) :=



q1(y)
...

qp(y)
xTQ1y − c1

...
xTQby − cb


,

where each mapping qi : Rn → R is twice continuously differentiable and
convex, Qi ∈ Rn×n are symmetric positive semidefinite matrices for all i =
1, . . . , b, and c = (c1, . . . , cb)

T ∈ Rb denotes a fixed vector. This structure of
the feasible set mapping can be considered as a natural variant of the case
of (linear) constraints with variable right-hand side in which the right-hand
sides are fixed, but the coefficients of the linear part vary.

For this class of QVIs, we have the following central nonsingularity result.

Theorem 3.6 Consider the above setting, and let z∗ = (x∗, λ∗, w∗) be a KKT
point. Suppose that JF (x∗) is positive definite, and let the active gradients
∇ygi(x

∗, x∗) (i ∈ δ) be linearly independent, where δ denotes the index set
from (7). Then all elements V ∈ ∂H(z∗) are nonsingular.

Proof. Note that, in the current setting, it follows that

∇h(x) = ∇yg(x, x)D (25)

with the diagonal matrix

D := diag
(

1, . . . , 1︸ ︷︷ ︸
p−times

, 2, . . . , 2︸ ︷︷ ︸
b−times

)
. (26)

This observation will be crucial within our proof.
We further note that, in the bilinear case, we have

JxL(x∗, λ∗) = JF (x∗) +

p∑
i=1

λ∗i∇2qi(x
∗) +

b∑
i=1

λ∗p+iQi.
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Since JF (x∗) is positive definite by assumption, λ∗i ≥ 0 because z∗ =
(x∗, λ∗, w∗) is a KKT point, Qi is positive semidefinite, and since each∇2qi(x

∗)
is also positive semidefinite due to the convexity of qi, it follows that JxL(x∗, λ∗)
is positive definite and, therefore, also nonsingular.

In order to apply once again Theorem 3.2, it remains to show that the
submatrix [M(x∗, λ∗)]δδ is a P -matrix, where M(x∗, λ∗) is defined in (8). In
our particular setting, exploiting (25), we have

M(x∗, λ∗) = D∇yg(x∗, x∗)TJxL(x∗, λ∗)−1∇yg(x∗, x∗),

hence

[M(x∗, λ∗)]δδ = Dδδ∇yg(x∗, x∗)T•δJxL(x∗, λ∗)−1∇yg(x∗, x∗)•δ.

Since JxL(x∗, λ∗) was already shown to be positive definite, also the inverse
JxL(x∗, λ∗)−1 is positive definite. The linear independence assumption im-
plies that ∇yg(x∗, x∗)•δ has full column rank. Hence

∇yg(x∗, x∗)T•δJxL(x∗, λ∗)−1∇yg(x∗, x∗)•δ

is positive definite, too. In particular, it is a P -matrix. But then it follows
immediately from the positive definiteness of the diagonal matrix D that
[M(x∗, λ∗)]δδ is also a P -matrix, and this completes the proof. 2

We stress that, in the previous proof, it is quite important that the submatrix
[M(x∗, λ∗)]δδ has to be a P -matrix only and not positive definite (which would
have been sufficient for the other proofs). This has to do with the fact that,
for a nonsymmetric matrix A, the positive definiteness of A does, in general,
not imply that DA is also positive definite for a positive diagonal matrix D.
To see this, consider the matrices

A :=

(
2 0
−2 1

)
and D :=

(
1 0
0 2

)
(note that D has precisely the structure of the diagonal matrix from (26)).
Then it is easy to see that A is indeed positive definite, whereas DA is
obviously a P -matrix, but not positive definite since, e.g., we have xTDAx =
0 for the nonzero vector x := (1, 1)T .

4 Numerical Results

In this section we report the results obtained by a Matlab implementation
of the semismooth Newton method on QVILIB, a varied set of QVI test
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problems [21]. In order to show the practical behavior of the semismooth
Newton method on QVI problems and to compare it with the state-of-the-art
interior-point method in [20], we report numerical experiences on the same
set of test problems from QVILIB that is used in [20]. All the computations
in this paper were done using Matlab 7.6.0 on a Ubuntu 10.04 64 bits PC
with Intel(R) Core(TM) i7 CPU 870 and 7.8 GiB of RAM.

