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1 Introduction

Consider the linear program

min cTx s.t. Ax = b, x ≥ 0, (1)

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n are the given data and A is assumed to be of full rank,
i.e., rank(A) = m. The classical method for the solution of this minimization problem is
Dantzig’s simplex algorithm, see, e.g., [11, 1]. During the last two decades, however, interior-
point methods have become quite popular and are now viewed as being serious alternatives
to the simplex method, especially for large-scale problems.

More recently, so-called smoothing-type methods have also been investigated for the
solution of linear programs. These smoothing-type methods join some of the properties of
interior-point methods. To explain this in more detail, consider the optimality conditions

ATλ+ s = c,
Ax = b,

xi ≥ 0, si ≥ 0, xisi = 0 ∀i = 1, . . . , n
(2)

of the linear program (1), and recall that (1) has a solution if and only if (2) has a solution.
The most successful interior-point methods try to solve the optimality conditions (2) by
solving (inexactly) a sequence of perturbed problems (also called the central path conditions)

ATλ+ s = c,
Ax = b,

xi > 0, si > 0, xisi = τ 2 ∀i = 1, . . . , n,
(3)

where τ > 0 denotes a suitable parameter. Typically, interior-point methods apply some
kind of Newton method to the equations within these perturbed optimality conditions and
guarantee the positivity of the primal and dual variables by an appropriate line search.

Many smoothing-type methods follow a similar pattern: They also try to solve (inexactly)
a sequence of perturbed problems (3). To this end, however, they first reformulate the
system (3) as a nonlinear system of equations and then apply Newton’s method to this
reformulated system. In this way, smoothing-type methods avoid the explicit inequality
constraints, and therefore the iterates generated by these methods do not necessarily belong
to the positive orthant. More details on smoothing methods are given in Section 2.

The algorithm to be presented in this manuscript belongs to the class of smoothing-type
methods. It is closely related to some methods recently proposed by Burke and Xu [2, 3]
and further investigated by the authors in [13, 14]. In contrast to these methods, however,
we allow a more flexible choice for the parameter τ . Since the precise way this parameter
is updated within the algorithm has an enormous influence on the entire behaviour of the
algorithm, we feel that this is a highly important topic. The second motivation for writing
this paper is the fact that our current code gives significantly better numerical results than
previous implementations of smoothing-type methods. For some further background on
smoothing-type methods, the interested reader is referred to [4, 6, 7, 8, 16, 17, 20, 22, 23]
and references therein.
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The paper is organized as follows: We develop our algorithm in Section 2, give a detailed
statement and show that it is well-defined. Section 3 then discusses the global and local
convergence properties of our algorithm. In particular, it will be shown that the method has
the same nice global convergence properties as the method suggested by Burke and Xu [3].
Section 4 indicates that the method works quite well on the whole netlib test suite. We then
close this paper with some final remarks in Section 5.

A few words about our notation: Rn denotes the n-dimensional real vector space. For
x ∈ Rn, we use the subscript xi in order to indicate the ith component of x, whereas a
superscript like in xk is used to indicate that this is the kth iterate of a sequence {xk} ⊆ Rn.
Quite often, we will consider a triple of the form w = (xT , λT , sT )T , where x ∈ Rn, λ ∈ Rm,
and s ∈ Rn; of course, w is then a vector in Rn+m+n. In order to simplify our notation,
however, we will usually write w = (x, λ, s) instead of using the mathematically more correct
formula w = (xT , λT , sT )T . If x ∈ Rn is a vector whose components are all nonnegative, we
simply write x ≥ 0; an expression like x ≤ 0 has a similar meaning. Finally, the symbol ‖ · ‖
is used for the Euclidean vector norm.

2 Description of Algorithm

In this section, we want to derive our predictor-corrector smoothing method for the solution
of the optimality conditions (2). Furthermore, we will see that the method is well-defined.

Since the main idea of our method is based on a suitable reformulation of the optimality
conditions (2), we begin with a very simple way to reformulate this system. To this end, let
ϕ : R2 → R denote the so-called minimum function

ϕ(a, b) := 2 min{a, b}
(

= a+ b−
√

(a− b)2
)
,

and let φ : Rn × Rn → Rn be defined by

φ(x, s) :=
(
ϕ(x1, s1), . . . , ϕ(xn, sn)

)T
.

Since ϕ has the property that

a ≥ 0, b ≥ 0, ab = 0 ⇐⇒ ϕ(a, b) = 0,

it follows that φ can be used in order to get a characterization of the complementarity
conditions:

xi ≥ 0, si ≥ 0, xisi = 0 (i = 1, . . . , n) ⇐⇒ φ(x, s) = 0.

Consequently, a vector w∗ = (x∗, λ∗, s∗) ∈ Rn × Rm × Rn is a solution of the optimality
conditions (2) if and only if it satisfies the nonlinear system of equations

Φ(w) = 0,

where Φ : Rn × Rm × Rn → Rn × Rm × Rn is given by

Φ(w) := Φ(x, λ, s) :=

 ATλ+ s− c
Ax− b
φ(x, s)

 .
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The main disadvantage of the mapping Φ is that it is not differentiable everywhere. In order
to overcome this nonsmoothness, several researchers (see, e.g., [7, 5, 18, 21]) have proposed
to approximate the minimum function ϕ by a continuously differentiable mapping with the
help of a so-called smoothing parameter τ . In particular, the function

ϕτ (a, b) := a+ b−
√

(a− b)2 + 4τ 2

has become quite popular and is typically called the Chen-Harker-Kanzow-Smale smoothing
function in the literature [5, 18, 21]. Based on this function, we may define the mappings

φτ (x, s) :=
(
ϕτ (x1, s1), . . . , ϕτ (xn, sn)

)T

and

Φτ (w) := Φτ (x, λ, s) :=

 ATλ+ s− c
Ax− b
φτ (x, s)

 .

Obviously, Φτ is a smooth approximation of Φ for every τ > 0, and coincides with Φ in the
limiting case τ = 0. Furthermore, it was observed in [18] that a vector wτ = (xτ , λτ , sτ )
solves the nonlinear system of equations

Φτ (w) = 0 (4)

if and only if this vector is a solution of the central path conditions (3). Solving the system (4)
by, say, Newton’s method, is therefore closely related to several primal-dual path-following
methods which have become quite popular during the last 15 years, cf. [24].

