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1 Introduction

We consider the variational inequality problem, VIP(X,F ) for short, which is to find a
vector x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0 for all x ∈ X, (1)

where X ⊆ IRn is a closed set and F : IRn → IRn is any given function which we assume
to be at least continuously differentiable.

Variational inequality problems include as special cases complementarity problems and
necessary optimality conditions for constrained optimization problems and have many
applications in the engineering and economic sciences, see, e.g., [13, 22].

This has motivated an increasing interest in variational inequalities, from both the
theoretical and the algorithmic point of view. One of the main paths followed in the the-
oretical study of variational inequalities has been their reduction to nonsmooth systems
of (generalized) equations, which opens the way to the application of some sophisticated
machinery developed in the latter field. In particular, the reformulation as a general-
ized equation led to a dramatic improvement in our understanding of the properties of
variational inequalities, see, for example, [19, 27, 28]. Another important kind of reformu-
lation, which attracted much attention and also gave important insights into variational
inequality problems, is the one based on the normal map, see [7, 20, 31, 32] and references
therein.

Naturally associated to the equation reformulation is the optimization approach, where
the square of the norm of the system of equations is minimized in order to find numerically
a solution of the variational inequality. Also in this case the use of the normal map
equation reformulation led to the development of robust and effective algorithms, see
[2, 6, 26, 33, 34].

In this paper, we propose a new equation reformulation of the KKT-conditions of
VIP(X, F ) (see below) and study some relevant properties of this reformulation and of
the associated optimization problem. In order to explain this approach, a few words on
the KKT-system associated to VIP(X, F ) are in order.

We assume that the feasible set X can be represented as follows:

X := {x ∈ IRn|h(x) = 0, g(x) ≥ 0}, (2)

where h : IRn → IRp and g : IRn → IRm are continuously differentiable functions. Then the
following equations and inequalities are called the KKT-conditions of problem VIP(X, F ):

F (x) +∇h(x)y −∇g(x)z = 0,
h(x) = 0,

g(x) ≥ 0, z ≥ 0, zTg(x) = 0.
(3)

A triple (x, y, z) ∈ IRn+p+m satisfying (3) is called a KKT-point.
There is a strong relationship between the KKT-conditions (3) and the variational

inequality problem (1). If x∗ ∈ IRn is a (local) solution of VIP(X, F ) and if a constraint
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qualification holds (e.g., the Mangasarian-Fromovitz condition), then multiplier vectors
y∗ ∈ IRp and z∗ ∈ IRm exist such that the vector w∗ := (x∗, y∗, z∗) ∈ IRn+p+m is a KKT-
point of VIP(X, F ). Conversely, if all component functions hi (i = 1, . . . , p) are affine
and all component functions gi (i = 1, . . . ,m) are concave (so that X is a convex set)
then the x-part of every KKT-point w∗ = (x∗, y∗, z∗) is a solution of VIP(X, F ), see [17].
Note that F is not required to be monotone for this relationship to hold. Moreover, if
X is a polyhedral set, then each solution of VIP(X, F ) corresponds to a KKT-point and
vice versa.

In order to reformulate the KKT-conditions of VIP(X,F ) as a system of equations,
we use the function ϕ : IR2 → IR defined by

ϕ(a, b) :=
√

a2 + b2 − a− b.

This function has first been used by Fischer [14] in order to reformulate the KKT-
conditions of an inequality constrained optimization problem. Since then it has become
quite popular in the fields of linear and nonlinear complementarity, constrained opti-
mization and variational inequality problems, see, e.g., the survey paper [15]. The main
property of this function is the following characterization of its zeros:

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Therefore, the KKT-conditions (3) can equivalently be written as the nonlinear system
of equations

Φ(w) := Φ(x, y, z) = 0, (4)

where Φ : IRn+p+m → IRn+p+m is defined by

Φ(w) = Φ(x, y, z) :=

 L(x, y, z)
h(x)

φ(g(x), z)


with

L(x, y, z) := F (x) +∇h(x)y −∇g(x)z,

φ(g(x), z) := (ϕ(g1(x), z1), . . . , ϕ(gm(x), zm))T ∈ IRm.

Associated to the nonlinear system of equations (4), we can consider the problem of
minimizing its natural merit function, i.e.,

Ψ(w) → min, (5)

where

Ψ(w) :=
1

2
Φ(w)TΦ(w) =

1

2
‖Φ(w)‖2.

Note that the function ϕ is not differentiable in the origin, so that the system (4) is a
nonsmooth reformulation of the KKT-conditions (3). However, it can be seen that Φ is a
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locally Lipschitz-continuous operator, while, remarkably, if h and g are C2-functions, Ψ
is continuously differentiable, see Proposition 4.1 below.

Our main motivation for studying the reformulations (4) and (5) of the KKT-conditions
(3) comes from the field of algorithms for complementarity and optimization problems.
There, it was recently shown that reformulations based on the function ϕ possess many
valuable properties, and allow the development of efficient solution methods [5, 8]. More-
over, we think that the approach proposed in this paper also gives additional insight in
the variational inequality problem that could fruitfully be exploited in the analysis of,
e.g., stability and sensitivity properties. In particular we point out that we shall establish
a new, appealing characterization of strongly regular KKT-points of VIP(X, F ). We refer
the reader to [5, 15] for a more detailed discussion on approaches based on the function
ϕ and to [9, 10, 11] for applications of the results of this paper to the development of
algorithms for the solution of problem VIP(X,F ).

In this paper we shall concentrate on two specific topics which, in the past few years,
emerged as crucial points in reformulations of complementarity and variational inequality
problems as systems of equations or as optimization problems:

(a) conditions which ensure the nonsingularity of all the generalized Jacobians of Φ (or
at least ensure the existence of a nonsingular element in the generalized Jacobian),
and

(b) conditions which guarantee that a stationary point of Ψ is a solution of the varia-
tional inequality VIP(X,F ).

Points (a) and (b) are very relevant to the development of efficient algorithms [5, 9, 10]
while point (a) could also pave the way to an application of the equation reformulation
to the study of stability and sensitivity of solutions of variational inequalities.

The paper is organized as follows. In the next section we collect some basic definitions
and results on coherent orientation. In Section 3 we study conditions for the nonsingularity
of the generalized Jacobians of Φ. In Section 4 we are concerned with the important
question of establishing conditions under which a stationary point of our merit function
Ψ is a KKT-point of VIP(X, F ). We present several conditions depending on the structure
of the feasible set X.

