
IMPROVED SMOOTHING-TYPE METHODS
FOR THE SOLUTION OF LINEAR PROGRAMS1

Stephan Engelke and Christian Kanzow

University of Hamburg
Department of Mathematics
Center for Optimization and Approximation
Bundesstrasse 55
20146 Hamburg
Germany
e-mail: engelke@math.uni-hamburg.de

kanzow@math.uni-hamburg.de

August 4, 2000 (revised September 22, 2000)

Abstract. We consider a smoothing-type method for the solution of linear programs. Its
main idea is to reformulate the primal-dual optimality conditions as a nonlinear and nons-
mooth system of equations, and to apply a Newton-type method to a smooth approximation
of this nonsmooth system. The method presented here is a predictor-corrector method, and
is closely related to some methods recently proposed by Burke and Xu on the one hand, and
by the authors on the other hand. However, here we state stronger global and/or local con-
vergence properties. Moreover, we present quite promising numerical results for the whole
netlib test problem collection.

Key Words. Linear programs, smoothing, predictor-corrector method, Newton’s method,
global convergence, quadratic convergence.

1This research was supported by the DFG (Deutsche Forschungsgemeinschaft).

1 Introduction

In this paper we describe an algorithm for the solution of linear programs given either in
primal form

min cTx s.t. Ax = b, x ≥ 0 (1)

or in dual form
max bTλ s.t. ATλ + s = c, s ≥ 0, (2)

where A ∈ IRm×n, c ∈ IRn, and b ∈ IRm are the given data, and A is assumed to have full rank
throughout this paper. The idea of our algorithm is to solve the corresponding optimality
conditions

ATλ + s = c,
Ax = b,

xi ≥ 0, si ≥ 0, xisi = 0 ∀i = 1, . . . , n.
(3)

To this end, note that (3) is totally equivalent to (1) and (2) in the sense that (3) has a
solution if and only if (1) or (2) has a solution.

The widely used class of primal-dual interior-point methods follow a similar idea: They
are also based on the optimality conditions (3) and introduce a certain perturbation of (3)
depending on a parameter τ > 0:

ATλ + s = c,
Ax = b,

xi > 0, si > 0, xisi = τ 2 ∀i = 1, . . . , n.
(4)

The system (4) is usually called the central path conditions, and is parameterized here by τ 2

instead of τ just for technical reasons which will become clear in Section 2.
Under certain assumptions, there is a unique solution wτ = (xτ , λτ , sτ) of (4) for each

τ > 0. The corresponding mapping
τ 7→ wτ

is called the central path, and the main idea of interior-point methods is to follow this central
path numerically. This is typically done by applying Newton’s method to the equations
within the central path conditions (4), whereas a suitable stepsize rule takes care of the
strict inequality constraints. In particular, all iterates generated by a primal-dual interior-
point method satisfy the strict inequality constraints.

Smoothing-type methods follow a different approach. The general idea of these methods
is to reformulate the optimality conditions (3) as a system of equations (not involving any
inequalities). Since this system is typically nonsmooth, it then gets approximated by a
smooth system of equations to which Newton’s method can be applied, see [3, 5, 11, 16] and
references therein for a couple of examples following this pattern.

The method to be presented here follows an idea by Jiang [12] and is based on a smooth
equation reformulation of the optimality conditions (3) themselves. It is, however, closely
related to both smoothing-type methods and interior-point methods. This will be made clear
as soon as we develop the algorithm in Section 2.

The algorithm we present in this paper is quite similar to the predictor-corrector method
recently proposed by Burke and Xu [2], see also [1]. Our method is also a predictor-corrector

2

method, with the corrector step being responsible for the global convergence and the pre-
dictor step guaranteeing local fast convergence under suitable assumptions. In fact, our
corrector step is identical to the one by Burke and Xu [2], but we prove a different global
convergence result for it using less stringent assumptions. On the other hand, the predictor
step we use here is taken from [9] (and was essentially introduced by Chen, Qi and Sun [6])
and can be shown to be locally quadratically convergent under weaker assumptions than
those used by Burke and Xu [2].

We therefore view our algorithm as an improved smoothing-type method due to some
better theoretical properties if compared with the method by Burke and Xu [2]. In addition,
it also improves the authors’ previous method [9] due to some stronger global convergence
properties. Furthermore, the numerical results seem to be somewhat better than for the
corresponding method in [9].

This paper is organized as follows: In Section 2, we develop our algorithm and give a
detailed statement. The global and local convergence properties are investigated in Section
3. Extensive numerical results are presented in Section 4, and Section 5 concludes this paper
with some final remarks.

The notation used in this paper is rather standard: IRn denotes the n-dimensional real
vector space. For x ∈ IRn, we use the subscript xi in order to indicate the ith component
of x, whereas a superscript like in xk is used to indicate that this is the kth iterate of a
sequence {xk} ⊆ IRn. Quite often, we will consider a triple of the form w = (xT , λT , sT)T ,
where x ∈ IRn, λ ∈ IRm, and s ∈ IRn; of course, w is then a vector in IRn+m+n. In order
to simplify our notation, however, we will usually write w = (x, λ, s) instead of using the
mathematically more correct formula w = (xT , λT , sT)T . If x, y ∈ IRn are any given vectors
satisfying the inequality xi ≥ yi for all indices i = 1, . . . , n, we simply write x ≥ y. Finally,
the symbol ‖·‖ is used for the Euclidean vector norm, whereas ‖·‖∞ indicates the maximum
norm.

2 Development of Algorithm

This section is devoted to the development of our algorithm. To this end, let ϕ : IR2 → IR
always denote the minimum function

ϕ(a, b) := 2 min{a, b},

with the factor 2 being used here only for cosmetical reasons. Define

Φ(w) := Φ(x, λ, s) :=

 ATλ + s− c
Ax− b
φ(x, s)

 ,

where
φ(x, s) := (ϕ(x1, s1), . . . , ϕ(xn, sn))T ∈ IRn.

Since ϕ is an NCP-function, i.e.,

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

3

the following observation is an immediate consequence of the definition of the mapping Φ:

w∗ = (x∗, λ∗, s∗) solves (3)⇐⇒ w∗ solves Φ(w) = 0.