However, due to our numerical experience [13, 14] and motivated by some stronger theo-
retical results obtained by Burke and Xu [3], we prefer to view τ as an independent variable
(rather than a parameter). To make this clear in our notation, we write

ϕ(a, b, τ) := ϕτ (a, b)

and, similarly,
φ(x, s, τ) := φτ (x, s)

from now on. Since the nonlinear system (4) contains only n + m + n equations and
Φ(x, λ, s, τ) := Φτ (x, λ, s) has n + m + n + 1 variables, we add one more equation and
define a mapping

Θ(x, λ, s, τ) :=


ATλ+ s− c
Ax− b
φ(x, s, τ)

τ

 , (5)

cf. [3]. We also need the following generalization of the function Θ:

Θσ,ψ(x, λ, s, τ) :=


ATλ+ s− c
Ax− b
φ(x, s, τ)
σψ(τ)

 , (6)

here, σ ∈ (0, 1] denotes a suitable centering parameter, and ψ : [0,∞) → R is a function
having the following properties:
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(P.1) ψ is continuously differentiable with ψ(0) = 0.

(P.2) ψ′(τ) > 0 for all τ ∈ [0,∞).

(P.3) ψ(τ) ≤ ψ′(τ) · τ for all τ ∈ [0,∞).

(P.4) For each τ0 > 0, there is a constant γ > 0 (possibly depending on τ0) such that
ψ(τ) ≥ γ · ψ′(τ) · τ for all τ ∈ [0, τ0].

The following functions satisfy all these properties:

ψ(τ) := τ,

ψ(τ) := (1 + τ)2 − 1,

ψ(τ) := exp(τ)− 1.

In fact, it is quite easy to see that all three examples satisfy properties (P.1), (P.2), and
(P.3). Furthermore, the mapping ψ(τ) = τ satisfies (P.4) with γ := 1 being independent
of τ0. Also the mapping ψ(τ) := (1 + τ)2− 1 satisfies (P.4) with γ := 1/2 being independent
of τ0. On the other hand, a simple calculation shows that the third example does satisfy
(P.4) with γ := (1− exp(−τ0))/τ0, i.e., here γ depends on τ0.

Note that the choice ψ(τ) = τ corresponds to the one used in [2, 3], whereas here we aim to
generalize the approach from [2, 3] in order to allow a more flexible procedure to decrease τ .
Since the precise reduction of τ has a significant influence on the overall performance of
our smoothing-type method, we feel that such a generalization is very important from a
computational point of view.

Before we give a precise statement of our algorithm, let us add some further comments
on the properties of the function ψ: (P.1) is obviously needed since we want to apply a
Newton-type method to the system of equations Θσ,ψ(x, λ, s, τ) = 0, hence ψ has to be
sufficiently smooth. The second property (P.2) implies that ψ is strictly monotonically
increasing. Together with ψ(0) = 0 from property (P.1), this means that the nonlinear
system of equations

Θσ,ψ(x, λ, s, τ) = 0

is equivalent to the optimality conditions (2) themselves (and not to the central path condi-
tions (3)) since the last row immediately gives τ = 0. The third property (P.3) will be used in
order to show that the algorithm to be presented below is well-defined, cf. the proof of Lemma
2.2 (c). Furthermore, properties (P.3) and (P.4) together will guarantee that the sequence
{τk} is monotonically decreasing and converges to zero, see the proof of Theorem 3.3.

We now return to the description of the algorithm. The method to be presented below is a
predictor-corrector algorithm with the predictor step being responsible for the local fast rate
of convergence, and with the corrector step guaranteeing global convergence. More precisely,
the predictor step consists of one Newton iteration applied to the system Θ(x, λ, s, τ) = 0,
followed by a suitable update of τ which tries to reduce τ as much as possible. The corrector
step then applies one Newton iteration to the system Θ1,ψ(x, λ, s, τ) = 0, but with the usual
right-hand side Θ1,ψ(x, λ, s, τ) being replaced by Θσ,ψ(x, λ, s, τ) for some centering parameter
σ ∈ (0, 1). This Newton step is followed by an Armijo-type line search.
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The computation of all iterates is carried out in such a way that they belong to the
neighbourhood

N (β) := {(x, λ, s, τ) |ATλ+ s = c, Ax = b, ‖φ(x, s, τ)‖ ≤ βτ}

of the central path, where β > 0 denotes a suitable constant. In addition, we will see later
that all iterates automatically satisfy the inequality φ(x, s, τ) ≤ 0, which will be important
in order to establish a result regarding the boundedness of the iterates, cf. Lemma 3.1 and
Proposition 3.2 below.

The precise statement of our algorithm is as follows (recall that Θ and Θσ,ψ denote the
mappings from (5) and (6), respectively).

Algorithm 2.1 (Predictor-Corrector Smoothing Method)

(S.0) (Initialization)
Choose w0 := (x0, λ0, s0) ∈ Rn×Rm×Rn and τ0 > 0 such that ATλ0 +s0 = c, Ax0 = b,
and φ(x0, s0, τ0) ≤ 0, select β ≥ ‖φ(x0, s0, τ0)‖/τ0, ρ ∈ (0, 1), 0 < σ̂min < σ̂max < 1, ε ≥
0, and set k := 0.

(S.1) (Termination Criterion)
If ‖φ(xk, sk, 0)‖ ≤ ε: STOP.

(S.2) (Predictor Step)
Compute a solution (∆wk,∆τk) = (∆xk,∆λk,∆sk,∆τk) ∈ Rn × Rm × Rn × R of the
linear system

Θ′(wk, τk)

(
∆w
∆τ

)
= −Θ(wk, τk). (7)

If ‖φ(xk + ∆xk, sk + ∆sk, 0)‖ = 0: STOP. Otherwise, if

‖φ(xk + ∆xk, sk + ∆sk, τk)‖ > βτk,

then set
ŵk := wk, τ̂k := τk, ηk := 1,

else compute ηk = ρ`k , where `k is the nonnegative integer such that

‖φ(xk + ∆xk, sk + ∆sk, ρjτk)‖ ≤ βρjτk ∀j = 0, 1, 2, . . . , `k and

‖φ(xk + ∆xk, sk + ∆sk, ρ`k+1τk)‖ > βρ`k+1τk,

and set τ̂k := ηkτk and

ŵk :=

{
wk if `k = 0,
wk + ∆wk otherwise.