Notation. A function G : IRn → IRt is called a Ck-function if it is k times continuously
differentiable, and LCk-function if it is a Ck-function whose kth derivative is locally
Lipschitz-continuous. If G : IRn → IRt is a C1-function, we denote by ∇G(x) the gradient
of G (i.e., the transpose of the Jacobian) at x. If G is locally Lipschitzian at x, ∂G(x)
indicates Clarke’s [3] generalized Jacobian, a set of t× n matrices. When t = 1, ∂G(x) is
the generalized gradient and is usually regarded as a set of column vectors. For a matrix
A ∈ IRn×t, A = (aij), and subsets I ⊆ {1, . . . , n} and J ⊆ {1, . . . , t}, we denote by AIJ

the submatrix of A consisting of the elements aij, i ∈ I, j ∈ J . Similarly, given any vector
v ∈ IRn, v = (v1, . . . , vn)T , and any subset I ⊆ {1, . . . , n}, we denote by vI the vector in
IR|I| having the components vi, i ∈ I. Let A ∈ IRn×n, I ⊆ {1, . . . , n} and Ī := {1, . . . , n}\I
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be the complementary subset of I. If we write

A =

(
AII AIĪ

AĪI AĪ Ī

)

and assume that the principal submatrix AII is nonsingular, then the Schur-complement
of AII in A is defined by A/AII := AĪ Ī − AĪIA

−1
II AIĪ . A matrix A ∈ IRn×n is a P0-

matrix (P -matrix) if the determinant of each of its principal submatrices is nonnegative
(positive). We recall that every positive semidefinite (positive definite) matrix is a P0-
matrix (P -matrix), but the converse is not true in general. Finally, throughout the paper,
‖ · ‖ denotes the Euclidean vector norm.

2 Faces and Coherently Oriented Matrices

Let B be a square t-dimensional matrix. The orientation of B is defined to be the sign
of the determinant of B, and can therefore assume three possible values: −1, 0 and +1.
Let L be a t-dimensional subspace of IRn and Q be a matrix whose columns form a basis
for L. If A is an n × n matrix, then the matrix QTAQ is called the section of A in the
subspace L. The orientation of A on the subspace L is defined to be the orientation of
QTAQ. It is easy to see that, as long as the columns of Q form a basis of L, the sign of
QTAQ does not depend on the particular choice of the basis for L, so that the orientation
of A on a subspace is well defined.

For arbitrarily chosen finite index sets I, J and vectors ai ∈ IRn, bj ∈ IRn (i ∈ I, j ∈ J),
let C be the polyhedral cone defined by

C := {v ∈ IRn| aT

i v = 0 (i ∈ I), bT

j v ≤ 0 (j ∈ J)}.

We recall that a face of C is any set which can be obtained as H ∩ C, where H is
a supporting hyperplane of C (a hyperplane H is a supporting hyperplane of C if C is
entirely contained in one of the two closed halfspaces defined by H). We also recall that
the intersection of faces is a face.

The following proposition collects some facts that will be useful in this paper.

Proposition 2.1 Let J̃ be a subset of J (the empty set is a possible subset). We define
the following linear space:

L(J̃) := {v ∈ IRn| aT

i v = 0 (i ∈ I), bT

j v = 0 (j ∈ J̃)}.

Then the following facts hold.

(a) For every J̃ ⊆ J , L(J̃) ∩ C is a face of C.

(b) If F is a face of C then there exists an index set J̃ ⊆ J such that F = L(J̃) ∩ C.

(c) Suppose that all the vectors ai with i ∈ I and bj with j ∈ J are linearly independent,
and let F = L(J̃)∩C be a given face of C. Then the linear space generated by F is
L(J̃).
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Proof. (a) L(J̃) is an intersection of supporting hyperplanes and hence L(J̃) ∩ C, being
the intersection of faces, is a face.

(b) This derives immediately from, e.g., Theorem 7.27 in [1]. For the proof of point
(c) it is important to note that, according to Theorem 7.27 in [1], the set J̃ can be taken
equal to J(F ), where J(F ) := {j ∈ J | bT

j v = 0∀v ∈ F}.
(c) Let J̃ be given, and let F = L(J̃) ∩ C. By the observation we made in the proof

of part (b), we know that F = C ∩ L(J(F )). On the other hand, by Lemma 7.26 in [1],
we also know that the linear space generated by F is L(J(F )). So to complete the proof
it will suffice to show that J̃ = J(F ). By definition we have

F = C ∩ L(J̃)

= {v ∈ IRn| aT
i v = 0 (i ∈ I), bT

j v = 0 (j ∈ J̃), bT
j v ≤ 0 (j ∈ J \ J̃)}. (6)

On the other hand, we also have

F = C ∩ L(J(F ))
= {v ∈ IRn| aT

i v = 0 (i ∈ I), bT
j v = 0 (j ∈ J(F )), bT

j v ≤ 0 (j ∈ J \ J(F ))}. (7)

Suppose now, by contradiction, that J̃ 6= J(F ). By the definitions of F and J(F ),
J̃ ⊆ J(F ); this means that an index k exists which is in J(F ) but not in J̃ . Since the
vectors ai with i ∈ I and bj with j ∈ J are linearly independent, we can find a point v̄
such that

aT

i v̄ = 0 (i ∈ I), bT

j v̄ = 0 (j ∈ J̃), bT

j v̄ = −1 (j ∈ J \ J̃).

By (6) v̄ belongs to F , but this contradicts (7) since we should have bT
k v̄ = 0, and thus

the proof is complete. 2

We shall now introduce the concept of a coherently oriented matrix over a cone and some
related results, see [2, 21, 29, 30] and references therein.

Definition 2.2 A matrix A ∈ IRn×n is said to be positively coherently oriented (posi-
tively semicoherently oriented, negatively coherently oriented, negatively semicoherently
oriented) on a polyhedral cone C if the orientation of the section of A in all linear spaces
spanned by the faces of C is +1 (+1 or 0,−1,−1 or 0).

A is said to be coherently oriented (semicoherently oriented) on C if A is either
positively coherently oriented (semicoherently oriented) or negatively coherently oriented
(semicoherently oriented) on C.

It may be interesting to stress that the property of, let us say, positive coherent orientation,
is not hereditary, i.e., if A is positively coherently oriented on C and C ′ ⊆ C, then this
does not imply that A is positively coherently oriented on C ′. This is intuitively obvious
since the property of being positively coherently oriented is connected to the matrix A
and to the structure of the faces of C, and a cone C ′ contained in C can have a completely
different structure. However, the following result, of which we omit the elementary proof,
holds.
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Proposition 2.3 Suppose that A is positive definite (positive semidefinite) on a subspace
L. If C is a cone contained in L, then A is positively coherently oriented (positively
semicoherently oriented) on C.

We note that the property of positive coherent orientation differs and is more general
than that of positive definiteness. However, it may be interesting to note that if the
linear transformation A can be represented by a symmetric matrix, then the positive
coherent orientation of A on a polyhedral convex cone containing no lines reduces to
positive definiteness, see [31].

We finally restate a result due to Liu [21, Lemma 3.6] which will be used in our analysis
of Section 3 to determine the orientation of a matrix over a subspace.

Lemma 2.4 Consider the following square matrix

M =

(
N B
−BT 0

)
,

where N ∈ IRn×n is arbitrary and B ∈ IRn×m, with m ≤ n, has full column rank. Then, the
orientation of M is equal to the orientation of the section of N in the subspace Ker(BT ).