4.1 Implementation Details

The algorithm we implemented corresponds to the scheme given in Algo-
rithm 2.2, in what follows we give implementation details.

At step (S.2), Algorithm 2.2 calls for the solution of an n + 2m square
linear system in order to determine the search direction dk. This system is
very structured and some simple manipulations permit to reduce its solution
to a linear system of lower dimension. More precisely, we must find a solution
(d̄1, d̄2, d̄3) of the following linear system of dimension n+ 2m JxL(x, λ) ∇yg(x, x) 0

Jh(x) 0 I
0 diag(a) diag(b)

 d1
d2
d3

 =

 −L(x, λ)
−h(x)− w
−Φ(λ,w)

 , (27)

where all the quantities involved are defined in detail in Section 2. Let us
consider the following index sets:

S := {s ∈ {1, . . . ,m} : as = 0} , J := {j ∈ {1, . . . ,m} : bj = 0} ,
K := {k ∈ {1, . . . ,m} : ak 6= 0, bk 6= 0} .

Then we can rewrite system (27) in the following way
JxL(x, λ) ∇yg(x, x)•K 0 ∇yg(x, x)•S 0
Jh(x)K• 0 I 0 0

0 diag(aK) diag(bK) 0 0
Jh(x)S• 0 0 0 0
Jh(x)J• 0 0 0 I




d1
(d2)K
(d3)K
(d2)S
(d3)J

 =

=


−L(x, λ)−∇yg(x, x)•J(d̄2)J

−h(x)K − wK
−Φ(λ,w)K

−h(x)S − wS − (d̄3)S
−h(x)J − wJ

 ,

where

(d̄2)J = −diag(aJ)−1Φ(λ,w)J and (d̄3)S = −diag(bS)−1Φ(λ,w)S.
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It is easy to verify, by substitution and by the fact that all components of
aK and bK are different from zero, that if we compute (d̄1, (d̄2)S, (d̄3)J) as a
solution of A ∇yg(x, x)•S 0

Jh(x)S• 0 0
Jh(x)J• 0 I

 d1
(d2)S
(d3)J

 =

 B
−h(x)S − wS − (d̄3)S
−h(x)J − wJ

 ,

where

A = JxL(x, λ) +∇yg(x, x)•Kdiag(a−1K ◦ bK)Jh(x)K•,

B = −L(x, λ)−∇yg(x, x)•J(d̄2)J +∇yg(x, x)•Kdiag(aK)−1Φ(λ,w)K −
∇yg(x, x)•Kdiag(a−1K ◦ bK)(h(x)K + wK),

and (d̄2)K , (d̄3)K by

(d̄3)K = −h(x)K − wK − Jxh(x)K•d̄1,

(d̄2)K = −diag(aK)−1Φ(λ,w)K − diag(a−1K ◦ bK)(d̄3)K ,

this is indeed a solution of (27). This shows clearly that the main compu-
tational burden in solving the linear system (27) is actually the solution of
an (n + |S| + |J |) × (n + |S| + |J |) square linear system. As can be easily
expected, and as it is confirmed by the numerical experiments, usually in
early iterations |S|+ |J | = 0 and the core system has dimension n. However,
as iterations progress and we get closer to a KKT point, |S| + |J | increases
and tends to approach m.

If any entry of the solution given by mldivide is a NaN or it is equal to
±∞ or the sufficient decrease condition is not satisfied then a scaled anti
gradient direction is used:

dk := −τ k∇Ψ(zk), τ k := min

{
1,

2 max{10−6,Ψ(zk−1)−Ψ(zk)}
‖∇Ψ(zk)‖22

}
.

In order to obtain an element of ∂H(z) we set ai = −1 and bi = −1 for
all i ∈ {1, . . . ,m} such that ‖(ai, bi)‖2 ≤ 10−30. When we compute the set
of indices S, J,K used to reduce the linear system, we consider ai = 0 (or
bi = 0) whenever ai ≥ −10−30 (bi ≥ −10−30) (recall again that these numbers
are always nonpositive).

We further take ρ = 10−10, β = 0.5, σ = 10−2, and p = 2.1. The starting
points are taken with λ0 = 0 and w0 = 0, while x0 is defined separately for
each run.

