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Abstract. We consider a difficult class of optimization problems that we call a mathemat-
ical program with vanishing constraints. Problems of this kind arise in various applications
including optimal topology design problems of mechanical structures. We show that some
standard constraint qualifications like LICQ and MFCQ usually do not hold at a local mini-
mum of our program, whereas the Abadie constraint qualification is sometimes satisfied.
We also introduce a suitable modification of the standard Abadie constraint qualification
as well as a corresponding optimality condition, and show that this modified constraint
qualification holds under fairly mild assumptions. Finally, we discuss the relation between
our class of optimization problems with vanishing constraints and a mathematical program
with equilibrium constraints.

Key Words. Constrained optimization, vanishing constraints, structural optimization,
constraint qualifications, optimality conditions, mathematical programs with equilibrium
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1 Introduction

The paper deals with optimization problems of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l,

(1)

where all functions f, gi, hj, Gi, Hi : Rn → R are assumed to be continuously differentiable.
We call (1) a mathematical program with vanishing constraints. This terminology comes
from the fact that, for certain applications (see Section 2), some of the constraints vanish,
i.e., may not be considered at certain points of the feasible region. For example, consider
the following prototype of an optimization problem with vanishing constraints:

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≤ 0 if x ∈ Hi ∀i = 1, . . . , l.

(2)

Here we assume that the sets Hi ⊂ Rn are non-empty and, say, open for all i = 1, . . . , l. In
this formulation, the constraint “Gi(x) ≤ 0” vanishes from the problem at points x /∈ Hi.
In other words, we do not care about the sign of Gi(x) at points x /∈ Hi. Vanishing
constraints of this kind are typical, e.g., in design problems or structural optimization, see
Section 2 for more details.

Note that (2) is an optimization problem with some nonstandard constraints. In order
to reformulate (2) in a suitable way, we assume that there exist continuously differentiable
functions Hi : Rn → R characterizing the sets Hi through the identities

Hi = { x ∈ Rn | Hi(x) > 0 } for all i = 1, . . . , l. (3)

Note that the strict inequality in “Hi(x) > 0” corresponds to the fact that Hi is an open
set. The latter, indeed, causes some troubles in view of the existence of solutions to problem
(2). But this is the situation in interesting applications (cf., e.g., Example 2.1 below).

Moreover, without loss of generality, we may assume that Hi(x) ≥ 0 for all x which
are feasible for (2). Otherwise, we may formally replace Hi by H2

i , although this is not
recommended in practice. Fortunately, in most applications, such a transformation is not
necessary since the constraints “Hi(x) ≥ 0” are typically part of the problem (2) (within
the group of constraints “gi(x) ≤ 0”). In any case, problem (1) is therefore a natural
reformulation of (2). To this end, note that the sign of Gi(x) in (1) is not relevant at those
points x where Hi(x) = 0. This implicitly models the effect of vanishing constraints as in
formulation (2). This explains the reason for our choice of a general problem in the form
(1).
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The advantage of formulation (1) (in contrast to (2)) is that (1) is an optimization
problem with standard equality and inequality constraints only. Hence we may try to
apply standard constraint qualifications in order to get suitable optimality conditions for
our mathematical program with vanishing constraints (1). However, it turns out that these
standard constraint qualifications are usually not satisfied for our problem (1), and we
therefore have to find more specialized constraint qualifications and/or suitable optimality
conditions for problem (1).

The paper is organized in the following way: Section 2 describes two applications from
structural optimization which, in a very natural way, lead to mathematical programs with
vanishing constraints. In Section 3, we then show that several standard constraint quali-
fications are usually violated for problem (1). Section 4 gives a more detailed discussion
of the standard Abadie constraint qualification since this condition has a chance of being
satisfied. A modification of the Abadie constraint qualification, which takes into account
the special structure of mathematical programs with vanishing constraints, as well as a
corresponding optimality condition are the subject of Section 5. We close this manuscript
with some final remarks in Section 6 where, in particular, we discuss the relation between
problem (1) and so-called mathematical programs with equilibrium constraints. In par-
ticular, we show that optimization problems with vanishing constraints may, in principle,
be reformulated as mathematical programs with equilibrium constraints, but that such a
reformulation causes some additional troubles and is therefore not recommended.

2 Examples: Topology Optimization of Mechanical

Structures

In order to motivate mathematical programs with vanishing constraints as an interesting
class of optimization problems, we present some applications immediately leading to prob-
lems of this kind. We concentrate on examples from structural optimization. One of the
classical problems in this field are design problems. Modern approaches do not predefine
any shape of the structure yet to be designed. For example, the number, the location, and
the shape and size of holes in the structure are solely determined by the optimization pro-
cess. In contrast to traditional “shape optimization”, this new and free design optimization
is referred to as “topology optimization”. Due to the immense freedom of the problem in
the design space, formulations of topology optimization problems are usually abstract or
large-scaled. Calculations in this field started with the development of optimization algo-
rithms and codes running on computers. An early paper on topology optimization of truss
structures is [7] from 1964 using linear programming. Numerical topology optimization of
continuum structures started in the late 1980’s with the idea of regarding design problems
as a problem of material distribution [9, 4]. During the last decade, many extensions have
been made to various problem formulations and solution methods. An overview of the
state of the art is given in the monograph [5].

Meanwhile topology optimization started to become an accepted tool in industrial ap-
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Figure 1: (a) Ground structure; (b) Optimal truss structure

plications like airplane and car manufacturing. The results from topology optimization,
however, still suffer from the fact that many realistic side constraints cannot be incorpo-
rated into the mathematical problem formulations because of complexity, nonlinearities,
and singularities. As a consequence, the obtained results are partly doubtful, and must
be substantially post-processed. Many publications in current research activities deal with
the incorporation of stress constraints into topology optimization problems since this is an
urgent necessity from the engineering point of view. As will be clear below, however, stress
constraints in a topology context immediately lead to singularities because stresses are not
defined at points of the design domain where material is not present, i.e., where “the struc-
ture has a hole”. This difficulty is closely related to the phenomenon of so-called “singular
optimizers” [1, 5]. The following two examples illustrate the modeling difficulty using two
typical problems from structural design. The first example deals with the topology design
problem of trusses, the second one considers its counterpart for continuum structures.