However, the system Φ(w) = 0 is nonsmooth. Therefore, let ϕτ : IR2 → IR denote the
smoothed minimum function

ϕτ (a, b) := a + b−
√

(a− b)2 + 4τ 2,

typically called the Chen-Harker-Kanzow-Smale smoothing function [4, 13, 15], where τ > 0
is the smoothing parameter. Then define

Φτ (w) := Φτ (x, λ, s) :=

 ATλ + s− c
Ax− b
φτ (x, s)

 ,

where
φτ (x, s) := (ϕτ (x1, s1), . . . , ϕτ (xn, sn))T ∈ IRn.

It was observed in [13] that the following equivalence holds:

wτ = (xτ , λτ , sτ) solves (4)⇐⇒ wτ solves Φτ (w) = 0,

i.e., we obtain a reformulation of the central path conditions as a nonlinear and smooth
system of equations in this way.

So far, we have viewed τ as a parameter. In the sequel, however, it will sometimes be
useful to view τ as an independent variable. In order to make this different point of view
clear in our notation, let us write

θ(x, s, τ) := φτ (x, s).

Moreover, we will exploit the mapping Θ : IRn × IRm × IRn × [0,∞)→ IRn × IRm × IRn × IR
defined by

Θ(w, τ) := Θ(x, λ, s, τ) :=


ATλ + s− c

Ax− b
θ(x, s, τ)

τ

 .

Note that the definition of Θ(w, τ) is not equal to Φτ (w) since we have added one more line.
Since the equation Θ(w, τ) = 0 automatically implies τ = 0, we obtain the equivalence

w∗ = (x∗, λ∗, s∗) solves (3)⇐⇒ (w∗, 0) solves Θ(w, τ) = 0.

In this way we therefore get a reformulation of the optimality conditions (3) with τ being
viewed as an independent variable. This kind of reformulation goes back to Jiang [12].

For later reference, it will be important to exploit the relation between Newton’s method
applied to the system Φτ (w) = 0 and applied to the system Θ(w, τ) = 0. First consider the

4

system Φτ (w) = 0, and assume that wk = (xk, λk, sk) denotes the current iterate and τk > 0
the current value of the smoothing parameter. Then we define

wk+1 = wk + tk∆wk

for a suitable stepsize tk > 0, where the correction vector ∆wk = (∆xk, ∆λk, ∆sk) is a
solution of the linear system of equations

Φ′τk
(wk)∆wk = −Φτk

(wk).

Taking into account the definition of Φτ , this equation is equivalent to 0 AT I
A 0 0

Dk
a,τ 0 Dk

b,τ

  ∆x
∆λ
∆s

 =

 −ATλk − sk + c
−Axk + b
−φτk

(xk, sk)

 , (5)

where

Dk
a,τ := diag

(
∂ϕτk

∂a
(xk

1, s
k
1), . . . ,

∂ϕτk

∂a
(xk

n, s
k
n)

)
∈ IRn×n

and, similarly,

Dk
b,τ := diag

(
∂ϕτk

∂b
(xk

1, s
k
1), . . . ,

∂ϕτk

∂b
(xk

n, s
k
n)

)
∈ IRn×n.

On the other hand, if we apply Newton’s method to the system Θ(w, τ) = 0, we have to
solve an equation like

Θ′(wk, τk)

(
∆w
∆τ

)
= −Θ(wk, τk)

at each iteration, where the derivatives are taken with respect to w and τ . Hence the above
system becomes

0 AT I 0
A 0 0 0

Dk
a,τ 0 Dk

b,τ dk
τ

0 0 0 1




∆x
∆λ
∆s
∆τ

 =


−ATλk − sk + c
−Axk + b
−θ(xk, sk, τk)
−τk

 , (6)

where

dk
τ :=

(
∂θ

∂τ
(xk

1, s
k
1, τk), . . . ,

∂θ

∂τ
(xk

n, s
k
n, τk)

)T

∈ IRn.

Motivated by similar considerations in the field of interior-point methods (see, e.g., Wright
[18]), we will consider a generalization of the system (6) and replace the parameter τk on the
last line of the right-hand side in (6) by σkτk for some number σk ∈ [0, 1], i.e., we solve

0 AT I 0
A 0 0 0

Dk
a,τ 0 Dk

b,τ dk
τ

0 0 0 1




∆x
∆λ
∆s
∆τ

 =


−ATλk − sk + c
−Axk + b
−θ(xk, sk, τk)
−σkτk

 (7)

5

(the choice σk = 1 corresponds to (6)). Note, however, that we do not replace τk by σkτk in
the definition of the function θ(x, s, τ). In order to have a short-hand notation for the linear
system (7), we introduce the function

Θσ(w, τ) :=


ATλ + s− c

Ax− b
θ(x, s, τ)

στ


with the subscript σ indicating the dependence of Θ on the parameter σ. Then the linear
system (7) can be rewritten as

Θ′(wk, τk)

(
∆w
∆τ

)
= −Θσ(wk, τk).

Note that this or, equivalently, (7) immediately gives

∆τk = −σkτk. (8)

Replacing this expression into the remaining equations of (7), we obtain 0 AT I
A 0 0

Dk
a,τ 0 Dk

b,τ

  ∆x
∆λ
∆s

 =

 −ATλk − sk + c
−Axk + b

−θ(xk, sk, τk) + σkτkd
k
τ

 . (9)

Obviously, this can be rewritten as

Φ′τk
(wk)∆w = −Φτk

(wk) + σkτk

 0
0
dk

τ

 .

This shows that the linear system (7) can be viewed as a perturbation of the system (5),
with the perturbation being active only in the third block row of the right-hand side.

Based on the notation introduced so far, we next give a precise statement of our predictor-
corrector smoothing method.

Algorithm 2.1 (Predictor-Corrector Smoothing Method)

(S.0) (Initialization)
Choose w0 := (x0, λ0, s0) ∈ IRn × IRm × IRn such that ATλ0 + s0 = c, Ax0 = b, choose
τ0 > 0, select β ≥ ‖Φτ0(w

0)‖/τ0, ρ ∈ (0, 1), 0 < σ̂min < σ̂max < 1, ε ≥ 0, and set k := 0.

(S.1) (Termination Criterion)
If ‖Φ(wk)‖ ≤ ε: STOP.