Unlike the scheme of Algorithm 2.2, the stopping criterion is based on
an equation reformulation of the KKT conditions which uses the Fischer-
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Burmeister function. The equation reformulation is then defined by

Y (x, λ) =

∥∥∥∥∥ L(x, λ)

Φ(λ,−h(x))

∥∥∥∥∥
∞

.

The main termination criterion is Y (xk, λk) ≤ 10−4. We chose this stopping
criterion, which is actually the most natural one, being directly connected
to the violation of the KKT conditions, also to be able to perform a fair
comparison with the results in [20], where the same termination criterion is
used. The iterations are also stopped if the number of iterations exceeds
1000, the running time exceeds one hour or the stepsize tk computed at step
(S.3) is less than 10−6.

4.2 Numerical results

We solved several test problems whose detailed description can be found in
[21]. In Table 1 for each problem we list

• the x-part of the starting point (the number reported is the value of all
components of the x-part of the starting point);

• the number of iterations, which is equal to the number of evaluations
of ∇Ψ;

• the number of evaluations of Ψ;

• the value of the KKT violation measure Y (x, λ) at termination;

• elapsed CPU time in seconds.

We see that overall Algorithm 2.2 fails on 16 runs that is a third of
the experiments. These failures are due to time limit (KunR32), iteration
limit (KunR31 and RHS1A1 [with x0=10]) or computed stepsize too small
(all other failures). In cases where the termination is due to time limit or
iteration limit, the algorithm uses massively the antigradient direction which
proves to be ineffective. Therefore we tried to recover these failures by doing
further tests with ρ = 10−30, thus forcing the use of the semismooth Newton
direction, however, the same time/iteration failures occured. In failures due
to small stepsize, Algorithm 2.2 uses only the semismooth Newton direction
(except for RHS1A1 and RHS2B1). We tried to recover these failures by
setting ρ = 10−4 in order to use earlier the antigradient direction when the
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Problem x0 It Ψ Y (x, λ) Time Problem x0 It Ψ Y (x, λ) Time
OutZ40 0 5 5 2.5270e-08 <0.1 Wal2 10 Failure
OutZ41 0 5 5 2.8078e-08 <0.1 Wal3 0 Failure
OutZ42 0 6 7 9.2896e-07 <0.1 Wal3 10 29 86 1.0008e-06 0.3
OutZ43 0 4 4 5.2459e-05 <0.1 Wal5 0 67 712 3.4386e-07 2.7
OutZ44 0 4 4 4.9362e-05 <0.1 Wal5 10 Failure

OutKZ31 0 7 10 2.6128e-06 <0.1 MovSet3A1 0 Failure
OutKZ31 10 7 7 2.6128e-06 <0.1 MovSet3A2 0 Failure
OutKZ41 0 11 21 1.7394e-05 <0.1 MovSet3B1 0 Failure
OutKZ41 10 17 86 1.6720e-05 0.1 MovSet3B2 0 Failure
Scrim22 0 10 20 3.5249e-06 0.2 MovSet4A1 0 11 27 2.6602e-06 0.3
Scrim22 10 10 20 3.5249e-06 0.2 MovSet4A2 0 13 43 4.0769e-07 1.6
KunR11 0 14 26 7.1161e-05 25 MovSet4B1 0 11 28 8.0836e-07 0.4
KunR11 10 22 53 4.7736e-05 43.3 MovSet4B2 0 13 42 8.7163e-07 1.6
KunR12 0 20 53 5.1480e-05 144.7 Box2A 10 24 77 4.1771e-06 0.8
KunR12 10 19 38 3.4970e-05 120.4 Box2B 10 26 89 8.1684e-06 0.8
KunR21 0 5 5 2.8047e-05 8 Box3A 10 10 14 5.7049e-07 0.2
KunR21 10 14 28 1.1084e-05 25.8 Box3B 10 Failure
KunR22 0 5 5 2.4567e-05 27.4 RHS1A1 0 Failure
KunR22 10 13 22 3.6380e-06 78 RHS1A1 10 Failure
KunR31 0 Failure RHS2B1 0 Failure
KunR31 10 Failure RHS2B1 10 Failure
KunR32 0 Failure Ex3 10 5 5 7.4873e-09 <0.1
KunR32 10 Failure Ex7 10 14 14 5.9159e-05 <0.1