3 Nonsingularity Conditions for ∂Φ

In this section, we present several conditions guaranteeing that all elements, or at least one
element, in the generalized Jacobian ∂Φ(w) are nonsingular. The results of this section
are of interest since, on the one hand, they relate the nonsingularity of ∂Φ to Robinson’s
[28] strong regularity condition and, on the other hand, they allow us to define superlinear
convergent Newton methods for the solution of the nonlinear system Φ(w) = 0, see [9, 11]
for more details.

Our first aim is to better understand the structure of the generalized Jacobian of Φ.
The next result gives some insight into the structure of the generalized Jacobian ∂Φ(w).

Proposition 3.1 Suppose that F is a C1-function and g and h are C2-functions. Let
w = (x, y, z) ∈ IRn+p+m. Then, each element H ∈ ∂Φ(w)T can be represented as follows:

H =

 ∇xL(w) ∇h(x) ∇g(x)Da(w)
∇h(x)T 0 0
−∇g(x)T 0 Db(w)

 ,

where Da(w) := diag(a1(w), . . . , am(w)), Db(w) := diag(b1(w), . . . , bm(w)) ∈ IRm×m are
diagonal matrices whose ith diagonal elements are given by

ai(w) =
gi(x)√

gi(x)2 + z2
i

− 1, bi(w) =
zi√

gi(x)2 + z2
i

− 1

if (gi(x), zi) 6= 0, and by

ai(w) = ξi − 1, bi(w) = ρi − 1 for any (ξi, ρi) with ‖(ξi, ρi)‖ ≤ 1

if (gi(x), zi) = 0.
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Proof. The first n+p components of the vector function Φ are continuously differentiable,
so the expression for the first n+p columns of H readily follows. Then, consider the last m
columns. Known rules on the evaluation of the generalized Jacobian (see [3, Proposition
2.6.2 (e)]) yield

∂φ(g(x), z)T ⊆ ∂ϕ(g1(x), z1)× · · · × ∂ϕ(gm(x), zm).

If i is such that (gi(x), zi) 6= (0, 0), then ϕ is continuously differentiable at (gi(x), zi)
and, again, the expression of the (n + p + i)th column of H readily follows. If instead
(gi(x), zi) = (0, 0) then, using the theorem on the generalized gradient of a composite
function (see [3, Theorem 2.3.9 (iii)]) and recalling that the generalized gradient of the
Euclidean norm evaluated at the origin is the closed unit ball, we get

∂ϕ(gi(x), zi)
T ⊆ {((ξi − 1)∇gi(x)T , 0, . . . , 0, (ρi − 1)eT

i ) | ‖(ξi, ρi)‖ ≤ 1}. (8)

Hence, the proposition follows from the first part of the proof, (8) and the definition of
ai(w) and bi(w). 2

The results of this section are strongly related to Robinson’s definition of a strongly regular
KKT-point [28]. The original definition of strong regularity is somewhat involved; since
we will not use it explicitly, we do not report it here. Instead, we shall take advantage
of some equivalent definitions due to Robinson [28] and Liu [21]. In order to state these
equivalent formulations, we need some more notation, in particular index set definitions.
These index sets depend on the point at hand, w = (x, y, z) ∈ IRn+p+m. Some of them
also depend on the particular element of the generalized Jacobian ∂Φ(w) at hand. This
dependency will always be clear from the context and is therefore not explicitly indicated.
Now let us define the following index sets :

I := {1, . . . ,m},

I0 := {i ∈ I| gi(x) = 0, zi ≥ 0}, I> := {i ∈ I| gi(x) > 0, zi = 0}, IR := I \ (I0 ∪ I>).

Moreover, we also need the following further index sets:

I00 := {i ∈ I0| zi = 0}, I+ := {i ∈ I0| zi > 0},

I01 := {i ∈ I00| ρi = 1}, I02 := {i ∈ I00| ρi < 1, ξi < 1}, I03 := {i ∈ I00| ξi = 1},

IR2 := IR ∪ I02

(see Proposition 3.1 for the definitions of ξi and ρi; these numbers depend on the element
of the generalized Jacobian of Φ(w)). The following relationships between these index
sets can easily be seen to hold:

I = I0 ∪ I> ∪ IR, I0 = I00 ∪ I+, I00 = I01 ∪ I02 ∪ I03.
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Taking into account the definition of these index sets and Proposition 3.1, every ele-
ment H ∈ ∂Φ(w)T has the following structure (the dependence on w is suppressed for
simplicity):

H =



∇xL ∇h −∇g+ −∇g01 ∇gR2(Da)R2 0 0
∇hT 0 0 0 0 0 0
−∇gT

+ 0 0 0 0 0 0
−∇gT

01 0 0 0 0 0 0
−∇gT

R2 0 0 0 (Db)R2 0 0
−∇gT

03 0 0 0 0 −I 0
−∇gT

> 0 0 0 0 0 −I


, (9)

where (Da)R2 and (Db)R2 are negative definite diagonal matrices. Note that we abbre-
viated gI+ etc. by g+ etc. in (9). This notation will be used frequently throughout the
paper.

It will also be useful to define some matrices which turn out to be closely related to
the strong regularity condition:

M(J) :=


∇xL ∇h ∇g+ ∇gJ

−∇hT 0 0 0
−∇gT

+ 0 0 0
−∇gT

J 0 0 0

 ,

where J is any subset of I00 ∪ IR. We are now in the position to summarize some known
equivalent conditions for a KKT-point of VIP(X, F ) to be strongly regular. The reader
is referred to Robinson [28] and Liu [21] for the proofs. We point out that, as a simple
consequence of Theorem 3.7, we will be able to give a new characterization of strong
regularity.

Theorem 3.2 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a KKT-point of VIP(X, F ). Then the
following assertions are equivalent:

(a) w∗ is a strongly regular KKT-point.

(b) For every J ⊆ I00, the matrices M(J) have the same nonzero orientation.

(c) The gradients ∇hi(x
∗) (i ∈ K) and ∇gi(x

∗) (i ∈ I0) are linearly independent, and
the matrix ∇xL(w∗) is coherently oriented on the cone

C(w∗) := {v ∈ IRn|∇h(x∗)Tv = 0,∇gI+(x∗)Tv = 0,∇gI00(x
∗)Tv ≤ 0}.

(d) M(∅) is nonsingular and either I00 is empty or M(I00)/M(∅) is a P -matrix.

By point (b) of this theorem the following definition seems very natural.

Definition 3.3 The Extended Strong Regularity (ESR) condition is said to hold at a
point w if the sign of the determinant of M(J)
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(i) is a nonzero constant for all index sets J such that J ⊆ I00;

(ii) cannot have opposite signs if J is such that J ⊆ I00 ∪ IR (but can possibly be 0).