(S.2) (Predictor Step)
Compute a solution (∆wk, ∆τk) = (∆xk, ∆λk, ∆sk, ∆τk) ∈ IRn × IRm × IRn × IR of the
linear system

Θ′(wk, τk)

(
∆w
∆τ

)
= −Θ(wk, 0). (10)

6

If ‖Φ(wk + ∆wk)‖ = 0: STOP. Otherwise, if

‖θ(xk + ∆xk, sk + ∆sk, τk)‖ > βτk,

then set
ŵk := wk, τ̂k := τk, ηk := 1,

else compute ηk = ρ`k , where `k is the nonnegative integer such that

‖θ(xk + ∆xk, sk + ∆sk, ρjτk)‖ ≤ βρjτk ∀j = 0, 1, 2, . . . , `k and

‖θ(xk + ∆xk, sk + ∆sk, ρ`k+1τk)‖ > βρ`k+1τk,

and set τ̂k := ηkτk and

ŵk :=

{
wk if `k = 0,
wk + ∆wk otherwise.

(S.3) (Corrector Step)
Choose σ̂k ∈ [σ̂min, σ̂max], and compute a solution (∆ŵk, ∆τ̂k) = (∆x̂k, ∆λ̂k, ∆ŝk, ∆τ̂k) ∈
IRn × IRm × IRn × IR of the linear system

Θ′(ŵk, τ̂k)

(
∆ŵ
∆τ̂

)
= −Θσ̂k

(ŵk, τ̂k). (11)

Let t̂k = max{ρ` | ` = 0, 1, 2, . . .} such that

‖θ(x̂k + t̂k∆x̂k, ŝk + t̂k∆ŝk, (1− σ̂k t̂k)τ̂k)‖ ≤ β(1− σ̂k t̂k)τ̂k. (12)

Set wk+1 := ŵk + t̂k∆ŵk and τk+1 := (1− σ̂k t̂k)τ̂k.

(S.4) (Update)
Set k ← k + 1, and go to Step (S.1).

To get a better understanding of the way Algorithm 2.1 works, let us add a couple of
comments. In Step (S.0), we require the starting point w0 = (x0, λ0, s0) to be feasible with
respect to the linear equations ATλ + s = c and Ax = b. Since the components x0 and s0

do not have to be positive (like in interior-point methods), it is relatively easy to find such
a starting point.

In the predictor step, we first compute a search direction by solving the linear system
(10). The interesting part about this linear system is the fact that the right-hand side of (10)
is unperturbed with respect to τ , whereas we use the standard Jacobian of the perturbed
function Θ(w, τ) on the left. This may be viewed as the counterpart of the affine scaling step
typically used as a predictor in primal-dual interior-point methods, see Wright [18]. Like in
the interior-point setting, this predictor step will eventually guarantee local fast convergence
(under suitable assumptions).

After having computed the search direction in (10), we try to reduce the smoothing
parameter τk as much as possible with the only restriction that the full step stays within a
certain neighbourhood of the central path, cf. Lemma 3.2 (c) below.

7

While our predictor step is different from the one used by Burke and Xu [2] in their
smoothing-type method, the corrector step in (S.3) coincides with the one from [2]. Note
that the linear system (11) is precisely the one from (7) and includes a perturbation on the
right-hand side as well. The predictor step also contains a procedure to reduce the smoothing
parameter. This procedure will guarantee global convergence in the sense that τk decreases
to zero under mild conditions.

3 Convergence Properties

This section investigates the global and local convergence properties of Algorithm 2.1. To
this end, we assume throughout this section that the termination parameter ε is equal to
zero, and that Algorithm 2.1 generates an infinite number of iterates wk, i.e., we assume
that we do not stop after a finite number of iterations in a point wk satisfying the optimality
conditions (3).

We first note that Algorithm 2.1 is well-defined.

Lemma 3.1 The following statements hold for any k ∈ IN:

(a) The linear systems (10) and (11) have a unique solution.

(b) There is a unique ηk satisfying the conditions in Step (S.2).

(c) The stepsize t̂k in (S.3) is uniquely defined.

Consequently, Algorithm 2.1 is well-defined.

Proof. (a) The structure of the Jacobian Θ′(wk, τk) in (6) shows that this matrix is nonsin-
gular if and only if Φ′τk

(wk) is nonsingular. The latter, however, was noted in [8, Proposition
3.1].

(b) This statement follows from [9, Proposition 3.2] and is essentially due to Burke and Xu
[2].

(c) This result follows from the proof of Theorem 1 in Burke and Xu [2]. 2

We next state some simple properties of Algorithm 2.1 to which we will refer a couple of
times in our subsequent analysis.

Lemma 3.2 The sequences {wk} = {(xk, λk, sk)} and {τk} generated by Algorithm 2.1 have
the following properties:

(a) ATλk + sk = c and Axk = b for all k ∈ IN.

(b) τk = τ0(1− σ̂0t̂0)η0 · · · (1− σ̂k−1t̂k−1)ηk−1 for all k ∈ IN.

(c) ‖θ(xk, sk, τk)‖ ≤ βτk for all k ∈ IN.

8

Proof. (a) For k = 0, this follows from the choice of our starting point in Step (S.0).
Newton’s method then guarantees that the linear equations ATλ + s = c and Ax = b are
also satisfied for all k ≥ 1.

(b) Step (S.2) of Algorithm 2.1 implies that τ̂k = ηkτk. The updating rules in Step (S.3)
therefore give

τk+1 = (1− σ̂k t̂k)τ̂k = (1− σ̂k t̂k)ηkτk

for all k ∈ IN. This gives the desired formula, see also [2, Theorem 2].

(c) The choice of the starting point w0 = (x0, λ0, s0) and β in Step (S.0) guarantee that
we have ‖θ(xk, sk, τk)‖ ≤ βτk for k = 0. The updating rules in Step (S.3) show that this
inequality holds for all k ∈ IN. 2

The next result is quite simple and will be used in order to show that the sequence {wk}
generated by Algorithm 2.1 will be bounded under certain conditions.

Lemma 3.3 The sequences {wk} = {(xk, λk, sk)} and {τk} generated by Algorithm 2.1 sat-
isfy the inequality

‖min{xk, sk}‖∞ ≤ κτk

for all k ∈ IN with κ := (2 + β)/2.

Proof. Let θi denote the ith component function of θ, i.e.,

θi(a, b, τ) := a + b−
√

(a− b)2 + 4τ 2.