Example 2.1 We want to find the optimal design of a truss structure. We use the so-called
“ground structure approach” introduced in [7]. To this end, consider a given set of M so-
called “potential bars” which are defined by the coordinates of their end nodes (in R2 or in
R3). Moreover, for each potential bar, material parameters are given (Young’s modulus Ei,
relative moment of inertia si, stress bounds σt

i > 0 and σc
i < 0 for tension and compression,

respectively). These parameters are needed for the formulation of constraints preventing
structural failure in the case when the potential bar is realized as a real bar. The latter is
the case if the calculated cross-sectional area ai is positive. Finally, boundary conditions
(i.e., fixed nodal coordinates) and external loads (i.e., loads applying at some of the nodes)
are given. Such a scenario is called a “ground structure”. The problem (“optimal truss
topology design problem”) is to find cross-sectional areas a∗

i for each potential bar such that
failure of the whole structure is prevented, the external load is carried by the structure,
and a suitable objective function is minimal. The latter is usually the total weight of the
structure or its deformation energy (“compliance”).

In order to obtain a good resulting structure after optimization, the ground structure
should be “rich” enough, i.e., should consist of many potential bars. Figure 1 (a) illustrates
a ground structure in 2D in a standard design scenario. The structure (yet to be designed)
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is fixed to the left (indicated by a wall). On the right hand side, the given external load
applies (vertical arrow) which must be carried by the structure. We have discretized a 2D
rectangular design area by 15×9 nodal points. All nodal points are pair-wise connected by
potential bars. After the deletion of long potential bars which are overlapped by shorter
ones, we end up with 5614 potential bars. Very few of these potential bars are depicted in
Figure 1 (a) by black lines (Plotting all bars would result in a completely black picture,
and hence only very few potential bars are shown).

Of course, in view of a practical realization of the calculated structure after optimiza-
tion, one hopes that the optimal design a∗ will make use of only a few of the potential
bars, i.e., a∗

i > 0 for a small number of indices i only, whereas most of the (many) optimal
cross-sectional areas a∗

i are zero. Figure 1 (b) shows the optimized structure based on the
ground structure indicated in Figure 1 (a). Indeed, most of the potential bars are not
realized as real bars. Such a behaviour is typical in applied truss topology optimization
problems.

The main difficulty in formulating (and solving) the problem lies in the fact that,
generally speaking, constraints on structural failure can be formulated in a well-defined way
only if there is some material giving mechanical response. As explained before, however,
most potential bars will possess a zero cross-section at the optimizer. Hence, one option
is the formulation of the problem as a problem with vanishing constraints. A simple
formulation of the truss design problem with constraints on stresses and on local buckling
takes the following form (compare to problem (2)):

min
a∈RM ,u∈Rd

f(a, u)

s.t. g(a, u) ≤ 0,
ai ≥ 0 ∀i = 1, . . . , M,
K(a)u = f ext,
σc

i ≤ σi(a, u) ≤ σt
i if ai > 0 ∀i = 1, . . . , M,

f int
i (a, u) ≥ fbuck

i (a) if ai > 0 ∀i = 1, . . . , M.

(4)

Here the vector a ∈ RM , a ≥ 0, contains the vector of cross-sectional areas of the poten-
tial bars, and u ∈ Rd denotes the vector of nodal displacements of the structure under
load, where d is the so-called degree of freedom of the structure, i.e., the number of free
nodal displacement coordinates. The state variable u serves as an auxiliary variable. The
objective function f often expresses structural weight or compliance but can also be any
other measure evaluating a given design a and a corresponding state u. The nonlinear
system of equations K(a)u = f ext symbolizes force equilibrium of (given) external loads
f ext ∈ Rd and internal forces (i.e., along the bars) expressed via Hooke’s law in terms of
displacements and cross-sections. The matrix K(a) ∈ Rd×d is the global stiffness matrix
corresponding to the structure a. This matrix is always symmetric and positive semidef-
inite. The constraint g(a, u) ≤ 0 is a resource constraint, like on the total volume of the
structure (e.g., if f denotes compliance) or on the compliance of the structure (e.g., if f
denotes volume or weight). If ai > 0, then σi(a, u) ∈ R is the stress along the i-th bar.
Similarly, if ai > 0, f int

i (a, u) ∈ R denotes the internal force along the i-th bar, and f buck
i (a)
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corresponds to the permitted Euler buckling force. (We assume here that the geometry of
the bar cross-section is given, e.g., as a circle or a square. Hence, the moment of inertia
is a scaling of the cross-section, and the buckling force solely depends on ai). Then the
constraints on stresses and on local buckling make sense only if ai > 0. Therefore, they
must vanish from the problem if ai = 0. Fortunately, the functions σi, f int

i , and fbuck
i

possess continuous extensions for ai ↘ 0, and thus may be defined also for ai = 0 (without
any direct physical meaning, though). This allows a reformulation of the problem in the
form (1). In this situation, the definitions Hi(a, u) := ai for all i = 1, . . . , M will do the
job. ♦

Example 2.2 Here we consider the topology design problem of a continuum structure. Let
Ω ⊂ R2 or Ω ⊂ R3 denote a so-called reference domain with boundary conditions and with
given external loads applying at parts ΓT of the boundary of Ω as traction forces. We seek
for a structure contained in Ω satisfying the boundary and the force conditions. Moreover,
we assume this structure to consist of elastic material described by a given material tensor
E, and we look for the structure being as stiff as possible among all structures with a
maximal total “volume” V <

∫

Ω
1 dΩ. Moreover, in view of practical applications, we

would like to include stress constraints at each point x of the structure. In the fashion of
looking at a structure as a material distribution, a theoretical formulation of the problem
is the following (cf. [4, 5] for details):

min
ξ∈X,u∈U

l(u)

s.t. aξ(u, v) = l(v) for all v ∈ U ,
σc ≤ σ(ξ, u) ≤ σt for all x ∈ Ω,
∫

Ω
ξ dΩ ≤ V.

Here, as usual, l denotes the compliance of the structure depending on the displacement
field u,

l(u) :=

∫

Ω

f extu dΩ +

∫

ΓT

tu ds,

where U is the space of admissible displacement fields. The energy bilinear form, i.e., the
internal virtual work of the structure at the equilibrium u, and with an arbitrary virtual
displacement v, is denoted by

aξ(u, v) :=

∫

Ω

ξ(x)Eijkl(x)εij(u)εkl(v) dΩ,

as usual. Here we have used the standard index notation for tensors, we assume that
E represents isotropic material with Eijkl ∈ L∞(Ω), and we work with linearized strains

εij(u) = ( ∂ui

∂xj
+

∂uj

∂xi
). The structure is hidden in the indicator function ξ ∈ X := { ξ : Ω →

{0, 1} }. The structure we are looking for is formed by the points {x ∈ Ω | ξ(x) = 1} where
ξ (together with some u ∈ U) is a solution of the above problem. Due to the definition of
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Figure 2: (a) Design domain; (b) Calculated structure, p = 1; (c) Calculated structure,
p = 2

aξ(·, ·) the modeling is based on Hooke’s law with material tensor ξ(x)E(x) at all points
x ∈ Ω. Hence we have material E at points with ξ(x) = 1, and we have zero material (i.e.,
void) otherwise. For the modeling of local stresses σ(ξ, x) there are a number of more or
less sophisticated ways, and we are not going into the details here (cf. [5] for an overview).
The functions σc, σt denote given functions for upper and lower stress bounds, respectively.
We assume that σc(x) ≤ 0 and σt(x) ≥ 0 for all x ∈ Ω, and we assume that σ(·, ·) is defined
in a way that σ(ξ, u) = 0 if ξ(x) = 0.