Wal2 0 20 78 2.2062e-07 0.2 Ex8 10 5 5 4.6680e-08 <0.1

Table 1: Numerical results for Algorithm 2.2.

semismooth Newton direction starts to be almost orthogonal to ∇Ψ, but
the algorithm got into iteration limit failure in all cases. Difficulties were
encountered by the linear system solver only when dealing with problems
OutKZ41 and Wal5, in fact, as a thorough analysis showed, iterations of
Algorithm 2.2, while solving these problems, produce linear systems with 1-
norm condition number estimate of the matrix greater than 1035. However, as
Table 1 shows the antigradient direction works well in these cases by bringing
iterations to better conditioned areas.

We can numerically compare Algorithm 2.2 with the interior-point method
in [20] by confronting Table 1 in this text with Tables 2 and 3 in [20]. We
can see that Algorithm 2.2 is significantly less robust than the interior-point
method (16 failures versus 4), but when it works, it is more efficient both in
terms of iterations and CPU time.

It is then quite natural to attempt to combine the robustness of the
interior-point method in [20] and the fast convergence properties of the semis-
mooth Newton method by defining a hybrid algorithm. This kind of hybrid
techniques, in the field of variational inequalities, go back at least to [23]
and have often given very good good results; the definition of such a hybrid
method certainly requires further study. Below, to illustrate the potential of
such a combination, we tried a very simple approach: run the interior-point
method until iterations are near a solution and then leave to the semismooth
method the task of fastly computing a solution with high accuracy. In what
follows we are interested in computing solutions (x∗, λ∗, w∗) with high accu-
racy, that is Y (x∗, λ∗) ≤ 10−8. We report both results for the interior point
method as it is described in [20] and then for the natural hybrid algorithm in
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which the interior point method iterates until Y (x, λ) ≤ 10−3 and then the
semismooth method goes on until termination, see Table 2.

Standard Y ≤ 10−8 Hybrid Y ≤ 10−3 / Y ≤ 10−8

interior-point method interior-point method Semismooth method

Problem x0 It Y (x, λ) Time It Y (x, λ) Time It Y (x, λ) Time
OutZ40 0 12 7.4975e-09 <0.1 7 6.8145e-04 <0.1 2 2.7242e-14 <0.1
OutZ41 0 Failure 14 9.9912e-04 <0.1 1 1.5950e-14 <0.1
OutZ42 0 12 1.4442e-09 <0.1 7 1.5321e-04 <0.1 2 7.0531e-09 <0.1
OutZ43 0 12 1.8886e-09 <0.1 7 2.1270e-04 <0.1 3 4.4409e-16 <0.1
OutZ44 0 12 2.9244e-09 <0.1 7 3.3333e-04 <0.1 2 9.0487e-09 <0.1

OutKZ31 0 Failure 17 3.6904e-04 <0.1 2 1.0387e-09 <0.1
OutKZ31 10 Failure 16 1.8527e-04 <0.1 2 7.3199e-10 <0.1
OutKZ41 0 Failure 18 8.6946e-04 <0.1 16 1.5657e-13 0.1
OutKZ41 10 Failure 18 7.9010e-04 <0.1 5 2.6164e-09 <0.1
Scrim22 0 Failure 16 2.1102e-04 0.2 4 1.6533e-12 0.1
Scrim22 10 Failure 19 8.9414e-05 0.2 4 1.6185e-11 0.1
KunR11 0 Failure 10 9.4101e-04 13.7 37 4.2274e-11 100.6
KunR11 10 Failure 14 9.0437e-04 21.2 30 9.2655e-09 79.7
KunR12 0 Failure 13 8.4709e-04 65.2 43 1.1759e-09 434.2
KunR12 10 Failure 17 9.2783e-04 92.3 34 1.1759e-09 334.4
KunR21 0 Failure 5 3.6678e-04 6.8 Failure
KunR21 10 Failure 8 7.1537e-04 11 Failure
KunR22 0 Failure 5 2.2015e-04 23.6 21 3.5844e-11 197.7
KunR22 10 Failure 6 5.9085e-04 28.5 Failure
KunR31 0 Failure 154 4.6276e-05 441.5 Failure
KunR31 10 Failure Failure
KunR32 0 Failure 138 9.3637e-04 1266.2 Failure
KunR32 10 Failure Failure