Then it is easy to see that the inequality

|θi(a, b, 0)− θi(a, b, τ)| ≤ 2τ

holds for all a, b ∈ IR and all τ > 0. Using Lemma 3.2 (c), it then follows that

2|min{xk
i , s

k
i }| = |θi(x

k
i , s

k
i , 0)|

≤ |θi(x
k
i , s

k
i , τk)|+ |θi(x

k
i , s

k
i , 0)− θi(x

k
i , s

k
i , τk)|

≤ ‖θ(xk, sk, τk)‖+ |θi(x
k
i , s

k
i , 0)− θi(x

k
i , s

k
i , τk)|

≤ (β + 2)τk

for all k ∈ IN and all i = 1, . . . , n. This implies

‖min{xk, sk}‖∞ ≤ κτk

for all k ∈ IN, where κ denotes the constant specified in the statement of our lemma. 2

We next show that the sequence {wk} generated by Algorithm 2.1 remains bounded provided
that there is a strictly feasible point for the optimality conditions (3) (i.e., a vector ŵ =
(x̂, λ̂, ŝ) satisfying AT λ̂ + ŝ = c, Ax̂ = b and x̂ > 0, ŝ > 0) and that the initial smoothing
parameter τ0 > 0 is sufficiently small. This boundedness result is similar to one given by
Chen and Ye [7] in the context of box constrained variational inequality problems.

9

Proposition 3.4 Assume that there is a strictly feasible point (x̂, λ̂, ŝ) for the optimality
conditions (3), and suppose that the initial smoothing parameter τ0 > 0 satisfies

τ0 <
1

κ
min

i=1,...,n
{x̂i, ŝi},

where κ := (2 + β)/2 denotes the constant from Lemma 3.3. Then the sequence {wk} =
{(xk, λk, sk)} generated by Algorithm 2.1 is bounded.

Proof. Assume that the sequence {wk} = {(xk, λk, sk)} generated by Algorithm 2.1 is
unbounded. Since {τk} is monotonically decreasing, it follows from Lemma 3.3 that

|min{xk
i , s

k
i }| ≤ ‖min{xk, sk}‖∞ ≤ κτk ≤ κτ0 (13)

for all k ∈ IN and all i = 1, . . . , n. This obviously implies that there is no index i ∈ {1, . . . , n}
such that xk

i → −∞ or sk
i → −∞ on a subsequence. Therefore, all components of the two

sequences {xk} and {sk} are bounded from below.
On the other hand, the sequence {wk} = {(xk, λk, sk)} is unbounded by assumption.

This implies that there is at least one component i ∈ {1, . . . , n} such that xk
i → +∞ or

sk
i → +∞ on a subsequence since otherwise the two sequences {xk} and {sk} would be

bounded which, in turn, would imply the boundedness of the sequence {λk} as well because
we have ATλk + sk = c for all k ∈ IN (cf. Lemma 3.2 (a)) and because A is assumed to have
full rank.

Now let ŵ = (x̂, λ̂, ŝ) ∈ IRn×IRm×IRn be the strictly feasible point from our assumption.
Then, in particular, we have

AT λ̂ + ŝ = c and Ax̂ = b.

Since we also have
ATλk + sk = c and Axk = b

for all k ∈ IN by Lemma 3.2 (a), we get

AT (λ̂− λk) + (ŝ− sk) = 0 and A(x̂− xk) = 0 (14)

by subtracting these equations. Premultiplying the first equation in (14) with (x̂−xk)T and
taking into account the second equation in (14) gives

n∑
i=1

(x̂i − xk
i)(ŝi − sk

i) = (x̂− xk)T (ŝ− sk) = 0. (15)

We now assume without loss of generality that there is at least one component i such that
{xk

i } is unbounded, i.e., {xk
i }K → +∞ for a suitable subset K ⊆ IN (the argument would

be similar if there would exist at least one component i with {sk
i } being unbounded). Let

us define the following index sets:

Ix := {i | {xk
i }K is unbounded},

Is := {i | {sk
i }K is unbounded},

Ib := {i | {xk
i }K and {sk

i }K are bounded}.

10

Note that Ix is nonempty, whereas Is (and Ib) might be empty. Using the definitions of these
three index sets and subsequencing if necessary, we obtain from (13) that

{xk
i }K → +∞ and sk

i ≤ κτ0 ∀k ∈ K ∀i ∈ Ix (16)

and
{sk

i }K → +∞ and xk
i ≤ κτ0 ∀k ∈ K ∀i ∈ Is, (17)

whereas there is a constant c ∈ IR such that∑
i∈Ib

(xk
i − x̂i)(s

k
i − ŝi) ≤ c

for all k ∈ K. Using (15) then gives

c ≥
∑
i∈Ib

(xk
i − x̂i)(s

k
i − ŝi)

=
∑
i∈Ix

(xk
i − x̂i)(ŝi − sk

i) +
∑
i∈Is

(xk
i − x̂i)(ŝi − sk

i)

for all k ∈ K. However, the right-hand side is unbounded on a subsequence due to (16) and
(17) since ŝi − sk

i ≥ ŝi − κτ0 > 0 (i ∈ Ix) and x̂i − xk
i ≥ x̂i − κτ0 > 0 (i ∈ Is) in view of our

choice of τ0 > 0. This contradiction completes the proof. 2

Note that Proposition 3.4 guarantees the boundedness of the iterates wk provided that the
initial smoothing parameter is sufficiently small. On the other hand, it is interesting to note
that Burke and Xu [2] can prove the boundedness of their iterates under the assumption that
τ0 is sufficiently large. In fact, Burke and Xu [2] can provide a lower bound for their choice
of τ0 which is known a priori, whereas our upper bound from Proposition 3.4 is, in general,
not known. However, the lower bound from [2] could be very large, and this, in turn, could
have a bad influence on the numerical behaviour of the smoothing-type method. — In any
case, it should be noted that some interior-point methods generate bounded iterates under
the sole assumption that the primal and dual linear programs (1) and (2), respectively, are
feasible (rather than strictly feasible).

We next give a global convergence result for Algorithm 2.1. Note that this result is
different from the one provided by Burke and Xu [2]. (They use an assumption which is
even stronger than the one we use for our local convergence result in Theorem 3.8; on the
other hand, the main emphasis in [2] was to prove a global linear rate of convergence result.)

Theorem 3.5 Assume that the sequence {wk} = {(xk, λk, sk)} generated by Algorithm 2.1
has at least one accumulation point. Then {τk} converges to zero.

Proof. Since the sequence {τk} is monotonically decreasing and bounded from below by
zero, it converges to a number τ∗ ≥ 0. If τ∗ = 0, we are done.