Unfortunately, the design problem defined in this way does not necessarily possess a
solution (ξ, u), also in the absence of stress constraints. It may happen that in the limit
ξ represents a structure with “arbitrarily small and infinitely many holes” (cf. [5] and the
literature cited therein). Hence, a popular “approximation” of the problem is to replace
ξ by a “density function” ρ : Ω −→ [0, 1]. This means, at each point x ∈ Ω, now also
material with tensor ρ(x)pE(x) is allowed, where ρ(x) ∈ [0, 1], and p ≥ 1 is a user-defined
parameter (cf. below). In a 2D-setting, ρ may be interpreted as the thickness of a (yet 2D)
structure (“variable thickness sheet problem” [5]).

After discretization using M finite elements, the problem now becomes very similar to
the truss problem (4) from Ex. 2.1 (where f ext now changes its meaning to its discretized
counterpart f ext ∈ Rd; note also that here the objective function and the resource constraint
have been chosen already as compliance and as volume, respectively):

min
ρ∈RM , u∈Rd

f ext T u

s.t.
m
∑

i=1

ρiVi ≤ V,

0 ≤ ρi ≤ 1 ∀i = 1, . . . , M,
K(ρ)u = f ext,
σc

i ≤ σi(ρ, u) ≤ σt
i if ρi > 0 ∀i = 1, . . . , M

Here K(ρ) =
∑

i ρ
p
i Ki denotes the total stiffness matrix of the structure, and Ki is the

element stiffness matrix of the ith finite element in global reduced coordinates. Again we
see the effect of vanishing stress constraints for elements with zero density ρi.

Figure 2 (a) shows the reference domain Ω, the boundary conditions, and the force
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applied at a small piece ΓT of the boundary. On purpose, the scenario was chosen anal-
ogously to the scenario in Fig. 1 (a) from above. Figure 2 (b) shows a solution of the
problem for p = 1 where the optimal values ρ∗

i ∈ [0, 1] for each finite element, respectively,
are visualized through a grey-scale from white (ρ∗

i = 0) to black (ρ∗

i = 1). The volume
bound V was chosen as 40% of the total area of Ω. We have used 56 × 32 = 1792 square
finite elements for the discretization of both, ρ (piece-wise constant) and u (piece-wise
bilinear and continuous). We mention that the stress constraints had to be appropriately
chosen in order to get the problem solved. (We just want to give an illustration of the
application here, not all the details themselves.) As immediately seen from the picture,
the optimization makes very well use of the freedom in choosing intermediate densities,
i.e., values ρ∗

i ∈ ]0, 1[. In view of interpreting ρ∗ as a material distribution, however, this is
not desirable. Here the parameter p comes into play. By choosing p > 1, there is an effect
“penalizing” intermediate densities ρi via the equilibrium

∑

i ρ
p
i Kiu = f ext in combination

with the volume constraint. For p > 1, however, the precise meaning of either the material
law or the volume constraint changes. It turns out, however, that the choice p > 1 results
in much nicer structures from the realization point of view, i.e., solutions with intermedi-
ate densities are avoided. In the literature this “proportional stiffness model” is known as
the SIMP model (Solid Isotropic Material with Penalization) [3, 15]. Figure 2 (c) shows
the result of an optimization run for p = 2. It is obvious that this result may be clearly
interpreted as a real structure. Moreover, this structure is similar to the solution truss in
Fig. 1 (b). ♦

3 Violation of Standard Constraint Qualifications

The aim of this section is to show that standard constraint qualifications usually do not hold
for mathematical programs with vanishing constraints. In order to recall these constraint
qualifications, we first consider the optimization problem

min f̃(x)
s.t. g̃i(x) ≤ 0 ∀i = 1, . . . , r,

h̃j(x) = 0 ∀j = 1, . . . , s

(5)

with continuously differentiable functions f̃ , g̃i, h̃j : Rn → R. Let

X̃ :=
{

x ∈ Rn
∣

∣ g̃i(x) ≤ 0 (i = 1, . . . , r), h̃j(x) = 0 (j = 1, . . . , s)
}

denote the feasible set of the optimization problem (5).
Now let x∗ be a local minimum of (5) and suppose that a suitable constraint qualification

holds (see the discussion below). Then it is possible to show that there exist Lagrange
multipliers λ̃i ∈ R and µ̃j ∈ R such that the following first order optimality conditions or
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Karush-Kuhn-Tucker conditions (KKT conditions, for short) hold:

∇f̃(x∗) +

r
∑

i=1

λ̃i∇g̃i(x
∗) +

s
∑

j=1

µ̃j∇h̃j(x
∗) = 0,

h̃j(x
∗) = 0 ∀j = 1, . . . , s,

λ̃i ≥ 0, g̃i(x
∗) ≤ 0, λ̃ig̃i(x

∗) = 0 ∀i = 1, . . . , r,

(6)

see, e.g., [2, 11]. These KKT conditions play a major role for the design and analysis
of several optimization algorithms, and it is therefore of central importance that these
conditions hold under appropriate assumptions.

Suitable conditions which guarantee that the KKT conditions are satisfied at a local
minimum x∗ of (5) are some constraint qualifications. Here we give a brief list with the
most prominent constraint qualifications that may be found in the literature (see, e.g., the
survey [14]):

• The linear independence constraint qualification (LICQ for short) is said to hold at
a local minimizer x∗ of (5) if the gradients

∇g̃i(x
∗) (i : g̃i(x

∗) = 0), ∇h̃j(x
∗) (j = 1, . . . , s)

are linearly independent.

• The Mangasarian-Fromovitz constraint qualification (MFCQ for short) is said to
hold at a local minimizer x∗ of (5) if the gradients ∇h̃j(x

∗) (j = 1, . . . , s) are linearly
independent and there is a vector d ∈ Rn such that

∇g̃i(x
∗)T d < 0 (i : g̃i(x

∗) = 0), ∇h̃j(x
∗)T d = 0 (j = 1, . . . , s).