Wal2 0 Failure 33 2.5828e-04 0.2 2 1.3107e-09 <0.1
Wal2 10 Failure 46 5.0478e-04 0.3 2 4.7743e-09 <0.1
Wal3 0 Failure 47 4.2073e-04 0.4 8 8.5265e-14 <0.1
Wal3 10 Failure 62 3.3684e-04 0.6 9 1.1369e-13 <0.1
Wal5 0 Failure 45 5.4037e-04 0.8 2 1.3587e-09 <0.1
Wal5 10 Failure 41 7.9511e-04 0.7 2 8.4838e-10 <0.1

MovSet3A1 0 15 2.7942e-09 1.4 10 2.7948e-04 0.9 3 6.6336e-10 0.4
MovSet3A2 0 15 5.6034e-09 7.2 10 5.6052e-04 4.8 5 1.0093e-07 3.8
MovSet3B1 0 15 1.7801e-09 1.4 10 1.9099e-04 0.9 3 1.7101e-09 0.3
MovSet3B2 0 15 3.5279e-09 7.2 10 3.8034e-04 5.7 Failure
MovSet4A1 0 Failure 11 7.7953e-04 0.3 2 4.6264e-14 <0.1
MovSet4A2 0 Failure 11 7.7920e-04 1 2 4.6163e-14 0.3
MovSet4B1 0 Failure 11 4.7714e-04 0.3 2 1.1586e-14 <0.1
MovSet4B2 0 Failure 11 7.7654e-04 1 2 4.5521e-14 0.3

Box2A 10 Failure 166 5.4048e-04 2.8 3 3.9143e-12 <0.1
Box2B 10 Failure 193 8.7363e-04 3.2 4 8.1224e-13 0.1
Box3A 10 Failure Failure
Box3B 10 Failure Failure

RHS1A1 0 87 6.6880e-09 2.7 87 6.6880e-09 2.7 0 6.6880e-09 <0.1
RHS1A1 10 24 6.9907e-09 0.7 19 3.5596e-05 0.6 1 7.2433e-12 <0.1
RHS2B1 0 85 6.5264e-09 1.1 84 1.1662e-08 1 1 7.2110e-12 <0.1
RHS2B1 10 23 9.2802e-09 0.3 19 2.4006e-05 0.2 1 7.2727e-12 <0.1

Ex3 10 12 2.1650e-09 <0.1 7 2.2010e-04 <0.1 2 1.0086e-15 <0.1
Ex7 10 26 7.1530e-09 <0.1 14 1.4907e-04 <0.1 8 5.1223e-09 <0.1
Ex8 10 38 7.3202e-09 <0.1 31 2.4909e-04 <0.1 1 3.2791e-09 <0.1

Table 2: High accuracy results for the standard interior-point method and
for the hybrid interior-point/semismooth method.

Looking at the Table 2, it is evident that the interior-point method [20]
has severe difficulties in achieving a high accuracy, while the hybrid algorithm
combines well properties of the two methods. In fact, the hybrid algorithm
is not only faster than the state-of-the-art interior-point method described
in [20], but it is also much more robust when computation of high-accuracy
solutions is required. These are only very preliminary results, but they cer-
tainly point to the usefulness of such a hybrid strategy; further research on
this topic, however, is beyond the scope of this paper.
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5 Final Remarks

In this paper we have studied the globalized semismooth Newton method for
the solution of (the KKT conditions of) QVIs. The theoretical properties of
the method are good and compare well with existing methods. The situation
from the numerical point of view is more complex though. On the one hand,
the method is capable of computing quickly high precision approximations of
a solution if started in a small neighborhood of the solution itself; furthermore
when global convergence occurs, the algorithm behaves very well. However,
the practical global convergence behavior of the method leaves much to be
desired and (global) convergence occurred only on two thirds of the cases
in our tests. This suggests that a good strategy would be to combine the
semismooth Newton method with the interior-point algorithm [20] that is
very robust but lacks a good local convergence rate. Our preliminary results
show that this strategy is certainly of interest; it will be explored more in
detail in future research.
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