So assume that τ∗ > 0. Then the updating rules in Step (S.2) of Algorithm 2.1 immedi-
ately give

ŵk = wk, τ̂k = τk, and ηk = 1 (18)

11

for all k ∈ IN sufficiently large. Subsequencing if necessary, we assume without loss of
generality that (18) holds for all k ∈ IN. Then Lemma 3.2 (b) and σ̂k ≥ σ̂min yield

τk = τ0

k−1∏
j=0

(1− σ̂j t̂j) ≤ τ0

k−1∏
j=0

(1− σ̂mint̂j). (19)

Since τk → τ∗ > 0 by assumption, it follows from (19) that limk→∞ t̂k = 0. Therefore, the
stepsize α̂k := t̂k/ρ does not satisfy the line search criterion (12) for all k ∈ IN sufficiently
large. Hence we have

‖θ(x̂k + α̂k∆x̂k, ŝk + α̂k∆ŝk, (1− σ̂kα̂k)τ̂k)‖ > β(1− σ̂kα̂k)τ̂k (20)

for all these k ∈ IN.
Now let w∗ = (x∗, λ∗, s∗) be an accumulation point of the sequence {wk}, and let {wk}K

be a subsequence converging to w∗. Since σ̂k ∈ [σ̂min, σ̂max] for all k ∈ IN, we can assume
without loss of generality that the subsequence {σ̂k}K converges to some number σ̂∗ ∈
[σ̂min, σ̂max]. Furthermore, since τ∗ > 0, it follows from Lemma 3.1 (a) that the corresponding
subsequence {(∆ŵk, ∆τ̂k)}K converges to a vector (∆ŵ∗, ∆τ̂∗) = (∆x̂∗, ∆λ̂∗, ∆ŝ∗, ∆τ̂∗), where
(∆ŵ∗, ∆τ̂∗) is the unique solution of the linear equation

Θ′(w∗, τ∗)

(
∆ŵ
∆τ̂

)
= −Θσ̂∗(w

∗, τ∗), (21)

cf. (11). Using {α̂k}K → 0 and taking the limit k → ∞ on the subset K, we then obtain
from (18) and (20) that

‖θ(x∗, s∗, τ∗)‖ ≥ βτ∗ > 0. (22)

On the other hand, we get from (20), (18), Lemma 3.2 (c), and σ̂k ≤ σ̂max that

‖θ(x̂k + α̂k∆x̂k, ŝk + α̂k∆ŝk, (1− σ̂kα̂k)τ̂k‖ > (1− σ̂kα̂k)βτ̂k

= (1− σ̂kα̂k)βτk

≥ (1− σ̂kα̂k)‖θ(xk, sk, τk)‖
≥ (1− σ̂maxα̂k)‖θ(xk, sk, τk)‖

for all k ∈ IN sufficiently large. Using (18) and ∆τ̂k = −σ̂kτ̂k (cf. (8)), this implies

‖θ(xk + α̂k∆x̂k, sk + α̂k∆ŝk, τk + α̂k∆τ̂k)‖ − ‖θ(xk, sk, τk)‖
α̂k

≥ −σ̂max‖θ(xk, sk, τk)‖.

Since ‖θ(·, ·, ·)‖ is a continuously differentiable function at (x∗, s∗, τ∗) due to (22), taking the
limit k →∞ for k ∈ K then gives

θ(x∗, s∗, τ∗)
T

‖θ(x∗, s∗, τ∗)‖
θ′(x∗, s∗, τ∗)

 ∆x̂∗

∆ŝ∗

∆τ̂∗

 ≥ −σ̂max‖θ(x∗, s∗, τ∗)‖,

12

where (∆x̂∗, ∆λ̂∗, ∆ŝ∗, ∆τ̂∗) denotes the solution of the linear system (21). Using (21) then
gives

−‖θ(x∗, s∗, τ∗)‖ ≥ −σ̂max‖θ(x∗, s∗, τ∗)‖.
Since σ̂max ∈ (0, 1), this implies ‖θ(x∗, s∗, τ∗)‖ = 0, a contradiction to (22). 2

Note that the assumed existence of an accumulation point in Theorem 3.5 is automatically
satisfied under the conditions of Proposition 3.4. — An immediate consequence of Theorem
3.5 is the following result.

Corollary 3.6 Every accumulation point of a sequence {wk} = {(xk, λk, sk)} generated by
Algorithm 2.1 is a solution of the optimality conditions (3).

Proof. Let w∗ = (x∗, λ∗, s∗) be an accumulation point of the sequence {wk} = {(xk, λk, sk)},
and let {wk}K denote a subsequence converging to w∗. Then we have τk → 0 in view of
Theorem 3.5. Hence Lemma 3.2 (c) implies

‖θ(x∗, s∗, 0)‖ = lim
k∈K
‖θ(xk, sk, τk)‖ ≤ β lim

k∈K
τk = 0,

i.e., we have x∗ ≥ 0, s∗ ≥ 0 and x∗i s
∗
i = 0 for i = 1, . . . , n due to the definition of θ.

Since Lemma 3.2 (a) also shows that we have ATλ∗ + s∗ = c and Ax∗ = b, we see that
w∗ = (x∗, λ∗, s∗) is indeed a solution of the optimality conditions (3). 2

We next want to give a local convergence result. To this end, we first note that the search
direction we obtain in our predictor step is identical to the one obtained in the predictor
step of the method from [9].

Lemma 3.7 The vector (∆wk, ∆τk) is a solution of the linear system (10) if and only if
∆wk solves the system

Φ′τk
(wk)∆w = −Φ0(w

k),

and ∆τk = 0.

Proof. Since the smoothing parameter on the right-hand side of the linear system (10) is
equal to zero, the assertion follows immediately from the discussion following (6). 2

The previous result implies that we can apply the local rate of convergence analysis from
[9]. Hence we obtain the following result from [9] (see also Tseng [17]).

Theorem 3.8 Assume that the sequence {wk} generated by Algorithm 2.1 converges to a
strictly complementary solution of the optimality conditions (2.1). Suppose further that the
parameter β from Step (S.0) of Algorithm 2.1 is chosen sufficiently large such that β > 2

√
n.

Then the predictor step is eventually accepted, and we have

τk+1 = O(τ 2
k)

for all k ∈ IN sufficiently large, i.e., the smoothing parameter converges locally Q-quadratically
to zero.

13

Note that a typical interior-point method can guarantee the convergence of the correspond-
ing iteration sequence to a strictly complementary solution, so from this point of view, the
assumptions we use in Theorem 3.8 are stronger. However, this is basically the only differ-
ence, in particular, we stress that the assumptions used in Theorem 3.8 do not necessarily
imply that the solution set of the optimality conditions (3) reduces to a singleton.