(S.3) (Corrector Step)
Choose σ̂k ∈ [σ̂min, σ̂max], and compute a solution (∆ŵk,∆τ̂k) = (∆x̂k,∆λ̂k,∆ŝk,∆τ̂k) ∈
Rn × Rm × Rn × R of the linear system

Θ′
1,ψ(ŵk, τ̂k)

(
∆ŵ
∆τ̂

)
= −Θσ̂k,ψ(ŵk, τ̂k). (8)
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Let t̂k = max{ρ` | ` = 0, 1, 2, . . .} such that

‖φ(x̂k + t̂k∆x̂
k, ŝk + t̂k∆ŝ

k, τ̂k + t̂k∆τ̂k)‖ ≤ β(τ̂k + t̂k∆τ̂k). (9)

Set wk+1 := ŵk + t̂k∆ŵ
k and τk+1 := τ̂k + t̂k∆τ̂k.

(S.4) (Update)
Set k ← k + 1, and go to Step (S.1).

Algorithm 2.1 is closely related to some other methods recently investigated by different
authors. For example, if we take ψ(τ) = τ , then the above algorithm is almost identical
with a method proposed by Burke and Xu [3]. It is not completely identical since we use a
different update for ŵk in the predictor step, namely for the case `k = 0. This is necessary
in order to prove our global convergence results, Theorem 3.3 and Corollary 3.4 below. On
the other hand, Algorithm 2.1 is similar to a method used by the authors in [14]; in fact,
taking once again ψ(τ) = τ , we almost have the method from [14]. The only difference that
remains is that we use a different right-hand side in the predictor step, namely Θ(wk, τk),
whereas [14] uses Θ(wk, 0). The latter choice seems to give slightly better local properties,
however, the current version allows to prove better global convergence properties.

From now on, we always assume that the termination parameter ε in Algorithm 2.1 is
equal to zero and that Algorithm 2.1 generates an infinite sequence {(xk, λk, sk, τk)}, i.e.,
we assume that the stopping criteria in Steps (S.1) and (S.2) are never satisfied. This is
not at all restrictive since otherwise wk or wk + ∆wk would be a solution of the optimality
conditions (2).

We first note that Algorithm 2.1 is well-defined.

Lemma 2.2 The following statements hold for any k ∈ N:

(a) The linear systems (7) and (8) have a unique solution.

(b) There is a unique ηk satisfying the conditions in Step (S.2).

(c) The stepsize t̂k in (S.3) is uniquely defined.

Consequently, Algorithm 2.1 is well-defined.

Proof. Taking into account the structure of the Jacobians Θ′(w, τ) and Θ′
σ,ψ(w, τ) and using

the fact that ψ′(τ) > 0 by property (P.2), part (a) is an immediate consequence of, e.g., [12,
Proposition 3.1]. The second statement follows from [13, Proposition 3.2] and is essentially
due to Burke and Xu [3]. In order to verify the third statement, assume there is an iteration
index k such that

‖φ(x̂k + ρ`∆x̂k, ŝk + ρ`∆ŝk, τ̂k + ρ`∆τ̂k)‖ > β(τ̂k + ρ`∆τ̂k)

for all ` ∈ N. Since ‖φ(x̂k, ŝk, τ̂k)‖ ≤ βτ̂k, we obtain from property (P.3) that

β(τ̂k + ρ`∆τ̂k) = β
(
τ̂k − ρ`σ̂kψ(τ̂k)/ψ

′(τ̂k)
)

≥ β
(
τ̂k − ρ`σ̂kτ̂k

)
≥

(
1− σ̂maxρ

`
)
βτ̂k

≥
(
1− σ̂maxρ

`
)
‖φ(x̂k, ŝk, τ̂k)‖.
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Taking this inequality into account, the proof can now be completed by using a standard
argument for the Armijo line search rule. 2

We next state some simple properties of Algorithm 2.1 to which we will refer a couple of
times in our subsequent analysis.

Lemma 2.3 The sequences {wk} = {(xk, λk, sk)} and {τk} generated by Algorithm 2.1 have
the following properties:

(a) ATλk + sk = c and Axk = b for all k ∈ N.

(b) τk ≤ τ0(1 − γσ̂0t̂0)η0 · · · (1 − γσ̂k−1t̂k−1)ηk−1 for all k ∈ N, where γ > 0 denotes the
constant from property (P.4).

(c) ‖φ(xk, sk, τk)‖ ≤ βτk for all k ∈ N.

Proof. Part (a) holds for k = 0 by our choice of the starting point (x0, λ0, s0). Hence it
holds for all k ∈ N since Newton’s method solves linear systems exactly. In order to verify
statement (b), we first note that we get

∆τ̂k = −σ̂kψ(τ̂k)/ψ
′(τ̂k) (10)

from the fourth block row of the linear equation (8). Since τk, τ̂k ∈ [0, τ0] for all k ∈ N,
it therefore follows from property (P.4) and the updating rules in steps (S.2) and (S.3) of
Algorithm 2.1 that

τk+1 = τ̂k + t̂k∆τ̂k

= τ̂k − t̂kσ̂kψ(τ̂k)/ψ
′(τ̂k)

≤ τ̂k − γt̂kσ̂kτ̂k
= (1− γt̂kσ̂k)ηkτk.

Using a simple induction argument, we see that (b) holds. Finally, statement (c) is a direct
consequence of the updating rules in Algorithm 2.1. 2

3 Convergence Properties

In this section, we analyze the global and local convergence properties of Algorithm 2.1.
Since the analysis for the local rate of convergence is essentially the same as in [3] (recall
that our predictor step is identically to the one from [3]), we focus on the global properties. In
particular, we will show that all iterates (xk, λk, sk) remain bounded under a strict feasibility
assumption. This was noted by Burke and Xu [3] for a particular member of our class of
methods (namely for the choice ψ(τ) := τ), but is not true for many other smoothing-type
methods like those from [5, 6, 7, 8, 13, 14, 22, 23].
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The central observation which allows us to prove the boundedness of the iterates (xk, λk, sk)
is that they automatically satisfy the inequality

φ(xk, sk, τk) ≤ 0

for all k ∈ N provided this inequality holds for k = 0. This is precisely the statement of our
first result.