More precisely, Definition 3.3 (i) means that

sign(detM(J1)) · sign(detM(J2)) > 0

for every J1, J2 ⊆ I00, whereas part (ii) is equivalent to

sign(detM(J1)) · sign(detM(J2)) ≥ 0

for every J1, J2 ⊆ I00 ∪ IR.
This definition and its name are motivated by the fact that if w = w∗ is a KKT-point,

then IR = ∅ and the ESR condition amounts to the requirement that, for all J ⊆ I00,
the sign of M(J) is equal to the same nonzero constant (−1 or +1). By Theorem 3.2 (b)
this is equivalent to the strong regularity of w∗. Thus condition ESR can be viewed as an
algebraic extension of the concept of strong regularity to nonstationary points.

One of the main results we can prove is the following.

Theorem 3.4 Let w = (x, y, z) ∈ IRn+p+m be given, and suppose that the ESR condition
holds at w. Then all elements in the generalized Jacobian ∂Φ(w) are nonsingular.

Proof. Consider an arbitrary, but fixed element in ∂Φ(w)T . This element has the struc-
ture indicated in (9), and is obviously nonsingular if and only if the following matrix is
nonsingular: 

∇xL ∇h ∇g+ ∇g01 ∇gR2 0 0
−∇hT 0 0 0 0 0 0
−∇gT

+ 0 0 0 0 0 0
−∇gT

01 0 0 0 0 0 0
−∇gT

R2 0 0 0 (Db)R2(Da)
−1
R2 0 0

−∇gT
03 0 0 0 0 I 0

−∇gT
> 0 0 0 0 0 I


.

In turn this matrix is nonsingular if and only if the following matrix is nonsingular:
∇xL ∇h ∇g+ ∇g01 ∇gR2

−∇hT 0 0 0 0
−∇gT

+ 0 0 0 0
−∇gT

01 0 0 0 0
−∇gT

R2 0 0 0 (Db)R2(Da)
−1
R2

 . (10)

The matrix (10) can be written as the sum of the matrix M(J), with J = I01 ∪ IR2, and
of the diagonal matrix (the dimensions of the blocks are the same as in (10))

D :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 (Db)R2(Da)

−1
R2

 .
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We now recall that, given a square matrix Ā of dimension r and a diagonal matrix D̄
(with the same dimension), one has (see [4, p. 60])

det(D̄ + Ā) =
∑
α

detD̄ααdetĀᾱᾱ,

where the summation ranges over all subsets α of {1, . . . , r} (with complements ᾱ =
{1, . . . , r} \ α), and where it is assumed that the determinant of an “empty” matrix is 1.
Exploiting this formula, the determinant of (10) can be written as

detM(J) +
∑

α⊆IR2

detDααdetM(J)ᾱᾱ, (11)

where the first term corresponds to α = ∅. Moreover, we have taken into account that
if α contains an element which does not belong to IR2, then the determinant of Dαα is
0. Since the nonzero diagonal elements of the matrix D are all positive, it follows that
the determinants of Dαα in (11) are all positive. Then to show that the determinant of
(10) is nonzero and hence to conclude the proof, it will now be sufficient to show that the
determinants of M(J) and of all M(J)ᾱᾱ in (11) never have opposite signs, and that at
least one of them is nonzero. These matrices can be written as M(J \ α), with α ⊆ IR2

(empty set included). If α = IR2, then J \ IR2 = I01 ⊆ I00 while, in general, for every
α ⊆ IR2 we have J \ α ⊆ I00 ∪ IR. The theorem then follows directly from the definition
of the ESR condition. 2

Remark 3.5 This result has interesting algorithmic consequences. In particular it im-
plies that the semismooth Newton method [24, 25] applied to the system of equations (4)
is locally quadratically convergent to a KKT-point w∗ of VIP(X, F ) if w∗ is strongly regu-
lar (see [9, 11] for details). Even in the particular case in which the variational inequality
VIP(X, F ) arises from a nonlinear program with inequality constraints, strong regularity
compares favourably with the assumptions required by existing superlinear convergent
methods with linear equations subproblems.

We see that the ESR condition is a sufficient condition for the nonsingularity of all the
elements of the generalized Jacobian of Φ. If the point at hand is a KKT-point, then it
turns out that this is also a necessary condition. To prove this result, we first need the
following technical proposition.

Proposition 3.6 Let w = (x, y, z) ∈ IRn+p+m be an arbitrary vector and assume that
all elements in the generalized Jacobian ∂Φ(w) are nonsingular. Then, given any subset
J ⊆ I00, there exists an element in ∂Φ(w) such that I01 = J, I02 = ∅ and I03 = I00 \ J.

Proof. In the first part of the proof we show that the nonsingularity of all elements in
∂Φ(w) implies the linear independence of the gradients ∇gi(x) (i ∈ I00). To this end, let
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{xk} be any sequence converging to x, and define wk = (xk, yk, zk), where yk = y for all
k and

zk
i =


zi if i ∈ I \ I00,
1/k if i ∈ I00 and gi(x

k) = 0,√
|gi(xk)| if i ∈ I00 and gi(x

k) 6= 0.

Then it is easy to see that the sequence {wk} = {(xk, yk, zk)} ⊂ IRn+p+m converges to
w such that Φ is differentiable at each wk and that {∇Φ(wk)} converges to an element
H ∈ ∂Φ(w)T such that I01 = I00 and I02 = I03 = ∅. But then, since H is nonsingular by
assumption, the linear independence of the gradients∇gi(x) (i ∈ I00) follows immediately
from the general structure of the (transposed) generalized Jacobian given in (9).

For the second part of the proof, let J ⊆ I00 be any given subset. We now build another
sequence {wk} = {(xk, yk, zk)} ⊂ IRn+p+m converging to w such that Φ is differentiable
at each wk and {∇Φ(wk)} converges to an element H ∈ ∂Φ(w)T such that H enjoys the
properties stated in the proposition. By the first part of the proof, we know that the
gradients ∇gi(x) (i ∈ I00) are linearly independent. Hence it follows from the Implicit
Function Theorem that there is a sequence {xk} converging to x such that gi(x

k) > 0 for
all i ∈ I00 and all k. Then take wk = (xk, yk, zk) with xk being the kth iterate of the above
sequence, yk = y for all k and

zk
i =


zi if i ∈ I \ I00,√

gi(xk) if i ∈ J,

gi(x
k)2 if i ∈ I00 \ J.

Note that {wk} tends to w and that Φ is differentiable at wk because there is no index
i such that the case gi(x

k) = zk
i = 0 occurs. Furthermore, using Proposition 3.1 and

the continuity of the functions involved, it easily follows that {∇Φ(wk)} converges to an
element H having the desired properties. 2

Theorem 3.7 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a KKT-point of VIP(X, F ). Then the
ESR condition is satisfied at w∗ if and only if all elements in the generalized Jacobian
∂Φ(w∗) are nonsingular.

Proof. The necessity part of the theorem is just Theorem 3.4. We therefore turn to the
sufficiency part.