We close this section by noting that all results (with the possible exception of Theorem
3.8) would still be true if ϕ would denote the Fischer-Burmeister function

ϕ(a, b) := a + b−
√

a2 + b2

from [10] together with its smooth counterpart

ϕτ (a, b) := a + b−
√

a2 + b2 + 2τ 2

from [13]; this can be seen by an easy inspection of the previous proofs. On the other hand,
it is currently an open question whether or not Theorem 3.8 also holds for the Fischer-
Burmeister function.

4 Numerical Results

We implemented Algorithm 2.1 in MATLAB by modifying the LIPSOL code from Zhang [19,
20]. LIPSOL is a primal-dual interior-point solver for linear programs, written in MATLAB
and calling a FORTRAN subroutine in order to solve certain linear systems using the sparse
Cholesky method by Ng and Peyton [14]. Since the linear systems occuring in Algorithm 2.1
have essentially the same structure as those arising in primal-dual interior-point methods, it
was possible to use the numerical linear algebra part from LIPSOL for our implementation
of Algorithm 2.1.

The starting point w0 = (x0, λ0, s0) was constructed in the following way:

(a) Solve AATy = b using a sparse Cholesky code in order to compute y0 ∈ IRm.

(b) Set x0 := ATy0.

(c) Solve AATλ = Ac using a sparse Cholesky code to compute λ0 ∈ IRm.

(d) Set s0 := c− ATλ0.

This is exactly the starting point used in [9]. One arrives at this starting point by solving
the two simple programs

min
1

2
‖x‖2 s.t. Ax = b

for x0 and

min
1

2
‖s‖2 s.t. ATλ + s = c

for λ0 and s0. The construction of the starting point guarantees that the two linear systems
Ax = b and ATλ+s = c are satisfied in w0 = (x0, λ0, s0). Furthermore, the initial smoothing
parameter τ0 is taken such that

τ0 ≥
√

x0
i s

0
i ∀i ∈ {1, . . . , n} with x0

i > 0, s0
i > 0.

14

This choice guarantees that we have θ(x0, s0, τ0) ≤ 0 (both for the minimum and the Fischer-
Burmeister function). This condition is required by the algorithm from Burke and Xu [2],
although it is not necessary for our method.

We terminate our iteration if one of the following conditions hold:

(a) τk < 10−4 or

(b) ‖Φ(wk)‖∞ < 10−4 or

(c) ‖Φ(wk)‖∞ < 10−3 and ‖Φ(wk)‖∞/‖Φ(w0)‖∞ < 10−6.

Criterion (a) was used in [9] and is motivated by the fact that the square of τ does, more
or less, play the role of the duality gap in interior-point methods (cf. (4)) for which 10−8 is
a typical value for the stopping parameter. Criterion (b) is an absolute error measuring the
total residual ‖Φ(wk)‖∞, whereas (c) is a mixture between a weakened form of this absolute
error and a relative error comparing the kth residual ‖Φ(wk)‖∞ with the initial residual
‖Φ(w0)‖∞.

The remaining parameters from Step (S.0) of Algorithm 2.1 were chosen as follows:

ρ = 0.9, β := ‖Φτ0(w
0)‖/τ0

and ϕ being the Fischer-Burmeister function (according to our experience, the Fischer-
Burmeister function gives better results than the minimum function, at least within the
framework of Algorithm 2.1). Finally, the parameter σ̂k from Step (S.3) of Algorithm 2.1
was always taken to be 0.5.

All test runs were done on a SUN Ultra 2 with 300 MHz, and Table 1 contains the cor-
responding results, with the columns of Table 1 having the following meanings:

problem: name of the test problem in the netlib collection,
m: number of equality constraints (after preprocessing),
n: number of variables (after preprocessing),
k: number of iterations until termination,
P: number of accepted predictor steps,
τf : value of τk at the final iterate,
‖Φ(wf)‖∞: value of ‖Φ(wk)‖∞ at the final iterate,
primal objective: value of the primal objective function at final iterate.

Table 1: Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf)‖∞ primal objective
25fv47 798 1854 34 17 6.0250e−04 2.9537e−04 5.5018459053e+03
80bau3b 2235 11516 29 23 1.0987e−03 7.1465e−04 9.8722419211e+05
adlittle 55 137 15 15 2.1737e−02 8.7395e−05 2.2549496391e+05
afiro 27 51 10 10 4.7999e−02 3.2452e−05 −4.6474687177e+02
agg 488 615 23 20 1.3406e−02 6.9052e−04 −3.5991767286e+07
agg2 516 758 25 18 7.6969e−03 4.7607e−04 −2.0239252355e+07