Lemma 3.1 The sequences {wk} = {(xk, λk, sk)}, {τk}, {ŵk} = {(x̂k, λ̂k, ŝk)} and {τ̂k} gen-
erated by Algorithm 2.1 have the following properties:

(a) φ(x̂k, ŝk, τ̂k) ≤ 0 for all k ∈ N.

(b) φ(xk, sk, τk) ≤ 0 for all k ∈ N.

Proof. We first derive some useful inequalities, and then verify the two statements simul-
taneously by induction on k.

We begin with some preliminary discussions regarding statement (a). To this end, let
k ∈ N be fixed for the moment, and assume that we take ŵk = wk + ∆wk in Step (S.2) of
Algorithm 2.1. Since each component of the function φ is concave, we then obtain

φ(x̂k, ŝk, τ̂k)
= φ(xk + ∆xk, sk + ∆sk, ηkτk)
= φ(xk + ∆xk, sk + ∆sk, τk + (ηk − 1)τk)

≤ φ(xk, sk, τk) + φ′(xk, sk, τk)

 ∆xk

∆sk

(ηk − 1)τk


= φ(xk, sk, τk) + φ′(xk, sk, τk)

 ∆xk

∆sk

∆τk

+ φ′(xk, sk, τk)

 0
0

(ηk − 1)τk −∆τk

 .

(11)

From the third block row of (7), we have

φ′(xk, sk, τk)

 ∆xk

∆sk

∆τk

 = −φ(xk, sk, τk).

Hence we get from (11):

φ(x̂k, ŝk, τ̂k) ≤ φ′(xk, sk, τk)

 0
0

(ηk − 1)τk −∆τk

 . (12)

We claim that the right-hand side of (12) is nonpositive. To prove this statement, we first
note that

φ′(xk, sk, τk)

 0
0

(ηk − 1)τk −∆τk

 =
(
(ηk − 1)τk −∆τk

)
dkτ
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with

dkτ :=

(
∂ϕ

∂τ
(xk1, s

k
1, τk), . . . ,

∂ϕ

∂τ
(xkn, s

k
n, τk)

)T

=

(
−4τk√

(xk1 − sk1)2 + 4τ 2
k

, . . . ,
−4τk√

(xkn − skn)2 + 4τ 2
k

)T

≤ 0.

Hence it remains to show that
(ηk − 1)τk −∆τk ≥ 0.

However, this is obvious since the last row of the linear system (7) implies ∆τk = −τk.
We next derive some useful inequalities regarding statement (b). To this end, we still

assume that k ∈ N is fixed. Using once again the fact that φ is a concave function in each
component, we obtain from (8)

φ(xk+1, sk+1, τk+1) = φ(x̂k + t̂k∆x̂
k, ŝk + t̂k∆ŝ

k, τ̂k + t̂k∆τ̂k)

≤ φ(x̂k, ŝk, τ̂k) + t̂kφ
′(x̂k, ŝk, τ̂k)

 ∆x̂k

∆ŝk

∆τ̂k


= φ(x̂k, ŝk, τ̂k)− t̂kφ(x̂k, ŝk, τ̂k)
= (1− t̂k)φ(x̂k, ŝk, τ̂k),

(13)

and this completes our preliminary discussions.
We now verify statements (a) and (b) by induction on k. For k = 0, we have φ(x0, s0, τ0) ≤

0 by our choice of the starting point w0 = (x0, λ0, s0) and the initial smoothing parameter
τ0 > 0 in Step (S.0) of Algorithm 2.1. Therefore, if we set ŵ0 = w0 in Step (S.2) of
Algorithm 2.1, we also have τ̂0 = τ0 and therefore φ(x̂0, ŝ0, τ̂0) ≤ 0. On the other hand, if we
set ŵ0 = w0 + ∆w0 in Step (S.2), the argument used in the beginning of this proof shows
that the inequality φ(x̂0, ŝ0, τ̂0) ≤ 0 also holds in this case.

Suppose that we have φ(xk, sk, τk) ≤ 0 and φ(x̂k, ŝk, τ̂k) ≤ 0 for some k ∈ N. Then
(13) immediately implies that we have φ(xk+1, sk+1, τk+1) ≤ 0. Consequently, if we have
ŵk+1 = wk+1 in Step (S.2) of Algorithm 2.1, we obviously have φ(x̂k+1, ŝk+1, τ̂k+1) ≤ 0. Oth-
erwise, i.e., if we set ŵk+1 = wk+1 +∆wk+1 in Step (S.2), the argument used in the beginning
part of this proof shows that the same inequality holds. This completes the formal proof by
induction. 2

We next show that the sequence {wk} generated by Algorithm 2.1 remains bounded provided
that there is a strictly feasible point for the optimality conditions (2), i.e., a vector ŵ =
(x̂, λ̂, ŝ) satisfying AT λ̂+ ŝ = c, Ax̂ = b and x̂ > 0, ŝ > 0.

Proposition 3.2 Assume that there is a strictly feasible point for the optimality conditions
(2). Then the sequence {wk} = {(xk, λk, sk)} generated by Algorithm 2.1 is bounded.

Proof. The statement is essentially due to Burke and Xu [3], and we include a proof here
only for the sake of completeness.
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Assume that the sequence {wk} = {(xk, λk, sk)} generated by Algorithm 2.1 is un-
bounded. Since {τk} is monotonically decreasing by Lemma 2.3 (b), it follows from Lemma
2.3 (c) that

‖φ(xk, sk, τk)‖ ≤ βτk ≤ βτ0 (14)

for all k ∈ N. The definition of the (smoothed) minimum function therefore implies that there
is no index i ∈ {1, . . . , n} such that xki → −∞ or ski → −∞ on a subsequence, since otherwise
we would have ϕ(xki , s

k
i , τk)→ −∞ which, in turn, would imply ‖φ(xk, sk, τk)‖ → +∞ on a

subsequence in contrast to (14). Therefore, all components of the two sequences {xk} and
{sk} are bounded from below, i.e.,

xki ≥ γ and ski ≥ γ ∀i = 1, . . . , n, ∀k ∈ N, (15)

where γ ∈ R denotes a suitable (possibly negative) constant.
On the other hand, the sequence {wk} = {(xk, λk, sk)} is unbounded by assumption.

This implies that there is at least one component i ∈ {1, . . . , n} such that xki → +∞ or
ski → +∞ on a subsequence since otherwise the two sequences {xk} and {sk} would be
bounded which, in turn, would imply the boundedness of the sequence {λk} as well because
we have ATλk + sk = c for all k ∈ N (cf. Lemma 2.3 (a)) and because A is assumed to have
full rank.