Assume that all elements in the generalized Jacobian ∂Φ(w∗) are nonsingular. We
first prove that the nonzero orientation of all these matrices is the same. In fact, suppose,
by contradiction, that there are H1, H2 ∈ ∂Φ(w∗)T such that det(H1) < 0 and det(H2) >
0. Since the determinant is a continuous function, a convex combination H̄ of H1 and
H2 exists such that det(H̄)=0. Because ∂Φ(w∗) is convex by definition, the singular
matrix H̄ belongs to ∂Φ(w∗)T , thus contradicting the nonsingularity of all elements in the
generalized Jacobian ∂Φ(w∗).

Because w∗ is a KKT-point, the subset IR must be empty. Therefore, to be sure that
the ESR condition holds, we only need that the matrices M(J) have the same nonzero
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orientation for all J ⊆ I00. According to Proposition 3.6, for each J ⊆ I00, we can find an
H(J) ∈ ∂Φ(w∗)T such that J = I01 and I03 = I00\I01. With regard to the structure of the
elements of ∂Φ(w∗)T indicated in (9), and recalling that h : IRn → IRp and g : IRn → IRm,
we obtain

0 6= sign(detH(J)) = (−1)p+msign


det



∇xL ∇h ∇g+ ∇gJ 0 0
−∇hT 0 0 0 0 0
−∇gT

+ 0 0 0 0 0
−∇gT

J 0 0 0 0 0
−∇gT

03 0 0 0 I 0
−∇gT

> 0 0 0 0 I




which, in turn, implies

0 6= sign(detH(J)) = (−1)p+msign

det


∇xL ∇h ∇g+ ∇gJ

−∇hT 0 0 0
−∇gT

+ 0 0 0
−∇gT

J 0 0 0




= (−1)p+msign(detM(J)).

Since, in view of the first part of this proof, all matrices H ∈ ∂Φ(w∗)T have the same
nonzero orientation, it follows that the ESR condition is satisfied. 2

As we already observed, if w = w∗ is a KKT-point, then the ESR condition is equivalent
to the strong regularity condition. We therefore get as an immediate consequence of
Theorem 3.7 the following new characterization of a strongly regular KKT-point.

Corollary 3.8 A KKT-point w∗ of VIP(X, F ) is strongly regular if and only if all the
elements in the generalized Jacobian ∂Φ(w∗) are nonsingular.

We now illustrate with some examples the results obtained so far.

Example 3.9 Consider VIP(X, F ) with n = 1, p = 0 and m = 1, F (x) = x − 1 and
g1(x) = x. For this problem we have

Φ(x, z) =

(
x− 1− z√

x2 + z2 − x− z

)
.

Consider the point (x, z) = (0, 0); in this point I00 = {1} while I+ = IR = ∅. We have

detM(∅) = det(1) = 1, detM({1}) = det

(
1 1
−1 0

)
= 1,

so that the ESR condition is satisfied. From the expression of Φ it can be easily seen that
the elements of ∂Φ(0, 0) are given by(

1 −1
α− 1 β − 1

)
(12)
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with (α, β)T belonging to the generalized gradient of
√

x2 + z2 in (0, 0). Therefore,
‖(α, β)‖ ≤ 1 so that all the matrices in (12) are nonsingular, as expected.

Example 3.10 Consider VIP(X, F ) with n = 1, p = 0 and m = 1, F (x) = −x and
g1(x) = x. For this problem we have

Φ(x, z) =

(
−x− z√

x2 + z2 − x− z

)
.

Consider the KKT-point (x, z) = (0, 0); in this point I00 = {1} while I+ = IR = ∅. We
have

det(M(∅)) = det (−1) = −1, det(M({1})) = det

(
−1 1
−1 0

)
= 1,

so that the ESR condition is not satisfied. From the expression of Φ it can be easily seen
that the elements of ∂Φ(0, 0) are given by(

−1 −1
α− 1 β − 1

)
(13)

with (α, β)T belonging to the generalized gradient of
√

x2 + z2 in (0, 0). If we take α = β
such that ‖(α, β)‖ ≤ 1, e.g., α = β = 1/

√
2, we see that the corresponding element in

(13) is singular, whereas it is nonsingular whenever α 6= β.

Motivated by Theorem 3.2, our aim is now to obtain conditions which are necessary and
sufficient for ESR to hold by extending those of points (c) and (d) in Theorem 3.2.

We shall first consider conditions extending (c). To this end, we introduce the following
notation:

C(w; I1) := {v ∈ IRn|∇h(x)Tv = 0,∇gI+(x)Tv = 0,∇gI1(x)Tv ≤ 0},

where I1 is a subset of I \ I+. Note that, with this notation, the polyhedral cone in point
(c) of Theorem 3.2 corresponds to C(w; I00).

Theorem 3.11 Let w = (x, y, z) ∈ IRn+p+m be given. Then the ESR condition is satisfied
at w if and only if the following three conditions hold:

(a) The vectors ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0) are linearly independent;

(b) the matrix ∇xL(w) is positively (negatively) coherently oriented over C(w; I00);

(c) the matrix ∇xL(w) is positively (negatively) semicoherently oriented over C(w; I00∪
Ĩ) for every Ĩ ⊆ IR such that the vectors ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0 ∪ Ĩ)
are linearly independent.
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Proof. By Proposition 2.1 (a), (b), all and only the faces of C(w; I00) can be obtained
as L(J) ∩ C(w; I00), for all J ⊆ I00, where

L(J) := {v ∈ IRn|∇h(x)Tv = 0,∇gI+(x)Tv = 0,∇gJ(x)Tv = 0}.

Then, by condition (a) and Proposition 2.1 (c), all and only the linear subspaces generated
by the faces of C(w; I00) can be obtained as L(J), for all J ⊆ I00. Taking into account

that L(J) = Ker
(
(∇h(x),∇gI+(x),∇gJ(x))T

)
for J ⊆ I00, we have, by Lemma 2.4 (take

B = (∇h(x),∇gI+(x),∇gJ(x))) and (a), that the sign of the determinant of M(J) is equal
to that of the section of ∇xL(w) in the subspace L(J), so that part (i) of the definition
of ESR follows by (b).

Assume now that J ⊆ I00∪ IR. If the vectors ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I+∪J)
are not linearly independent, then M(J) is obviously singular. If, otherwise, the set of
vectors is linearly independent then we can consider the cone C(w; J), and reason as
before so that, by (c), we have that (ii) of ESR holds.

The opposite implication can easily be obtained by reversing the above arguments. 2

Remark 3.12 In the statement of Theorem 3.11 we have stressed the fact that the
orientations on the faces of the cones considered in points (b) and (c) have to be the
same, when not 0, however, this is superfluous, since this fact holds automatically.

In condition (c) of Theorem 3.11 we could have equivalently considered only those
subsets Ĩ for which there is no other subset Ĩ ′ such that Ĩ ⊆ Ĩ ′ ⊆ IR and the vectors
∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0 ∪ Ĩ ′) are linearly independent. In particular, if the
vectors ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0 ∪ IR) are linearly independent, then we could
just consider the cone C(w; I00 ∪ IR).