• The Abadie constraint qualification (ACQ for short) is said to hold at a local mini-
mizer x∗ of (5) if T (x∗) = L(x∗), where

T (x∗) :=
{

d ∈ Rn
∣

∣

∣
∃{xk} ⊆ X̃, ∃{tk} ↓ 0 : xk → x∗ and

xk − x∗

tk
→ d

}

is the standard tangent cone of (5) at x∗, and

L(x∗) :=
{

d ∈ Rn
∣

∣∇g̃i(x
∗)T d ≤ 0 (i : g̃i(x

∗) = 0), ∇h̃j(x
∗)T d = 0 (j = 1, . . . , s)

}

denotes the corresponding linearized cone of (5) at x∗.

The following implications are well-known:

LICQ =⇒ MFCQ =⇒ ACQ.
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Moreover, if ACQ holds at a local minimum x∗ of (5), then there exist Lagrange multipliers
λ̃i and µ̃j such that the KKT conditions (6) hold. In particular, the KKT conditions are
necessary optimality conditions under both LICQ and MFCQ. Note also that ACQ is one
of the weakest constraint qualifications, see, again, the paper [14] for a complete overview.

We now want to apply these standard constraint qualifications to our constrained op-
timization problem from (1). To this end, let x∗ be a local minimum of (1), and let us
introduce the following index sets that will be used frequently in the subsequent analysis:

Ig :=
{

i
∣

∣ gi(x
∗) = 0

}

,
J :=

{

1, . . . , p
}

,
I+ :=

{

i
∣

∣Hi(x
∗) > 0

}

,
I0 :=

{

i
∣

∣Hi(x
∗) = 0

}

.

(7)

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{

i
∣

∣ Hi(x
∗) > 0, Gi(x

∗) = 0
}

,
I+− :=

{

i
∣

∣ Hi(x
∗) > 0, Gi(x

∗) < 0
}

.
(8)

Similarly, we partition the set I0 in the following way:

I0+ :=
{

i
∣

∣Hi(x
∗) = 0, Gi(x

∗) > 0
}

,
I00 :=

{

i
∣

∣Hi(x
∗) = 0, Gi(x

∗) = 0
}

,
I0− :=

{

i
∣

∣Hi(x
∗) = 0, Gi(x

∗) < 0
}

.
(9)

Note that the first subscript (+ or 0) in these index sets indicates whether Hi(x
∗) is positive

or zero, whereas the second subscript (+, 0 or −) indicates whether the sign of Gi(x
∗) is

positive, zero, or negative. Further note that these index sets depend on the particular
solution x∗ of (1). However, this solution will always be clear from the context, so there is
no need to make this dependence explicit in our notation.

In our first result, we show that LICQ does not hold for our optimization problem (1)
under fairly mild assumptions.

Lemma 3.1 Let x∗ be a local minimum of (1) such that I0 6= ∅. Then LICQ is violated at
the point x∗.

Proof. Let us introduce the function

θi(x) := Gi(x)Hi(x) ∀i = 1, . . . , l, (10)

and note that its gradient is given by

∇θi(x) = Gi(x)∇Hi(x) + Hi(x)∇Gi(x) ∀i = 1, . . . , l.

Hence the definition of the index sets from (8), (9) implies

∇θi(x
∗) =







0, if i ∈ I00,
Gi(x

∗)∇Hi(x
∗), if i ∈ I0+ ∪ I0−,

Hi(x
∗)∇Gi(x

∗), if i ∈ I+0.
(11)
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Now assume that LICQ holds at x∗. Then the gradients

∇gi(x
∗) (i ∈ Ig), ∇hj(x

∗) (j ∈ J), ∇Hi(x
∗) (i ∈ I0), ∇θi(x

∗) (i ∈ I0 ∪ I+0) (12)

must be linearly independent. Since I0 6= ∅, we have I00 6= ∅ or I0+ ∪ I0− 6= ∅. However,
for i ∈ I00, we get ∇θi(x

∗) = 0 from (11), and this vector cannot be a member of a
set of linearly independent vectors. On the other hand, if i ∈ I0+ ∪ I0−, it follows from
(11) that ∇θi(x

∗) is a nonzero multiple of ∇Hi(x
∗). Hence this vector together with the

corresponding gradient ∇Hi(x
∗) forms a linearly dependent subset of the vectors from (12).

These contradictions show that LICQ is violated at x∗. �

We next show that, under a slightly stronger assumption, MFCQ is also not satisfied at a
local minimum of our special optimization problem from (1).

Lemma 3.2 Let x∗ be a local minimum of (1) such that I00 ∪ I0+ 6= ∅. Then MFCQ is
violated at the point x∗.

Proof. Suppose that MFCQ holds at x∗. Then the gradients ∇hj(x
∗) (j ∈ J) are linearly

independent, and there is a vector d ∈ Rn such that

∇gi(x
∗)T d < 0 (i ∈ Ig), ∇hj(x

∗)T d = 0 (j ∈ J)

and
∇Hi(x

∗)T d > 0 (i ∈ I0), ∇θi(x
∗)T d < 0 (i ∈ I0 ∪ I+0). (13)

The first set of conditions is not really important in our proof, since the second set alone
gives a contradiction. In fact, if we take an index i ∈ I00, we get the contradiction
0 = ∇θi(x

∗)T d < 0 from (11) and (13). Otherwise, if we have an index i ∈ I0+, we also
get a contradiction, since, on the one hand, the vector d satisfies ∇Hi(x

∗)T d > 0 in view
of (13) and, on the other hand, we have

∇Hi(x
∗)T d =

1

Gi(x∗)
∇θi(x

∗)T d < 0

because of (11) and (13). Hence, in any case, we get a contradiction. �

Note the difference in the assumptions of Lemma 3.1 and Lemma 3.2: The first result
states that LICQ has a chance to hold only if all Hi constraints are inactive, whereas the
second result says that MFCQ may hold if some of the Hi constraints are active, namely
those with indices i ∈ I0−.

We next discuss the relevance of the assumptions in Lemmas 3.1 and 3.2 from the point
of view of our truss topology optimization problem from Example 2.1.