15

Table 1 (continued): Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf)‖∞ primal objective
agg3 516 758 30 14 7.0617e−03 1.1522e−04 1.0312115936e+07
bandm 269 436 20 19 4.9684e−04 9.3110e−05 −1.5862801756e+02
beaconfd 148 270 18 15 2.7426e−03 5.8563e−04 3.3592485986e+04
blend 74 114 13 12 2.7468e−03 2.9106e−06 −3.0812134385e+01
bnl1 632 1576 26 16 3.5355e−04 7.0895e−05 1.9776295617e+03
bnl2 2268 4430 26 14 9.5617e−04 4.8772e−04 1.8112367543e+03
boeing1 347 722 26 16 2.2843e−03 4.9528e−04 −3.3521310546e+02
boeing2 140 279 16 15 5.4054e−03 9.8945e−04 −3.1500732408e+02
bore3d 199 300 28 22 1.3979e−03 4.1970e−05 1.3730804026e+03
brandy 149 259 19 15 1.1040e−03 7.8205e−05 1.5185099104e+03
capri 267 476 20 19 9.5525e−03 6.4732e−04 2.6900133856e+03
cycle 1801 3305 39 19 9.4566e−05 1.0106e−02 −5.2249915841e+00
czprob 737 3141 22 19 1.1163e−02 2.8069e−04 2.1851966995e+06
d2q06c 2171 5831 57 19 8.3779e−05 4.0045e−05 1.2278421095e+05
d6cube 404 6184 25 21 1.7077e−03 2.6014e−05 3.1549167161e+02
degen2 444 757 23 23 2.3842e−03 9.9759e−05 −1.4351779632e+03
degen3 1503 2604 16 16 7.9692e−04 5.7716e−05 −9.8729398786e+02
dfl001 6071 12230 — — — —
e226 220 469 27 25 2.4792e−04 5.3902e−05 −1.8751928739e+01
etamacro 357 692 26 13 1.5436e−04 7.3792e−05 −7.5571522983e+02
fffff800 501 1005 36 14 6.2879e−03 8.5460e−04 5.5567957590e+05
finnis 492 1014 31 20 1.3882e−03 2.9195e−04 1.7279127031e+05
fit1d 24 1049 20 18 5.7480e−04 4.0534e−05 −9.1463780917e+03
fit1p 627 1677 19 19 1.7472e−03 7.3692e−06 9.1463780936e+03
fit2d 25 10524 22 20 6.0248e−04 8.2675e−05 −6.8464293289e+04
fit2p 3000 13525 20 20 1.2942e−03 3.0570e−04 6.8464293283e+04
forplan 135 463 28 17 4.7384e−03 9.3267e−04 −6.6421820761e+02
ganges 1137 1534 25 20 3.0644e−03 6.4436e−04 −1.0958573612e+05
gfrd-pnc 600 1144 23 16 1.2681e−02 2.4942e−04 6.9022360024e+06
greenbea 2318 5424 25 20 5.7593e−03 8.5643e−04 −7.2462520306e+07
greenbeb 2317 5415 35 15 2.2551e−03 4.7930e−04 −4.3022602607e+06
grow15 300 645 37 18 2.4283e−02 3.7293e−06 −1.0687094129e+08
grow22 440 946 37 15 1.0882e−01 7.5577e−06 −1.6083433646e+08
grow7 140 301 34 19 3.2322e−02 2.2135e−05 −4.7787811813e+07
israel 174 316 27 17 3.9926e−03 2.8436e−04 −8.9664482178e+05
kb2 43 68 32 10 3.3160e−03 9.8866e−05 −1.7499000911e+03
lotfi 151 364 35 16 3.7591e−03 8.0923e−04 −2.5263066012e+01
maros 835 1921 37 12 3.1239e−03 7.1513e−04 −5.8063742927e+04
maros-r7 3136 9408 22 22 4.7684e−03 9.7763e−04 1.4971851671e+06
modszk1 686 1622 26 17 1.1499e−02 8.3608e−04 3.2061981508e+02
nesm 654 2922 52 14 2.9135e−04 2.4794e−04 1.4076036489e+07
perold 625 1530 33 14 3.3115e−03 7.3875e−04 −9.3805322461e+03

16

Table 1 (continued): Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf)‖∞ primal objective
pilot 1441 4657 81 14 1.1707e−04 1.4059e−04 −5.5748445014e+02
pilotja 924 2044 76 14 9.6009e−05 4.3618e−03 −6.1130052461e+03
pilotwe 722 2930 61 13 5.8582e−04 3.7472e−04 −2.7201075333e+06
pilot4 402 1173 132 13 9.5377e−05 6.9395e−03 −2.5810606602e+03
pilot87 2030 6460 63 14 8.3070e−05 8.8733e−03 3.0173031374e+02
pilotnov 951 2242 27 22 2.5409e−03 3.0714e−04 −4.4972761773e+03
recipe 85 177 14 14 1.2207e−03 3.5042e−05 −2.6661598322e+02
sc105 105 163 19 13 1.4451e−03 7.7940e−05 −5.2202033312e+01
sc205 205 317 22 19 7.5991e−04 1.3473e−04 −5.2202035425e+01
sc50a 49 77 15 10 3.6860e−03 4.9576e−05 −6.4575009902e+01
sc50b 48 76 14 11 6.6556e−03 7.6186e−06 −6.9999776566e+01
scagr25 471 671 19 17 2.3406e−02 2.9238e−04 −1.4753433056e+07
scagr7 129 185 19 18 3.4159e−03 3.3656e−04 −2.3313898243e+06
scfxm1 322 592 20 19 5.9750e−03 6.4703e−04 1.8416759818e+04
scfxm2 644 1184 26 18 4.3503e−03 8.7736e−04 3.6660262213e+04
scfxm3 966 1776 26 21 4.9124e−03 9.6075e−04 5.4901255716e+04
scorpion 375 453 21 20 2.7373e−04 1.8825e−05 1.8781248227e+03
scrs8 485 1270 21 19 6.6791e−04 4.5185e−05 9.0429695560e+02
scsd1 77 760 22 22 4.7684e−03 9.5696e−06 8.6666991041e+00
scsd6 147 1350 15 15 4.0199e−04 1.1125e−06 5.0500000067e+01
scsd8 397 2750 13 13 1.1068e−02 4.6656e−05 9.0500023711e+02
sctap1 300 660 24 23 4.0019e−03 5.1964e−05 1.4122500207e+03
sctap2 1090 2500 18 16 1.5629e−03 1.4780e−05 1.7248071430e+03
sctap3 1480 3340 18 17 2.1396e−03 9.2047e−05 1.4240000008e+03
seba 515 1036 23 15 3.1158e−03 9.3931e−05 1.5711600096e+04
share1b 112 248 43 14 3.0326e−03 9.3991e−04 −7.6589318369e+04
share2b 96 162 16 16 3.0518e−04 4.4814e−07 −4.1573224024e+02
shell 496 1487 22 14 1.7418e−01 1.6486e−05 1.2088253461e+09
ship04l 356 2162 20 20 1.6465e−02 8.0608e−04 1.7933245380e+06
ship04s 268 1414 20 20 1.2018e−02 6.5490e−05 1.7987147004e+06
ship08l 688 4339 21 20 1.0490e−02 3.7678e−04 1.9090552114e+06
ship08s 416 2171 20 20 1.8916e−02 1.4499e−04 1.9200982105e+06
ship12l 838 5329 21 20 8.4547e−03 5.6258e−04 1.4701879193e+06
ship12s 466 2293 20 19 8.9471e−03 6.2617e−04 1.4892361344e+06
sierra 1222 2715 22 19 1.9638e−02 9.5043e−04 1.5394362263e+07
stair 356 538 19 18 2.3050e−03 1.6815e−04 −2.5126689656e+02
standata 359 1258 13 12 7.2079e−02 9.5241e−06 1.2577586668e+03
standgub 361 1366 13 12 7.2079e−02 9.5241e−06 1.2577586668e+03
standmps 467 1258 18 14 9.0258e−03 1.1631e−05 1.4060176463e+03
stocfor1 109 157 16 11 3.3401e−02 1.2536e−04 −4.1131976111e+04
stocfor2 2157 3045 29 16 8.3230e−04 2.4732e−05 −3.9024408532e+04
stocfor3 16675 23541 63 17 1.8715e−04 2.8605e−04 −3.9976784284e+04