Now let ŵ = (x̂, λ̂, ŝ) ∈ Rn×Rm×Rn be a strictly feasible point for (2) whose existence
is guaranteed by our assumption. Then, in particular, we have

AT λ̂+ ŝ = c and Ax̂ = b.

Since we also have
ATλk + sk = c and Axk = b

for all k ∈ N by Lemma 2.3 (a), we get

AT (λ̂− λk) + (ŝ− sk) = 0 and A(x̂− xk) = 0 (16)

by subtracting these equations. Premultiplying the first equation in (16) with (x̂−xk)T and
taking into account the second equation in (16) gives

(x̂− xk)T (ŝ− sk) = 0.

Reordering this equation, we obtain

ŝTxk + x̂Tsk = (xk)Tsk + x̂T ŝ (17)

for all k ∈ N. Using (15) as well as x̂ > 0 and ŝ > 0 in view of the strict feasibility of the
vector ŵ = (x̂, λ̂, ŝ), it follows from (17) and the fact that xki → +∞ or ski → +∞ on a
subsequence for at least one index i ∈ {1, . . . , n} that

(xk)Tsk → +∞.

Hence there exists a component j ∈ {1, . . . , n} (independent of k) such that

xkj s
k
j → +∞ (18)

11



on a suitable subsequence.
Now, using Lemma 3.1 (b), we have

φ(xk, sk, τk) ≤ 0

for all k ∈ N. Taking into account the definition of φ and looking at the j-th component,
this implies

xkj + skj ≤
√

(xkj − skj )2 + 4τ 2
k (19)

for all k ∈ N. Using (18) and (15), we see that we necessarily have xkj > 0 and skj > 0 for all
those k belonging to the subsequence for which (18) holds. Therefore, taking the square in
(19), we obtain

4xkj s
k
j ≤ 4τ 2

k

after some simplifications. However, since the right-hand side of this expression is bounded
by 4τ 2

0 , this gives a contradiction to (18). 2

We next prove a global convergence result for Algorithm 2.1. Note that this result is different
from the one provided by Burke and Xu [3] and is more in the spirit of those from [22, 13,
14]. (Burke and Xu [3] use a stronger assumption in order to prove a global linear rate of
convergence for the sequence {τk}.)

Theorem 3.3 Assume that the sequence {wk} = {(xk, λk, sk)} generated by Algorithm 2.1
has at least one accumulation point. Then {τk} converges to zero.

Proof. Since the sequence {τk} is monotonically decreasing (by Lemma 2.3 (b)) and bounded
from below by zero, it converges to a number τ∗ ≥ 0. If τ∗ = 0, we are done.

So assume that τ∗ > 0. Then the updating rules in Step (S.2) of Algorithm 2.1 immedi-
ately give

ŵk = wk, τ̂k = τk, and ηk = 1 (20)

for all k ∈ N sufficiently large. Subsequencing if necessary, we assume without loss of
generality that (20) holds for all k ∈ N. Then Lemma 2.3 (b) and σ̂k ≥ σ̂min yield

τk ≤ τ0

k−1∏
j=0

(1− γσ̂j t̂j) ≤ τ0

k−1∏
j=0

(1− γσ̂mint̂j). (21)

Since τk → τ∗ > 0 by assumption, it follows from (21) that limk→∞ t̂k = 0. Therefore, the
stepsize α̂k := t̂k/ρ does not satisfy the line search criterion (9) for all k ∈ N large enough.
Hence we have

‖φ(x̂k + α̂k∆x̂
k, ŝk + α̂k∆ŝ

k, τ̂k + α̂k∆τ̂k)‖ > β(τ̂k + α̂k∆τ̂k) (22)

for all these k ∈ N.
Now let w∗ = (x∗, λ∗, s∗) be an accumulation point of the sequence {wk}, and let {wk}K

be a subsequence converging to w∗. Since σ̂k ∈ [σ̂min, σ̂max] for all k ∈ N, we can assume with-
out loss of generality that the subsequence {σ̂k}K converges to some number σ̂∗ ∈ [σ̂min, σ̂max].
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Furthermore, since τ∗ > 0, it follows from (20) and Lemma 2.2 (a) that the corresponding
subsequence {(∆ŵk,∆τ̂k)}K converges to a vector (∆ŵ∗,∆τ̂∗) = (∆x̂∗,∆λ̂∗,∆ŝ∗,∆τ̂∗), where
(∆ŵ∗,∆τ̂∗) is the unique solution of the linear equation

Θ′
1,ψ(w∗, τ∗)

(
∆ŵ
∆τ̂

)
= −Θσ̂∗,ψ(w∗, τ∗), (23)

cf. (8). Using {α̂k}K → 0 and taking the limit k →∞ on the subset K, we then obtain from
(20) and (22) that

‖φ(x∗, s∗, τ∗)‖ ≥ βτ∗ > 0. (24)

On the other hand, we get from (22), (10), property (P.3), (20), Lemma 2.3 (c), and σ̂k ≤ σ̂max

that

‖φ(x̂k + α̂k∆x̂
k, ŝk + α̂k∆ŝ

k, τ̂k + α̂k∆τ̂k)‖ > β
(
τ̂k + α̂k∆τ̂k

)
= β

(
τ̂k − α̂kσ̂kψ(τ̂k)/ψ

′(τ̂k)
)

≥ β
(
τ̂k − α̂kσ̂kτ̂k

)
= (1− σ̂kα̂k)βτk
≥ (1− σ̂kα̂k)‖φ(xk, sk, τk)‖
≥ (1− σ̂maxα̂k)‖φ(xk, sk, τk)‖

for all k ∈ N sufficiently large. Using (20), this implies

‖φ(xk + α̂k∆x̂
k, sk + α̂k∆ŝ

k, τk + α̂k∆τ̂k)‖ − ‖φ(xk, sk, τk)‖
α̂k

≥ −σ̂max‖φ(xk, sk, τk)‖.