Example 3.3 Consider the prototype application from truss topology optimization in
Example 2.1. The assumption I0 6= ∅ of Lemma 3.1 is usually satisfied at a (locally) optimal
structure a∗ (with corresponding displacements u∗). To this end, recall that Hi(a

∗, u∗) = a∗

i

12



denotes the cross-sectional area of the i-th bar. Hence I0 will usually be a large set (cf.
Figure 1 (b)). Consequently, LICQ has no chance to hold in this situation. Moreover,
the assumption I00 ∪ I0+ 6= ∅ from Lemma 3.2 is typically also satisfied at an optimizer
(a∗, u∗). To see this, we interpret the optimal structure a∗ as a so-called “limiting structure”
a∗ = limj→+∞ aj with structures aj > 0 (and corresponding displacements uj). Then
consider an index i with a∗

i = 0. For such a “vanishing bar” (i.e., aj
i → a∗

i = 0) the value of
the stress σi(a

j, uj) typically increases up to a finite value, say limj σi(a
j, uj) = σi(a

∗, u∗)
(independent of the convergence of uj). Note that the value σi(a

∗, u∗) is a fictitious stress
value (a “limiting stress”) because the i-th bar is not realized as a real bar (a∗

i = 0 !).
Typically, we have σi(a

∗, u∗) > σt
i or σi(a

∗, u∗) < σc
i because these values prevent a∗

i from
being positive (i.e., optimization decides to choose a∗

i = 0 because otherwise the involved
stresses would exceed the stress bounds). In this situation, we therefore have i ∈ I0+.
Numerical examples show that almost all indices i with a∗

i = 0 belong to I0+. Hence
MFCQ is unlikely to hold at local minimizers in Example 2.1. ♦

Example 3.4 Let us study a truss design example of academic size. We consider the prob-
lem of minimizing the weight of a predefined part of the structure subject to constraints on
total weight and total compliance of the structure, and on member stresses (in comparison
to problem (4) in Ex. 2.1, we neglect the constraints on local buckling, for simplicity), i.e.,
with some given index set I ⊆ {1, . . . , M},

min
a∈RM ,u∈Rd

∑

i∈I

κi`iai

s.t.
M
∑

i=1

κi`iai − W ≤ 0,

f ext T u − C ≤ 0,
K(a)u = f ext,
ai ≥ 0 for all i = 1, . . . , M,
ai(σ

c
i − σi(a, u)) ≤ 0 for all i = 1, . . . , M,

ai(σi(a, u) − σt
i) ≤ 0 for all i = 1, . . . , M.

Here, `i denotes the length of the ith potential bar, and κi denotes its specific structural
weight per volume. The constants W and C denote the permitted maximal weight and
maximal compliance, respectively, of the total structure. Moreover, in this problem setting
formulated in areas and displacements, we have used that σi(a, u) can be written as a linear
function of u, and thus is well-defined (as a mathematical function) even if ai = 0 (while
losing its physical meaning as a member stress).

Minimization of the weight of only a part of the structure makes sense if the decision
must be made how to design a few “critical” and “expensive” elements of the structure
while all other elements are cheap in manufacturing. Imagine, e.g., the scenario requires
some “backbone parts” made from very expensive material like specially hardened steel
while all other bars in the structure can be manufactured from cheap material, and thus
are neglected in the objective function. Together with the other side constraints, the
constraint on total weight will control whether “expensive” bars i ∈ I are used at all in
the final design.

13
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Figure 3: Ground structure of academic example (Ex. 3.4)

To be more concrete, consider the ground structure in Fig. 3 consisting of M = 2
potential bars with a vertical force applied at the single free nodal point, indicated by
a dashed arrow. It is obvious that bar no. 1 is of paramount importance, and hence we
put I := {1}. Let the length of both bars be 1, assume that the Youngs’s moduli of
the materials in both bars are Ei := 1, and let the specific weight factors κi be also 1,
again for simplicity. Then, in global reduced coordinates (i.e., after deletion of fixed nodal
displacement coordinates), for any a ∈ R2, a ≥ 0, the global stiffness matrix is given by

K(a) = a1

(

0 0
0 1

)

+ a2

(

1 0
0 0

)

,

where a1, a2 ≥ 0 denote the cross-sectional areas of bar 1 and bar 2, respectively. Moreover,
let f ext := (0,−1)T denote the given external force in reduced nodal coordinates, i.e.,
f ext T u = −u2 expresses total compliance of the structure, where u = (u1, u2)

T is the
displacement vector of the free bottom right nodal point with u1, u2 being the displacement
in horizontal and vertical direction, respectively. With the stress bounds σc

i , σ
t
i as ∓1, and

with the bounds W := 2 and C := 2, we arrive at the following problem of type (1):

min
a,u∈R2

a1 f(a, u) := a1

s.t. a1 + a2 − 2 ≤ 0, g1(a, u) := a1 + a2 − 2,
−u2 − 2 ≤ 0, g2(a, u) := −u2 − 2,

a2u1 = 0, h1(a, u) := a2u1,
a1u2 + 1 = 0, h2(a, u) := a1u2 + 1,

a1 ≥ 0, H1,2(a, u) := a1,
a2 ≥ 0, H3,4(a, u) := a2,

a1(−1 + u2) ≤ 0, G1(a, u) := −1 + u2,
a1(−1 − u2) ≤ 0, G2(a, u) := −1 − u2,
a2(−1 + u1) ≤ 0, G3(a, u) := −1 + u1,
a2(−1 − u1) ≤ 0. G4(a, u) := −1 − u1.

(14)

14



Let us calculate all solutions of this problem. The second equilibrium constraint requires
that neither a1 nor u2 can be zero. (This is also clear from the geometry: The structure
must carry the external load, and this will lead to a displacement in vertical direction.)
Moreover, a1 = − 1

u2

. Hence, u2 is always negative, and minimization of a1 means max-
imization of |u2|. The stress constraints on bar no. 1 reduce to −1 ≤ u2 ≤ 1 because
a1 > 0. Moreover, the compliance constraint says that −u2 ≤ 2, and thus is always sat-
isfied. Hence, we obtain that u∗

2 := −1 and a∗

1 := 1 are optimal together with all other
choices for (a2, u1) which are feasible (notice that the constraint on total weight a∗

1 +a2 ≤ 2
is satisfied for all a2 ∈ [0, 1]).

By this, we obtain the following set of optimal solutions of our problem:

{

(a1, a2, u1, u2)
T

∣

∣

∣
a1 = 1, a2 = 0, u1 ∈ R, u2 = −1

}

∪
{

(a1, a2, u1, u2)
T

∣

∣

∣
a1 = 1, a2 ∈ ]0, 1], u1 = 0, u2 = −1

}

.

From an engineering point of view, in this example, bar no. 1 must carry the total external
load because bar no. 2 is perpendicular to f ext (by the way, such a situation often occurs
in truss design problems formulated on ground structures; cf. Fig. 1 (a)). Hence, in the
above problem, we seek a design where a1 is as slim as possible, nevertheless, carrying the
load. Since the load is constant, making the bar slim, however, increases the absolute stress
|σ1(a, u)| = |E1

`1
(−u2)| = |u2|. Hence, the optimal design is completely determined by the

stress constraint for bar no. 1 because the side constraints on total weight or compliance
do not become active.