As a corollary, we get the following useful result.

Corollary 3.13 Let w = (x, y, z) ∈ IRn+p+m be any given vector. Assume that

(a) the gradients ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0) are linearly independent;

(b) vT∇xL(w)v > 0 for all v ∈ IRn, v 6= 0, such that ∇hi(x)Tv = 0 (i ∈ K) and
∇gi(x)Tv = 0 (i ∈ I+).

Then all elements H ∈ ∂Φ(w) are nonsingular.

Proof. Condition (a) of Corollary 3.13 is obviously the same as (a) of Theorem 3.11. On
the other hand, condition (b) of the corollary requires that ∇xL(w) is positive definite on
a subspace that contains all the cones considered in assumptions (b) and (c) of Theorem
3.11. By Proposition 2.3 this implies that (b) and (c) of Theorem 3.11 are fulfilled. 2

Note that, if w = w∗ is a KKT-point of VIP(X, F ), then the above corollary reduces to
a recent result by Jiang [18], see also Fischer [14].

We now pass to consider necessary and sufficient conditions for ESR to hold which are
inspired by (d) in Theorem 3.2.
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Theorem 3.14 The ESR condition is satisfied in a point w = (x, y, z) ∈ IRn+p+m if and
only if the following three conditions hold:

(a) M(∅) is nonsingular;

(b) either I00 is empty or M(I00)/M(∅) is a P -matrix;

(c) either I00 ∪ IR is empty or M(I00 ∪ IR)/M(∅) is a P0-matrix.

Proof. We only consider the case that M(∅) is nonsingular since, otherwise, neither
the ESR condition nor (a) of Theorem 3.14 is satisfied. The principal submatrices of
M(I00)/M(∅) are exactly the matrices given by M(J)/M(∅), for all J ⊆ I00. Using the
determinantal formula for the Schur complement, we get

detM(J) = det (M(J)/M(∅)) detM(∅).

Hence the sign of detM(J) is equal to the sign of detM(∅) for all J ⊆ I00 if and only if all
the principal minors of M(I00)/M(∅) are positive. This fact establishes the equivalence
of condition (b) in Theorem 3.14 and of (i) in the ESR condition. The equivalence of (c)
with (ii) can be shown in a similar way. We omit the details here. 2

In some cases (see, e.g., Proposition 4.2) it may also be of interest to determine conditions
ensuring that at least one element in the generalized Jacobian ∂Φ(w) is nonsingular. We
devote the last part of this section to this issue. We naturally expect that a weaker
condition than ESR will be needed for establishing this result. Actually, the following
condition will be useful.

Definition 3.15 The Extended Weak Regularity (EWR) condition is said to hold at a
point w = (x, y, z) ∈ IRn+p+m if a possibly empty index set J̃ , with J̃ ⊆ I00, exists such
that

(i) the sign of the determinant of M(J̃) is +1 (−1);

(ii) each sign of the determinants of M(J) is either 0 or +1 (−1) for all J ⊆ I00 ∪ IR.

Note that the EWR and the ESR conditions coincide if I00 = ∅. In particular, if w = w∗

is a KKT-point, the two conditions coincide if strict complementarity holds. In general,
however, the EWR condition is weaker than the ESR condition. We illustrate this by a
simple example.

Example 3.16 Consider VIP(X, F ) with n = 2, p = 0, m = 1, F (x) := (x1, x
2
2)

T and
g1(x) = x2. Consider the KKT-point (x1, x2, z) = (0, 0, 0). We have I00 = {1}, while
I+ = IR = ∅. We have

M(∅) =

(
1 0
0 0

)
and M({1}) =

 1 0 0
0 0 1
0 −1 0

 .

Therefore, det(M(∅)) = 0 and det(M({1})) = 1, so that the ESR condition is not satisfied,
whereas the EWR condition obviously holds by taking J̃ = {1}.
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The following result is the direct counterpart of Theorem 3.11 and gives a complete
characterization of the EWR condition in terms of the (semi)coherent orientation of a
certain matrix.

Theorem 3.17 Let w = (x, y, z) ∈ IRn+p+m be given. Then the EWR condition is satis-
fied at w if and only if there is a (possibly empty) index set J̃ ⊆ I00 such that the following
three conditions hold:

(a) the gradients ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I+ ∪ J̃) are linearly independent;

(b) the orientation of the matrix ∇xL(w) on the subspace

{v ∈ IRn|∇h(x)Tv = 0,∇gI+(x)Tv = 0,∇gJ̃(x)Tv = 0}

is positive (negative).

(c) the matrix ∇xL(w) is positively (negatively) coherently oriented over C(w; I00 ∪ Ĩ)
for every Ĩ ⊆ IR such that the vectors ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0 ∪ Ĩ) are
linearly independent.

Proof. The proof is almost identical to the one of Theorem 3.11, so we omit the details. 2

Moreover, we can prove the following result.

Theorem 3.18 Let w = (x, y, z) ∈ IRn+p+m be given, and suppose that the EWR condi-
tion holds at w. Then the generalized Jacobian ∂Φ(w) contains at least one nonsingular
element.

Proof. Let J̃ ⊆ I00 denote any index set which satisfies the conditions (i) and (ii) in
Definition 3.15. We first show that there is a matrix H̃ ∈ ∂Φ(w)T with I01 = J̃ . To this
end, let us define a sequence {wk} = {(xk, yk, zk)} ⊂ IRn+p+m such that (xk, yk) := (x, y)
for all k and such that the sequence {zk} satisfies the following conditions: zk → z and,
for all k, zk

i > 0 if i ∈ J̃ , zk
i < 0 if i ∈ I00 \ J̃ and zk

i = zi if i ∈ I \ I00. Note that, since
J̃ ⊆ I00, it is always possible to find a sequence {zk} satisfying these conditions. Then,
it can easily be verified that {wk} converges to w, that Φ is differentiable at each wk and
that we can assume, renumbering if necessary, that the sequence {∇Φ(wk)} converges to
a certain element H̃ ∈ ∂Φ(w)T . Taking into account Proposition 3.1 it further follows
that, for each wk, bi(w

k) = 0 if and only if i ∈ J̃ . With regard to the definition of I01 we
obtain that I01 = J̃ is valid for H̃.

The proof of the theorem is now almost a repetition of that of Theorem 3.4 in which
we take into account that I01 = J̃ . We report here the complete proof for the sake of
clarity.