17

Table 1 (continued): Numerical results for Algorithm 2.1

problem m n k P τf ‖Φ(wf)‖∞ primal objective
stocfor3old 16675 23541 70 13 8.7370e−05 6.0456e−04 −3.9976783942e+04
truss 1000 8806 19 18 6.3715e−03 5.6972e−05 4.5881584778e+05
tuff 292 617 32 16 3.2629e−04 1.5624e−04 2.9216987102e−01
vtpbase 194 325 19 19 3.8147e−02 3.2374e−05 1.2983146617e+05
wood1p 244 2595 13 13 3.3617e−04 6.1025e−05 1.4429024524e+00
woodw 1098 8418 34 22 2.2390e−04 9.7122e−05 1.3044869516e+00

The overall results are quite good and seem to be better than the corresponding results
from the three-step method described in [9]. The method has only one failure on problem
dfl001 (interestingly, LIPSOL also produces an error for this example, at least on our
machine), and most test problems can be solved in less than 20–30 iterations. Although
interior-point methods are still more efficient on most examples, the numerical behaviour
of our smoothing-type method is getting pretty close to the one of interior-point methods,
and is definitely approaching an area where it may be viewed as a possible alternative to
interior-point methods.

When comparing the results with an interior-point solver, however, one should take into
account that Algorithm 2.1 has to factor up to two linear systems of equations per iteration,
whereas interior-point methods work with only one factorization. On the other hand, we
stress that Algorithm 2.1 has to factorize only one linear system at those iterations where
the predictor step is not successful. Moreover, it seems possible to modify the theory in such
a way that one can skip the corrector step whenever the predictor step is acceptable. Such
a modification of Algorithm 2.1 would then have to factorize only one system per iteration.

5 Concluding Remarks

In this paper, we modified the recently proposed smoothing-type methods from [2, 9]. The
modified method has some stronger global and/or local convergence properties than the
methods from [2, 9], and the numerical results indicate that the method works very well on
the netlib test problem collection. Since these results were obtained by using the Fischer-
Burmeister function (rather than the minimum function) and since the local convergence
result from Theorem 3.8 does not necessarily hold for the Fischer-Burmeister function, this
function certainly deserves further investigation. In fact, this is part of our future research,
and we hope that this, in turn, will have a positive influence on our implementation of the
predictor step.

Acknowledgement. The authors would like to thank a referee as well as Prof. Liping
Zhang for pointing out an error in an earlier version of this manuscript.

18

References

[1] J.V. Burke and S. Xu: A non-interior predictor-corrector path-following method for
LCP. In: M. Fukushima and L. Qi (eds.): Reformulation: Nonsmooth, Piecewise
Smooth, Semismooth and Smoothing Methods. Kluwer Academic Publishers, 1999.

[2] J.V. Burke and S. Xu: A non-interior-predictor-corrector path following algorithm
for the monotone linear complementarity problem. Mathematical Programming 87, 2000,
pp. 113–130.

[3] B. Chen and X. Chen: A global and local superlinear continuation-smoothing method
for P0 and R0 NCP or monotone NCP. SIAM Journal on Optimization 9, 1999, pp.
624–645.

[4] B. Chen and P.T. Harker: A non-interior-point continuation method for linear
complementarity problems. SIAM Journal on Matrix Analysis and Applications 14, 1993,
pp. 1168–1190

[5] B. Chen and N. Xiu: A global linear and local quadratic noninterior continuation
method for nonlinear complementarity problems based on Chen-Mangasarian smoothing
functions. SIAM Journal on Optimization 9, 1999, pp. 605–623.

[6] X. Chen, L. Qi and D. Sun: Global and superlinear convergence of the smoothing
Newton method and its application to general box constrained variational inequalities.
Mathematics of Computation 67, 1998, pp. 519–540.

[7] X. Chen and Y. Ye: On homotopy-smoothing methods for box-constrained variational
inequalities. SIAM Journal on Control and Optimization 37, 1999, pp. 589–616.

[8] S. Engelke and C. Kanzow: On the solution of linear programs by Jacobian smooth-
ing methods. Annals of Operations Research, to appear.

[9] S. Engelke and C. Kanzow: Predictor-corrector smoothing methods for the solu-
tion of linear programs. Preprint 153, Institute of Applied Mathematics, University of
Hamburg, Hamburg, March 2000.

[10] A. Fischer: A special Newton-type optimization method. Optimization 24, 1992, pp.
269–284.

[11] K. Hotta and A. Yoshise: Global convergence of a class of non-interior point al-
gorithms using Chen-Harker-Kanzow-Smale functions for nonlinear complementarity
problems. Mathematical Programming 86, 1999, pp. 105–133.

[12] H. Jiang: Smoothed Fischer-Burmeister equation methods for the complementarity
problem. Technical Report, Department of Mathematics, University of Melbourne, Mel-
bourne, Australia, June 1997.

[13] C. Kanzow: Some noninterior continuation methods for linear complementarity prob-
lems. SIAM Journal on Matrix Analysis and Applications 17, 1996, pp. 851–868.

19

[14] E. Ng and B.W. Peyton: Block sparse Cholesky algorithms on advanced uniprocessor
computers. SIAM Journal on Scientific Computing 14, 1993, pp. 1034–1056.

[15] S. Smale: Algorithms for solving equations. In Proceedings of the International
Congress of Mathematicians. AMS, Providence, 1987, pp. 172–195.

[16] P. Tseng: Analysis of a non-interior continuation method based on Chen-Mangasarian
smoothing functions for complementarity problems. In: M. Fukushima and L. Qi
(eds.): Reformuation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing
Methods. Kluwer Academic Publishers, 1998, pp. 381–404.

[17] P. Tseng: Error bounds and superlinear convergence analysis of some Newton-type
methods in optimization. In: G. Di Pillo and F. Giannessi (eds.): Nonlinear Opti-
mization and Related Topics. Kluwer Academic Publishers, to appear.

[18] S.J. Wright: Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA, 1997.

[19] Y. Zhang: Solving large-scale linear programs by interior-point methods under the
MATLAB environment. Optimization Methods and Software 10, 1998, pp. 1–31.

[20] Y. Zhang: User’s guide to LIPSOL: Linear programming interior point solver v0.4.
Optimization Methods and Software 11 & 12, 1999, pp. 385–396.

20