Consider the particular solution

x∗ := (a∗

1, a
∗

2, u
∗

1, u
∗

2)
T = (1, 0, 1,−1)T . (15)

Then
Ig = ∅, J = {1, 2}, I+ = {1, 2}, I0 = {3, 4},

I+0 = {2}, I+− = {1}, I0+ = ∅, I00 = {3}, I0− = {4}.
(16)

By Lemmas 3.1 and 3.2, the LICQ as well as the MFCQ is violated since I0 ⊃ I00 6= ∅.
Of course, these facts also can be directly checked by the explicit problem formulation in
(14).

Alternatively, one may consider the solution

x̃∗ := (a∗

1, a
∗

2, ũ
∗

1, u
∗

2)
T = (1, 0, 0,−1)T (17)

(differing from x∗ in the 3rd component) with the corresponding index sets (here and in
the sequel indicated by an additional “ ˜ ”)

Ĩg = ∅, J̃ = {1, 2}, Ĩ+ = {1, 2}, Ĩ0 = {3, 4},
Ĩ+0 = {2}, Ĩ+− = {1}, Ĩ0+ = ∅, Ĩ00 = ∅, Ĩ0− = {3, 4}.

(18)

At the point x̃∗ we have ∇h1(x̃
∗) = 0R4, and thus neither LICQ nor MFCQ have a chance

to hold. ♦
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We next discuss the Abadie constraint qualification. As a first step in this direction, we
give a representation of the linearized cone of (1) in our next result.

Lemma 3.5 Let x∗ be a local minimum of (1). Then the linearized cone of (1) at x∗ is
given by

L(x∗) =
{

d ∈ Rn
∣

∣∇gi(x
∗)T d ≤ 0 (i ∈ Ig),

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d ≥ 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d ≤ 0 (i ∈ I+0)

}

.

Proof. Let θi denote the function from (10). Then, using the definition of the index sets
from (7)–(9), it follows that the linearized cone of the program (1) at x∗ is given by

L(x∗) =
{

d ∈ Rn
∣

∣∇gi(x
∗)T d ≤ 0 (i ∈ Ig),

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d ≥ 0 (i ∈ I0),

∇θi(x
∗)T d ≤ 0 (i ∈ I0 ∪ I+0)

}

.

Now, using the expression of the gradient ∇θi(x
∗) for i ∈ I0∪I+0 as given in (11), it follows

that

∇θi(x
∗)T d ≤ 0 ⇐⇒ ∇Hi(x

∗)T d ≤ 0 ∀i ∈ I0+,

∇θi(x
∗)T d ≤ 0 ⇐⇒ 0 ≤ 0 ∀i ∈ I00,

∇θi(x
∗)T d ≤ 0 ⇐⇒ ∇Hi(x

∗)T d ≥ 0 ∀i ∈ I0−,

∇θi(x
∗)T d ≤ 0 ⇐⇒ ∇Gi(x

∗)T d ≤ 0 ∀i ∈ I+0.

The first equivalence, together with ∇Hi(x
∗)T d ≥ 0 for all i ∈ I0, gives ∇Hi(x

∗)T d =
0 for all i ∈ I0+, whereas the second and third equivalences do not provide any new
information. Putting together all these pieces of information, we immediately get the
desired representation of the linearized cone. �

The following example shows that ACQ may not hold if I00 6= ∅.

Example 3.6 Consider the optimization problem

min x2
1 + x2

2

s.t. H1(x) := x1 + x2 ≥ 0,
G1(x)H1(x) := x1(x1 + x2) ≤ 0,

which is of the form (1) with n = 2, m = p = 0, and l = 1. Its unique solution is given by
x∗ = (0, 0)T . A simple calculation shows that the tangent cone of this program is given by

T (x∗) =
{

d ∈ R2
∣

∣ d1 + d2 ≥ 0, d1 ≤ 0
}

∪
{

d ∈ R2
∣

∣ d1 + d2 = 0
}
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=
{

d ∈ R2
∣

∣ d1 + d2 ≥ 0, d1(d1 + d2) ≤ 0
}

,

whereas Lemma 3.5 shows that the corresponding linearized cone has the representation

L(x∗) =
{

d ∈ R2
∣

∣ d1 + d2 ≥ 0
}

.

Hence the linearized cone is strictly larger than the tangent cone, i.e., ACQ is violated in
this example. ♦

In the next section, we show that ACQ holds under reasonable conditions provided that
I00 = ∅. In fact, looking at Lemmas 3.1, 3.2 and Example 3.6, the reader may ask whether
ACQ is always violated if I00 6= ∅. The following example shows, however, that this is not
true in general.

Example 3.7 Consider the problem

min x2
1 + x2

2

s.t. H1(x) := x1 + x2 ≥ 0,
G1(x)H1(x) := (−x1 − x2)(x1 + x2) ≤ 0,

whose unique solution is the origin x∗ := (0, 0)T . Hence we have I00 = {1}, in particular,
this set is nonempty. Nevertheless, Lemma 3.5 and an elementary calculation shows that
T (x∗) = {d ∈ R2 | d1 + d2 ≥ 0} = L(x∗), hence ACQ holds in this example. ♦

Similarly, we may consider the academic truss design example from above.

Example 3.8 (Ex. 3.4, cont’d) Consider the optimizer x∗ from (15) in Ex. 3.4. Then
Lemma 3.5 yields

L(x∗) = {d ∈ R4 | d1 = d4 ≥ 0, d2 = 0, d3 ∈ R arbitrary}.

We claim that ACQ holds at x∗, i.e., that T (x∗) = L(x∗). To see this, first recall that we
always have T (x∗) ⊆ L(x∗). To prove the other inclusion, take an arbitrary d ∈ L(x∗).
Then d = (d1, 0, d3, d1)

T for some d1 ≥ 0 and d3 arbitrary. Now let {tk} ↓ 0 be any given
sequence and choose {xk} as follows:

xk :=









1 + tkd1

0
1 + tkd3

−1 + tkd1

1+tkd1









∀k ∈ N.