We shall show that the particular matrix H̃ constructed above is nonsingular. This
matrix has the structure indicated in (9), and obviously it is nonsingular if and only if
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the following matrix is nonsingular:

∇xL ∇h ∇g+ ∇gJ̃ ∇gR2 0 0
−∇hT 0 0 0 0 0 0
−∇gT

+ 0 0 0 0 0 0
−∇gT

J̃
0 0 0 0 0 0

−∇gT
R2 0 0 0 (Db)R2(Da)

−1
R2 0 0

−∇gT
03 0 0 0 0 I 0

−∇gT
> 0 0 0 0 0 I


,

where, we recall, I01 = J̃ holds. Reasoning as in the proof of Theorem 3.4, we can see
that this matrix is nonsingular if and only if

detM(J) +
∑

α⊆IR2

detDααdetM(J)ᾱᾱ 6= 0 (14)

with J = J̃ ∪ IR2. Again, as in the proof of Theorem 3.4, to show that (14) holds it will
now be sufficient to show that the determinants of M(J) and of all M(J)ᾱᾱ in (14) never
assume opposite signs, and that at least one of them is nonzero. These matrices can be
written as M(J \α), with α ⊆ IR2 (empty set included). If α = IR2, then J \IR2 = I01 = J̃
while, in general, for every α ⊆ IR2 we have J \ α ⊆ I00 ∪ IR. The thesis then follows
directly from the EWR condition (Definition 3.15). 2

Example 3.19 Consider the problem introduced in Example 3.16. We have

Φ(x1, x2, z) =


x1

x2
2 − z√

x2
2 + z2 − x2 − z

 ,

so that, in (x1, x2, z) = (0, 0, 0), we have

∂Φ(0, 0, 0) =

 1 0 0
0 0 −1
0 α− 1 β − 1

 ,

where (α, β)T belongs to the generalized gradient of
√

x2
2 + z2 in (0, 0). It is then easy to

see that ∂Φ(0, 0, 0) contains a nonsingular element; for example, take (α, β) = (0, 1). On
the other hand, it also contains a singular element; to this end, take (α, β) = (1, 0).

Remark 3.20 We proved in Theorem 3.7 that the ESR condition is satisfied in a KKT-
point w if and only if all the elements in ∂Φ(w) are nonsingular. On the other hand,
we proved in Theorem 3.18 that, if the EWR condition is satisfied in a (KKT-) point
w, at least one nonsingular element exists in ∂Φ(w). It is then natural to ask whether
the existence of a nonsigular element in ∂Φ(w) implies the EWR condition. The answer
is in the negative, and this is shown by Example 3.10. In fact, the problem in this
example does not satisfy the EWR condition in the KKT-point (x, z) = (0, 0) considered
there. However, it is sufficient to consider (α, β) = (0, 1) in (13) to obtain a nonsingular
generalized Jacobian of ∂Φ(0, 0).
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We next state a simple consequence of Theorem 3.18.

Corollary 3.21 Let w = (x, y, z) ∈ IRn+p+m be an arbitrary vector. Assume that

(a) the gradients ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I+) are linearly independent;

(b) vT∇xL(w)v > 0 for all v ∈ IRn, v 6= 0, such that ∇hi(x)Tv = 0 (i ∈ K) and
∇gi(x)Tv = 0 (i ∈ I+).

Then there is at least one nonsingular element in ∂Φ(w).

Proof. We first show that assumptions (a) and (b) imply that the EWR condition is
satisfied at w. For J̃ := ∅ assumption (a) of Theorem 3.17 is equivalent to assumption (a)
of Corollary 3.21. Furthermore, all the cones which appear in assumptions (b) and (c) of
Theorem 3.17 are contained in the linear space

{v ∈ IRn|∇h(x)Tv = 0, ∇gI+(x)Tv = 0}.

Hence, by Proposition 2.3, assumptions (b) and (c) of Theorem 3.17 follow from assump-
tion (b) of this Corollary. Therefore the EWR condition is satisfied at w because of
Theorem 3.17. Thus the assertion follows immediately from Theorem 3.18. 2

Some explanations to Corollaries 3.13 and 3.21 are in order. If the arbitrary vector w
in these results is a KKT-point of VIP(X, F ) and if we borrow some terminology from
the optimization literature, then Corollary 3.13 states that all elements in the generalized
Jacobian ∂Φ(w) are nonsingular if

(a) the gradients of all active constraints are linearly independent and

(b) the strong second order condition is satisfied.

On the other hand, Corollary 3.21 guarantees the existence of at least one nonsingular
element in ∂Φ(w) if condition (a) is replaced by the weaker assumption that only the
gradients belonging to the strongly active constraints are linearly independent. We stress,
however, that the vector w in our results is an arbitrary vector, not necessarily a KKT-
point, and that we have obtained these corollaries as simple consequences of more general
results.

In the following proposition, we state that if the strong second order condition is
weakened to the second order condition, but if the gradients of all binding constraints are
linearly independent, then the assertion of Corollary 3.21 remains true. The proof of this
result is omitted for the sake of brevity.

Proposition 3.22 Let w = (x, y, z) ∈ IRn+p+m be any given vector. Assume that

(a) the gradients ∇hi(x) (i ∈ K) and ∇gi(x) (i ∈ I0) are linearly independent;

(b) vT∇xL(w)v > 0 for all v ∈ IRn, v 6= 0, such that ∇hi(x)Tv = 0 (i ∈ K) and
∇gi(x)Tv = 0 (i ∈ I0).

Then there is at least one nonsingular element H ∈ ∂Φ(w).
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4 Stationary Conditions for Ψ

In this section, after noting that Ψ is continuously differentiable, we study conditions
which guarantee that ∇Ψ(w∗) = 0 implies Ψ(w∗) = 0, i.e., that a stationary point of the
merit function Ψ is a KKT-point of VIP(X, F ). After considering the general case we will
deal with variational inequalities on polyhedral sets X for which we are able to obtain
stronger results. These conditions play a key role in the algorithms which seek KKT-
points of VIP(X,F ) through the minimization of Ψ. In fact, by using unconstrained
minimization algorithms we can only hope to find stationary points of Ψ. Hence, the
weaker the conditions which guarantee that a stationary point of Ψ is a global solution,
the more effective the unconstrained minimization of Ψ will be.

As a first step, we state the smoothness of Ψ and give an expression of its gradient.

Proposition 4.1 If F is a C1-function and g, h are C2-functions, then Ψ is continuously
differentiable and ∇Ψ(w) = HΦ(w) for every H ∈ ∂Φ(w)T .

Proof. By the chain rule for the composition of a strictly differentiable function and a
Lipschitz continuous function (see [3, Theorem 2.6.6]) we have ∂Ψ(w) = ∂Φ(w)TΦ(w). It
is easy to check that ∂Φ(w)TΦ(w) is single valued everywhere because the zero components
of Φ(w) cancel the “multivalued columns” of ∂Φ(w)T . Therefore we have, using the
Corollary to Theorem 2.2.4 in [3], that Ψ is continuously differentiable and that ∇Ψ(w) =
HΦ(w) for every H ∈ ∂Φ(w)T . 2

4.1 General X

We first state a simple but useful consequence of Proposition 4.1.

Proposition 4.2 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a stationary point of Ψ. Then w∗ is
a KKT-point of VIP(X, F ) if there is at least one nonsingular element in the generalized
Jacobian ∂Φ(w∗).