Since ‖φ(·, ·, ·)‖ is a continuously differentiable function at (x∗, s∗, τ∗) due to (24), taking the
limit k →∞ for k ∈ K then gives

φ(x∗, s∗, τ∗)
T

‖φ(x∗, s∗, τ∗)‖
φ′(x∗, s∗, τ∗)

 ∆x̂∗

∆ŝ∗

∆τ̂∗

 ≥ −σ̂max‖φ(x∗, s∗, τ∗)‖,

where (∆ŵ∗,∆τ̂∗) = (∆x̂∗,∆λ̂∗,∆ŝ∗,∆τ̂∗) denotes the solution of the linear system (23).
Using (23) then gives

−‖φ(x∗, s∗, τ∗)‖ ≥ −σ̂max‖φ(x∗, s∗, τ∗)‖.

Since σ̂max ∈ (0, 1), this implies ‖φ(x∗, s∗, τ∗)‖ = 0, a contradiction to (24). Hence we cannot
have τ∗ > 0. 2

Due to Proposition 3.2, the assumed existence of an accumulation point in Theorem 3.3 is
automatically satisfied if there is a strictly feasible point for the optimality conditions (2).
An immediate consequence of Theorem 3.3 is the following result.

Corollary 3.4 Every accumulation point of a sequence {wk} = {(xk, λk, sk)} generated by
Algorithm 2.1 is a solution of the optimality conditions (2).
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Proof. The short proof is essentially the same as in [14], for example, and we include it
here for the sake of completeness. — Let w∗ = (x∗, λ∗, s∗) be an accumulation point of the
sequence {wk} = {(xk, λk, sk)}, and let {wk}K denote a subsequence converging to w∗. Then
we have τk → 0 in view of Theorem 3.3. Hence Lemma 2.3 (c) implies

‖φ(x∗, s∗, 0)‖ = lim
k∈K
‖φ(xk, sk, τk)‖ ≤ β lim

k∈K
τk = 0,

i.e., we have x∗ ≥ 0, s∗ ≥ 0 and x∗i s
∗
i = 0 for i = 1, . . . , n due to the definition of φ.

Since Lemma 2.3 (a) also shows that we have ATλ∗ + s∗ = c and Ax∗ = b, we see that
w∗ = (x∗, λ∗, s∗) is indeed a solution of the optimality conditions (2). 2

We finally state our local rate of convergence result. Since our predictor step coincides with
the one by Burke and Xu [3], the proof of this result is essentially the same as in [3], and we
therefore omit the details here.

Theorem 3.5 Let the parameter β satisfy the inequality β > 2
√
n, assume that the opti-

mality conditions (2) have a unique solution w∗ = (x∗, λ∗, s∗), and suppose that the sequence
{wk} = {(xk, λk, sk)} generated by Algorithm 2.1 converges to w∗. Then {τk} converges
globally linearly and locally quadratically to zero.

The central observation in order to prove Theorem 3.5 is that the sequence of Jacobian
matrices Θ′(wk, τk) converges to a nonsingular matrix under the assumption of Theorem 3.5.
In fact, as noted in [3, 12], the convergence of this sequence to a nonsingular Jacobian matrix
is equivalent to the unique solvability of the optimality conditions (2).

4 Numerical Results

We implemented Algorithm 2.1 in C. In order to simplify the work, we took the PCx code
from [10, 9] and modified it in an appropriate way. PCx is a predictor-corrector interior-point
solver for linear programs, written in C and calling a FORTRAN subroutine in order to solve
certain linear systems using the sparse Cholesky method by Ng and Peyton [19]. Since the
linear systems occuring in Algorithm 2.1 have essentially the same structure as those arising
in interior-point methods, it was possible to use the numerical linear algebra part from PCx
for our implementation of Algorithm 2.1. We also apply the preprocessor from PCx before
starting our method.

The initial point w0 = (x0, λ0, s0) is the same as the one used for our numerical experi-
ments in [14] and was constructed in the following way:

(a) Solve AATy = b using a sparse Cholesky code in order to compute y0 ∈ Rm.

(b) Set x0 := ATy0.

(c) Solve AATλ = Ac using a sparse Cholesky code to compute λ0 ∈ Rm.

(d) Set s0 := c− ATλ0.

14



Note that this starting point is feasible in the sense that it satisfies the linear equations
ATλ+ s = c and Ax = b. Furthermore, the initial smoothing parameter was set to

τ0 := ‖φ(x0, s0)‖∞,

i.e., τ0 is equal to the initial residual of the optimality conditions (2) (recall that the starting
vector satisfies the linear equations in (2) exactly, at least up to numerical inaccuracies). In
order to guarantee that φ(x0, s0, τ0) ≤ 0, however, we sometimes have to enlarge the value
of τ0 so that it satisfies the inequalities

τ0 ≥
√
x0
i s

0
i ∀i ∈ {1, . . . , n} with x0

i > 0, s0
i > 0.

Note that the same was done in [14]. We also took the stopping criterion from [14], i.e., we
terminate the iteration if one of the following conditions hold:

(a) τk < 10−4 or

(b) ‖Φ(wk)‖∞ < 10−4 or

(c) ‖Φ(wk)‖∞ < 10−3 and ‖Φ(wk)‖∞/‖Φ(w0)‖∞ < 10−6.

Finally, the centering parameter σ̂k was chosen as follows: We let σ̂min = 0.4, σ̂max = 0.6, γ =
0.1, start with σ̂0 = 0.5 and set

σ̂k+1 := min{σ̂max, σ̂k + γ}

if the predictor step was successful (i.e., if we were allowed to take ŵk+1 = wk + ∆wk), and

σ̂k+1 := max{σ̂min, σ̂k − γ}

otherwise. This strategy guarantees that all centering parameters belong to the interval
[σ̂min, σ̂max]. According to our experience, a larger value of σ̂k usually gives faster convergence,
but the entire behaviour of our method becomes more unstable, whereas a smaller value of
the centering parameter gives a more stable behaviour, while the overall number of iterations
increases. The dynamic choice of σ̂k given above tries to combine these observations in a
suitable way.

The remaining parameters from Step (S.0) of Algorithm 2.1 were chosen as follows:

ρ = 0.79 and β := ‖φ(x0, s0, τ0)‖/τ0.

We first consider the function ψ(τ) := τ (this, more or less, corresponds to the method from
[14])

All test runs were done on a SUN Enterprise 450 with 480 MHz. Table 1 contains the
corresponding results, with the columns of Table 1 having the following meanings:
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problem: name of the test problem in the netlib collection,
m: number of equality constraints (after preprocessing),
n: number of variables (after preprocessing),
k: number of iterations until termination,
P: number of accepted predictor steps,
τf : value of τk at the final iterate,
‖Φ(wf )‖∞: value of ‖Φ(wk)‖∞ at the final iterate,
primal objective: value of the primal objective function at final iterate.