Let X denote the feasible set of our problem. Then it is easy to see that {xk} ⊆ X,

xk → x∗, and xk
−x∗

tk
→ d. This shows that d ∈ T (x∗) and, therefore, ACQ holds at x∗

(note that I00 6= ∅ in this case).
On the other hand, consider the optimizer x̃∗ from (17). Lemma 3.5 yields

L(x̃∗) = {d ∈ R4 | d1 = d4 ≥ 0, d2 ≥ 0, d3 ∈ R arbitrary}. (19)
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We claim that the inclusion T (x̃∗) ⊆ L(x̃∗) is strict, so that ACQ is violated at x̃∗. To this
end, consider the particular vector d := (0, 1, 1, 0)T . We obviously have d ∈ L(x̃∗), and
want to show that d 6∈ T (x̃∗). Suppose, by contradiction, that there are sequences {tk} ↓ 0

and {xk} ⊆ X such that xk → x̃∗ and xk
−x̃∗

tk
→ d. Let us write xk = (ak

1, a
k
2, u

k
1, u

k
2)

T for all

k ∈ N. Since xk ∈ X, we have ak
2u

k
1 = 0 for all k ∈ N. If there are infinitely many k ∈ N

with ak
2 = 0, we get the contradiction

0 =
0 − 0

tk
=

xk
2 − x̃∗

2

tk
→ 1 = d2.

On the other hand, if there are only finitely many k ∈ N with ak
2 = 0, we have uk

1 = 0 for
all sufficiently large k ∈ N. This, however, gives the contradiction

0 =
0 − 0

tk
=

xk
3 − x̃∗

3

tk
→ 1 = d3.

Together this shows that d 6∈ T (x̃∗). Consequently, ACQ does not hold at x̃∗ (note that
I00 = ∅ in this case). In fact, by a similar argument, one can show that T (x̃∗) is equal to
the non-convex cone

T (x̃∗) = {d | d1 = d4 ≥ 0, d2 = 0, d3 ∈ R arbitrary} ∪ {d | d1 = d4 ≥ 0, d2 ≥ 0, d3 = 0}

which is obviously a proper subset of L(x̃∗). ♦

4 Standard Abadie Constraint Qualification

The aim of this section is to show that the Abadie constraint qualification holds at a local
minimum x∗ of (1) under certain assumptions. To this end, we begin with the following
simple but important result.

Theorem 4.1 Let x∗ be a local minimum of (1) such that ACQ holds at x∗. Then there
exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µj ∈ R (j ∈ J), ηH

i , ηG
i ∈ R (i = 1, . . . , l)

such that

∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) +

∑

j∈J

µj∇hj(x
∗) −

l
∑

i=1

ηH
i ∇Hi(x

∗) +

l
∑

i=1

ηG
i ∇Gi(x

∗) = 0 (20)

and
hj(x

∗) = 0 ∀j ∈ J,

λi ≥ 0, gi(x
∗) ≤ 0, λigi(x

∗) = 0 ∀i = 1, . . . , m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I00 ∪ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I0 ∪ I+−), ηG

i ≥ 0 (i ∈ I+0).

(21)
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Proof. Since ACQ holds at x∗, the standard KKT conditions of (1) are satisfied, i.e., there
exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µj ∈ R (j ∈ J) and ρi, νi ∈ R (i = 1, . . . , l)
such that the following conditions hold:

∇f(x∗) +
m

∑

i=1

λi∇gi(x
∗) +

∑

j∈J

µj∇hj(x
∗) −

l
∑

i=1

ρi∇Hi(x
∗) +

l
∑

i=1

νi∇θi(x
∗) = 0

and

gi(x
∗) ≤ 0, λi ≥ 0, λigi(x

∗) = 0 ∀i = 1, . . . , m,

hj(x
∗) = 0 ∀j ∈ J,

Hi(x
∗) ≥ 0, ρi ≥ 0, ρiHi(x

∗) = 0 ∀i = 1, . . . , l,

θi(x
∗) ≤ 0, νi ≥ 0, νiθi(x

∗) = 0 ∀i = 1, . . . , l,

where, again, θi denotes the function from (10). Now, taking into account the representa-
tion (11) of the gradient of θi, and setting

ηH
i := ρi − νiGi(x

∗) and ηG
i := νiHi(x

∗) ∀i = 1, . . . , l,

we immediately obtain the desired conditions (20), (21). �

For obvious reasons, we call (20), (21) the KKT conditions of the optimization problem
(1). Note that there is no sign restriction on the multipliers ηH

i whose components i belong
to the index set I0+.

We next state a technical lemma that will play a major role in developing new (spe-
cialized) constraint qualifications for our optimization problem (1).

Lemma 4.2 Let x∗ ∈ Rn be a local minimum of (1). Assume that the gradients

∇hj(x
∗) (j ∈ J),

∇Hi(x
∗) (i ∈ I00 ∪ I0+)

are linearly independent, and that there is a vector d̂ satisfying

∇hj(x
∗)T d̂ = 0 (j ∈ J), ∇Hi(x

∗)T d̂ = 0 (i ∈ I00 ∪ I0+) (22)

and

∇gi(x
∗)T d̂ < 0 (i ∈ Ig), ∇Gi(x

∗)T d̂ < 0 (i ∈ I+0), ∇Hi(x
∗)T d̂ > 0 (i ∈ I0−). (23)

Then there is an ε > 0 and a continuously differentiable curve x : (−ε, +ε) → Rn such
that x(0) = x∗, x′(0) = d̂ and x(t) ∈ X for all t ∈ [0, ε), where X denotes the feasible set
of (1).
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Proof. Let us introduce the mapping z : Rn → Rq, q := |J | + |I00| + |I0+|, defined by

z(x) :=





hj(x) (j ∈ J)
Hi(x) (i ∈ I00)
Hi(x) (i ∈ I0+)



 ,

and let zj denote the jth component function of z. Furthermore, let H : Rq+1 → Rq be
the mapping defined by

Hj(y, t) := zj

(

x∗ + td̂ + z′(x∗)T y
)

∀j = 1, . . . , q.

Then the (usually nonlinear) system of equations H(y, t) = 0 has a solution (y∗, t∗) :=
(0, 0), and the partial Jacobian

Hy(0, 0) = z′(x∗)z′(x∗)T ∈ Rq×q

is nonsingular since the Jacobian z′(x∗) has full rank by assumption. Consequently, using
the implicit function theorem, there is an ε > 0 and a continuously differentiable function
y : (−ε, +ε) → Rq such that y(0) = 0 and H(y(t), t) = 0 for all t ∈ (−ε, +ε). Moreover,
its derivative is given by

y′(t) = −
(

Hy(y(t), t)
)

−1
Ht(y(t), t) ∀t ∈ (−ε, +ε).

In particular, this implies

y′(0) = −
(

Hy(0, 0)
)

−1
H t(0, 0) = −

(

Hy(0, 0)
)

−1
z′(x∗)d̂ = 0

in view of (22).
Now define

x(t) := x∗ + td̂ + z′(x∗)T y(t).