Proof. Since w∗ is a stationary point of Ψ, we have, by Proposition 4.1, that

0 = ∇Ψ(w∗) = HΦ(w∗) (15)

for any H ∈ ∂Φ(w∗)T . But, by the assumptions made, we have that the matrix H can be
chosen to be nonsingular. By (15), this implies Φ(w∗) = 0 so that w∗ is a KKT-point of
VIP(X, F ). 2

By the results of the previous section, this proposition implies, in particular, that if w∗

is a stationary point of Ψ such that the ESR or the EWR condition holds at w∗, then
w∗ is a KKT-point of the variational inequality problem. It is, however, possible to give
further conditions which still guarantee that every stationary point of the function Ψ is a
KKT-point of VIP(X, F ).
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Theorem 4.3 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a stationary point of Ψ. Assume that

(a) ∇xL(w∗) is positive semidefinite on IRn;

(b) ∇xL(w∗) is positive definite on Ker(∇h(w∗)T ) ∩Ker(∇g(w∗)T );

and either of the following two conditions holds:

(c1) ∇h(x∗) has full column rank;

(c2) h is an affine function and X is nonempty.

Then Ψ(w∗) = 0, i.e., w∗ is a KKT-point of VIP(X,F ).

Proof. Suppose that ∇Ψ(w∗) = 0. Using Propositions 4.1 and 3.1, this can be written
as

∇xL(w∗)L∗ +∇h(x∗)h∗ +∇g(x∗)Da(w
∗)φ∗ = 0, (16)

∇h(x∗)TL∗ = 0, (17)

−∇g(x∗)TL∗ + Db(w
∗)φ∗ = 0, (18)

where (L∗, h∗, φ∗) denotes (L(w∗), h(x∗), φ(g(x∗), z∗)). Moreover, if φ∗i = 0 then the value
of the ith diagonal elements of the matrices Da(w

∗) and Db(w
∗) are immaterial to the value

of the left-hand side of (16) and (18). Therefore we can assume, without loss of generality,
that these diagonal elements are all equal to −1. With this convention we have that the
diagonal matrices Da(w

∗) and Db(w
∗) are nonsingular with negative diagonal elements

(note that a diagonal element of these two matrices can be 0 only if the corresponding
element of φ∗ is equal to 0, cf. Proposition 3.1).

We can now solve (18) with respect to φ∗ and substitute in (16), thus obtaining(
∇xL(w∗) +∇g(x∗)D∇g(x∗)T

)
L∗ +∇h(x∗)h∗ = 0, (19)

where we have indicated by D the positive diagonal matrix Da(w
∗)Db(w

∗)−1. Premulti-
plying (19) by (L∗)T and taking (17) into account, we obtain

(L∗)T

(
∇xL(w∗) +∇g(x∗)D∇g(x∗)T

)
L∗ = 0. (20)

Since D is positive definite and the matrix ∇g(x∗)D∇g(x∗)T is positive semidefinite, it is
easy to see, using assumptions (a) and (b) and the fact that L∗ ∈ Ker(∇h(x∗)T ) by (17),
that (20) implies L∗ = 0. Hence φ∗ = 0 follows from (18), and (19) becomes

∇h(x∗)h∗ = 0. (21)

We now want to show that h∗ = 0. Assume first that (c1) holds. Then, since ∇h(x∗) has
full column rank, we immediately get h∗ = h(x∗) = 0 from (21). Assume now, instead,
that (c2) holds. Since h is an affine function, the norm function 1

2
‖h ‖2 is convex with
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gradient equal to the left-hand side of (21). Hence (21) implies that x∗ is a minimum
point of the norm function 1

2
‖h ‖2. Since the set X is nonempty, this in turn implies

h∗ = h(x∗) = 0.
Therefore, in both cases, (L∗, h∗, φ∗) = 0, hence Φ(w∗) = 0, so that w∗ is a KKT-point

of VIP(X,F ). 2

4.2 Polyhedral X

A particularly interesting case is when X is polyhedral, i.e.,

h(x) = Ax− b, g(x) = Cx− d,

with A ∈ IRp×n, b ∈ IRp, C ∈ IRm×n and d ∈ IRm. A first important consequence of the
polyhedrality of X is that the KKT-conditions (3) are both necessary and sufficient, so
that any solution of the variational inequality problem corresponds to a certain solution
of the nonsmooth system of equations (4) and vice versa. Furthermore, in this case some
nice geometrical interpretations can be given to the conditions employed in Theorem 4.3.
In particular we note that, in this case, Ker(A)∩Ker(C) is the lineality space of the set
X. So, if this lineality space reduces to {0}, then conditions (a) and (b) of Theorem 4.3
collapse to the requirement that ∇xL(w) is just positive semidefinite. This discussion can
be summarized in the following theorem, where we have taken into account that in this
case the Jacobian of the Lagrangian L is just ∇F (x)T .

Theorem 4.4 Assume that X is polyhedral. Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a sta-
tionary point of Ψ. Then w∗ is a solution of VIP(X, F ) if

(a1) ∇F (x∗) is positive semidefinite on IRn;

(b1) ∇F (x∗) is positive definite on the lineality space of X.

In particular, if either

(1) the set X is bounded or

(2) the set X is contained in the nonnegative orthant IRn
+

is satisfied, then assumption (a1) is sufficient for the theorem to hold.

Proof. (a1) and (b2) are just (a) and (b) rewritten taking into account that, since the
constraints are affine, then ∇xL(w) = ∇F (x) and recalling that the lineality space of
X is Ker(A) ∩Ker(C). The second part of the Theorem follows by observing that the
conditions (1) or (2) obviously imply that the set X contains no lines and hence that the
lineality space of X is {0}. 2

It may be interesting to note the following facts. Suppose that X = X1 ∩X2, where X1

is convex and X2 is polyhedral. If the set X2 satisfies one of the conditions (1) or (2)
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or, more in general, if its lineality space is {0}, then it is obvious that Ker(∇h(x∗)T ) ∩
Ker(∇g(x∗)T ) = {0} (g and h are the constraints defining X) so that condition (b)
in Theorem 4.3 becomes superfluous. In turn, the previous observation can be applied
in the following way. Suppose that we have a VIP(X,F ) with X (described by general
constraints) contained, for example, in the nonnegative orthant. In order to guarantee that
a stationary point is a global minimum of Ψ we need conditions (a) and (b) of Theorem
4.3. However we can consider the variational inequality problem VIP(F, X ∩ {x|x ≥ 0}).
This latter problem is obviously equivalent to the original one, nevertheless, as observed
before, requirement (b) of Theorem 4.3 is now superfluous.

In [10] we considered the case, often encountered in the applications, in which X is
a rectangle. Then, weaker conditions can be obtained. In particular we showed in [10]
that if X = IRn

+, i.e., if the variational inequality problem reduces to a complementarity
problem, then F being a P0-function is a sufficient condition for guaranteeing that every
stationary point of Ψ is a global solution.
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