Moreover, we give the number of iterations needed by the related method from [14] in
parantheses after the number of iterations used by our new method.

Table 1: Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf )‖∞ primal objective
25fv47 788 1843 27 (34) 11 1.0e−03 1.758e−04 5.50184589e+03
80bau3b 2140 11066 29 (29) 15 6.0e−04 2.527e−04 9.87224192e+05
adlittle 55 137 14 (15) 12 3.3e−02 2.239e−04 2.25494963e+05
afiro 27 51 12 (10) 12 1.9e−02 5.456e−06 −4.64753155e+02
agg 390 477 22 (23) 17 3.8e−02 6.257e−04 −3.59917673e+07
agg2 514 750 22 (25) 16 2.1e−02 4.992e−04 −2.02392524e+07
agg3 514 750 21 (30) 16 3.1e−02 5.673e−04 1.03121159e+07
bandm 240 395 15 (20) 12 2.6e−04 9.065e−05 −1.58628032e+02
beaconfd 86 171 21 (18) 18 2.5e−03 5.156e−04 3.35924858e+04
blend 71 111 10 (13) 9 8.1e−04 8.746e−05 −3.08121828e+01
bnl1 610 1491 30 (26) 16 8.2e−04 1.737e−04 1.97762956e+03
bnl2 1964 4008 25 (26) 10 9.3e−04 4.893e−04 1.81123495e+03
boeing1 331 697 18 (26) 13 1.7e−03 3.652e−04 −3.35213568e+02
boeing2 126 265 18 (16) 13 2.7e−03 4.166e−06 −3.15018729e+02
bore3d 81 138 14 (28) 11 5.9e−03 3.980e−05 1.37308039e+03
brandy 133 238 16 (19) 14 2.1e−03 3.469e−04 1.51850990e+03
capri 241 436 15 (20) 14 4.0e−03 9.161e−04 2.69000997e+03
cycle 1420 2773 30 (39) 14 8.2e−05 8.349e−05 −5.22639964e+00
czprob 671 2779 17 (22) 13 5.7e−03 5.207e−05 2.18519670e+06
d2q06c 2132 5728 48 (57) 18 1.8e−04 5.591e−04 1.22784214e+05
d6cube 403 5443 13 (25) 10 5.3e−04 3.157e−05 3.15491667e+02
degen2 444 757 10 (23) 10 1.9e−03 2.901e−05 −1.43517800e+03
degen3 1503 2604 10 (16) 10 9.2e−04 7.742e−05 −9.87294001e+02
dfl001 — — — (—) — — — —
e226 198 429 14 (27) 13 2.4e−04 1.889e−05 −2.58649291e+01
etamacro 334 669 20 (26) 13 8.8e−05 1.625e−03 −7.55715232e+02
fffff800 322 826 28 (36) 17 1.2e−03 5.876e−04 5.55679564e+05
finnis 438 935 20 (31) 17 2.0e−03 7.843e−04 1.72791066e+05
fit1d 24 1049 14 (20) 14 2.7e−03 8.491e−05 −9.14637809e+03
fit1p 627 1677 17 (19) 14 7.0e−05 3.469e−02 9.14648712e+03
fit2d 25 10524 17 (22) 17 1.4e−03 7.494e−04 −6.84642932e+04
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Table 1 (continued): Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf )‖∞ primal objective
fit2p 3000 13525 19 (20) 19 1.5e−03 9.397e−05 6.84642933e+04
forplan 121 447 26 (28) 17 2.2e−03 4.722e−04 −6.64218959e+02
ganges 1113 1510 20 (25) 19 2.4e−03 1.218e−04 −1.09585736e+05
gfrd-pnc 590 1134 17 (23) 15 3.2e−02 4.308e−04 6.90223600e+06
greenbea — — — (25) — — — —
greenbeb 1932 4154 43 (35) 13 1.7e−03 9.559e−04 −4.30226026e+06
israel 174 316 17 (27) 15 1.0e−02 4.732e−04 −8.96644822e+05
kb2 43 68 15 (32) 10 1.6e−03 1.653e−06 −1.74990013e+03
lotfi 133 346 23 (35) 12 3.2e−03 7.087e−04 −2.52647043e+01
maros 655 1437 22 (37) 14 2.4e−03 1.738e−04 −5.80637437e+04
maros-r7 2152 7440 39 (22) 14 4.0e−03 8.053e−04 1.49718517e+06
modszk1 665 1599 21 (26) 17 7.2e−03 3.330e−04 3.20619729e+02
nesm 654 2922 46 (52) 9 4.7e−04 4.718e−04 1.40760365e+07
perold 593 1374 26 (33) 12 2.1e−03 6.564e−04 −9.38075527e+03
pilot 1368 4543 71 (81) 9 9.0e−05 1.600e−02 −5.57274205e+02
pilot.ja 810 1804 30 (76) 14 7.1e−04 9.749e−04 −6.11313652e+03
pilot.we 701 2814 36 (61) 10 2.6e−03 9.981e−04 −2.72010753e+06
pilot4 396 1022 26(132) 12 1.7e−03 6.888e−04 −2.58113924e+03
pilot87 1971 6373 67 (63) 11 9.1e−05 6.095e−03 3.01715468e+02
pilotnov 848 2117 15 (27) 15 2.3e−03 4.059e−04 −4.49727619e+03
recipe 64 123 11 (14) 10 1.2e−03 4.205e−05 −2.66616000e+02
sc105 104 162 18 (19) 13 1.2e−03 2.793e−05 −5.22020617e+01
sc205 203 315 24 (22) 14 6.8e−04 1.030e−04 −5.22020617e+01
sc50a 49 77 14 (15) 11 4.7e−03 8.546e−05 −6.45750802e+01
sc50b 48 76 15 (14) 10 7.1e−03 7.714e−06 −7.00000047e+01
scagr25 469 669 31 (19) 13 4.7e−03 1.049e−04 −1.47534331e+07
scagr7 127 183 15 (19) 14 3.6e−03 4.563e−04 −2.33138982e+06
scfxm1 305 568 15 (20) 13 8.4e−03 6.230e−04 1.84167590e+04
scfxm2 610 1136 18 (26) 15 2.7e−03 1.834e−04 3.66602616e+04
scfxm3 915 1704 20 (26) 15 5.4e−03 9.098e−04 5.49012545e+04
scorpion 340 412 19 (21) 14 2.4e−04 1.815e−05 1.87812482e+03
scrs8 421 1199 17 (21) 14 1.9e−03 2.169e−04 9.04293215e+02
scsd1 77 760 12 (22) 12 4.2e−03 7.203e−06 8.66666364e+00
scsd6 147 1350 11 (15) 8 3.8e−04 1.937e−05 5.05000001e+01
scsd8 397 2750 9 (13) 9 8.7e−03 3.131e−05 9.04999988e+02
sctap1 284 644 12 (24) 12 9.4e−03 8.910e−06 1.41224999e+03
sctap2 1033 2443 11 (18) 11 7.2e−03 8.233e−05 1.72480714e+03
sctap3 1408 3268 12 (18) 12 3.8e−03 1.051e−05 1.42400000e+03
seba 448 901 19 (23) 12 2.5e−03 1.550e−06 1.57116000e+04
share1b 112 248 29 (43) 14 2.2e−03 3.762e−04 −7.65893186e+04
share2b 96 162 15 (16) 10 2.5e−03 8.099e−05 −4.15732240e+02
shell 487 1451 19 (22) 16 3.4e−01 4.313e−04 1.20882535e+09
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Table 1 (continued): Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf )‖∞ primal objective
ship04l 292 1905 22 (20) 16 5.3e−03 7.616e−04 1.79332454e+06
ship04s 216 1281 16 (20) 13 6.9e−03 1.561e−04 1.79871470e+06
ship08l 470 3121 25 (21) 15 2.1e−03 7.592e−04 1.90905521e+06
ship08s 276 1604 15 (20) 13 3.0e−02 7.416e−04 1.92009821e+06
ship12l 610 4171 21 (21) 13 7.0e−03 2.670e−04 1.47018792e+06
ship12s 340 1943 18 (20) 14 5.3e−03 7.548e−05 1.48923613e+06
sierra 1212 2705 20 (22) 16 7.7e−03 2.548e−05 1.53943622e+07
stair 356 532 18 (19) 14 6.9e−04 2.105e−04 −2.51266950e+02
standata 314 796 11 (13) 10 3.9e−02 1.699e−05 1.25769927e+03
standgub 314 796 11 (13) 10 3.9e−02 1.699e−05 1.25769927e+03
standmps 422 1192 14 (18) 12 9.6e−03 4.418e−05 1.40601750e+03
stocfor1 102 150 13 (16) 13 2.1e−02 2.014e−05 −4.11319832e+04
stocfor2 1980 2868 14 (29) 13 2.0e−03 1.481e−06 −3.90243999e+04
stocfor3 15362 22228 23 (63) 19 2.8e−04 5.514e−05 −3.99767839e+04
stocfor3old 15362 22228 23 (70) 19 2.8e−04 5.514e−05 −3.99767839e+04
truss 1000 8806 16 (19) 13 2.5e−03 3.621e−04 4.58815785e+05
tuff 257 567 20 (32) 15 1.9e−04 4.977e−05 2.92147852e−01
vtp.base 72 111 10 (19) 10 2.9e−01 3.126e−04 1.29831462e+05
wood1p 171 1718 22 (13) 11 1.5e−04 9.009e−05 1.44286460e+00
woodw 708 5364 36 (34) 10 1.0e−04 5.104e−03 1.30440832e+00

Table 1 clearly indicates that our current implementation works much better than our
previous code from [14]. In fact, for almost all examples we were able to reduce the number
of iterations considerably.

We finally state some results for the function ψ(τ) := (1 + τ)2 − 1. Rather than giving
another complete list, however, we illustrate the typical behaviour of this method by pre-
senting the corresponding results for those test examples why lie between kb2 and scagr7

(this list includes the difficult pilot* problems) in Table 2.

Table 2: Numerical results with quadratic function

problem m n k P τf ‖Φ(wf )‖∞ primal objective
kb2 43 68 15 9 2.0e−03 2.458e−05 −1.74990013e+03
lotfi 133 346 22 9 3.0e−03 6.715e−04 −2.52647449e+01
maros 655 1437 20 11 3.0e−03 3.805e−04 −5.80637438e+04
maros-r7 2152 7440 24 8 1.8e−03 9.450e−04 1.49718510e+06
modszk1 665 1599 26 11 2.5e−03 3.087e−05 3.20619729e+02
nesm 654 2922 45 4 7.5e−04 8.144e−04 1.40760365e+07
perold 593 1374 55 11 5.7e−05 2.585e−04 −9.38075528e+03
pilot 1368 4543 53 7 1.4e−04 2.953e−04 −5.57310815e+02
pilot.ja 810 1804 39 5 2.9e−04 1.480e−04 −6.11313633e+03
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pilot.we 701 2814 43 4 9.8e−04 9.283e−04 −2.72010754e+06
pilot4 396 1022 31 7 1.4e−03 5.672e−04 −2.58113925e+03
pilot87 1971 6373 99 3 9.1e−05 1.835e−02 3.02675463e+02
pilotnov 848 2117 23 6 1.4e−03 3.573e−04 −4.49727619e+03
recipe 64 123 10 8 1.1e−03 1.928e−05 −2.66616001e+02
sc105 104 162 15 10 1.7e−03 1.193e−04 −5.22020686e+01
sc205 203 315 18 11 3.0e−04 2.486e−05 −5.22020615e+01
sc50a 49 77 13 10 1.7e−03 3.224e−05 −6.45750795e+01
sc50b 48 76 11 9 4.1e−03 4.955e−05 −7.00000201e+01
scagr25 469 669 20 10 1.1e−02 1.060e−04 −1.47534331e+07
scagr7 127 183 16 10 3.1e−03 9.326e−05 −2.33138982e+06

5 Concluding Remarks

We have presented a class of smoothing-type methods for the solution of linear programs.
This class of methods has similar convergence properties as the one by Burke and Xu [3], for
example, but allows a more flexible choice for the updating of the smoothing parameter τ .
The numerical results presented for our implementation of this smoothing-type method are
very encouraging and, in particular, significantly better than for all previous implementa-
tions. The results also indicate that the precise updating of the smoothing parameter plays a
very important role for the overall behaviour of the methods. However, this subject certainly
needs to be investigated further.
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