Then x(·) is continuously differentiable on (−ε, +ε), and we claim that x(t) has all the
desired properties (possibly on a slightly smaller interval). Since y(0) = 0 and y ′(0) = 0,
we immediately obtain x(0) = x∗ and x′(0) = d̂ + z′(x∗)T y′(0) = d̂. Hence it remains to
show that x(t) ∈ X for all sufficiently small t ∈ [0, ε).

To this end, we first note that H(y(t), t) = 0 implies zj(x(t)) = 0 and, therefore,

hj(x(t)) = 0 ∀j ∈ J,

Hi(x(t)) = 0 ∀i ∈ I00, (24)

Hi(x(t)) = 0 ∀i ∈ I0+ (25)

for all t ∈ (−ε, +ε). Furthermore, by continuity, we also have Hi(x(t)) ≥ 0 for all i ∈ I+ and
all t sufficiently small. Next take an arbitrary index i ∈ I0−, and define φ(t) := Hi(x(t)).
Then we have φ′(t) = ∇Hi(x(t))T x′(t) and, therefore, φ′(0) = ∇Hi(x

∗)T d̂ > 0 in view of
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(23). Since φ(0) = 0, this implies Hi(x(t)) = φ(t) > 0 for all t > 0 sufficiently small.
Consequently, we have shown that Hi(x(t)) ≥ 0 for all i = 1, . . . , l and all t > 0 sufficiently
small. In a similar way, one can prove that gi(x(t)) ≤ 0 for all i = 1, . . . , m and all t > 0
small. Hence it remains to show that the curve x(t) stays feasible (locally) with respect to
the constraints θi(x) ≤ 0.

In view of (24)–(25), this is certainly true for all i ∈ I00 ∪ I0+. Moreover, by continuity,
this also holds for all i ∈ I+−. Hence we only have to consider indices i ∈ I0− ∪ I+0. To
this end, define ϕ(t) := Gi(x(t))Hi(x(t)). Then an elementary calculation shows that

ϕ′(t) = Hi(x(t))∇Gi(x(t))T x′(t) + Gi(x(t))∇Hi(x(t))T x′(t).

This implies
ϕ′(0) = Hi(x

∗)∇Gi(x
∗)T d̂ + Gi(x

∗)∇Hi(x
∗)T d̂,

and, in view of (23), it is immediate to see that ϕ′(0) < 0 holds for all indices i belonging
to one of the remaining index sets I+0 and I0−. Consequently, we have Gi(x(t))Hi(x(t)) =
ϕ(t) < 0 for all i ∈ I+0 ∪ I0− and all t > 0 sufficiently small. This completes the proof. �

Motivated by the assumptions used in Lemma 4.2, we now introduce a variant of the
standard MFCQ condition that we call VC-MFCQ since it is a special constraint qual-
ification tailored to optimization problems with vanishing constraints, i.e., optimization
problems of type (1) (here and in the following, the abbreviation VC stands for “vanishing
constraints”).

Definition 4.3 We say that VC-MFCQ is satisfied at a local minimum x∗ of (1) if the
gradients

∇hj(x
∗) (j ∈ J),

∇Hi(x
∗) (i ∈ I00 ∪ I0+)

are linearly independent, and if there is a vector d̂ satisfying

∇hj(x
∗)T d̂ = 0 (j ∈ J), ∇Hi(x

∗)T d̂ = 0 (i ∈ I00 ∪ I0+)

and

∇gi(x
∗)T d̂ < 0 (i ∈ Ig), ∇Gi(x

∗)T d̂ < 0 (i ∈ I+0), ∇Hi(x
∗)T d̂ > 0 (i ∈ I0−).

Note that VC-MFCQ is a reasonable assumption and that it is different from standard
MFCQ (cf. the proof of Lemma 3.2). We now show that VC-MFCQ implies standard ACQ
provided that the critical index set I00 is empty.

Theorem 4.4 Let x∗ be a local minimum of (1) with I00 = ∅ and such that VC-MFCQ
holds. Then the standard Abadie constraint qualification holds at x∗.
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Proof. We have to show that T (x∗) = L(x∗). It is well-known, however, that the inclusion
T (x∗) ⊆ L(x∗) always holds. Hence it remains to show that the linearized cone is a subset
of the tangent cone. To this end, take any vector d ∈ L(x∗). Then Lemma 3.5 together
with I00 = ∅ shows that we have

∇gi(x
∗)T d ≤ 0 ∀i ∈ Ig,

∇hj(x
∗)T d = 0 ∀j ∈ J,

∇Hi(x
∗)T d = 0 ∀i ∈ I0+,

∇Hi(x
∗)T d ≥ 0 ∀i ∈ I0−,

∇Gi(x
∗)T d ≤ 0 ∀i ∈ I+0.

Now let d̂ ∈ Rn be a vector coming from our VC-MFCQ condition, and define

d(δ) := d + δd̂.

Then it is easy to see that d(δ) satisfies

∇gi(x
∗)T d(δ) < 0 ∀i ∈ Ig,

∇hj(x
∗)T d(δ) = 0 ∀j ∈ J,

∇Hi(x
∗)T d(δ) = 0 ∀i ∈ I0+,

∇Hi(x
∗)T d(δ) > 0 ∀i ∈ I0−,

∇Gi(x
∗)T d(δ) < 0 ∀i ∈ I+0.

for all δ > 0.
Let δ > 0 be fixed for the moment. We then show that d(δ) belongs to the tangent

cone T (x∗). Using the previous properties of d(δ), the assumption I00 = ∅, and the VC-
MFCQ condition, it follows from Lemma 4.2 that there is an ε > 0 and a smooth curve
x : (−ε, +ε) → Rn (both depending on δ) such that x(0) = x∗, x′(0) = d(δ) and x(t) ∈ X
for all t > 0 sufficiently small. Now take an arbitrary sequence {tk} ↓ 0 and define
xk := x(tk). Then {xk} ⊆ X, xk → x∗, and

d(δ) = x′(0) = lim
k→∞

x(tk) − x(0)

tk
= lim

k→∞

xk − x∗

tk
.

This shows that d(δ) = d + δd̂ ∈ T (x∗) for every δ > 0.
Finally, taking δk ↓ 0 and noting that the tangent cone T (x∗) is closed, it follows that

d = limk→∞ d(δk) ∈ T (x∗). �

As a consequence of Theorems 4.1 and 4.4, it follows that the KKT conditions (20), (21)
are necessary optimality conditions at a local minimum x∗ of (1) under the assumption
that I00 = ∅ and that VC-MFCQ holds. Moreover, Theorem 4.4 implies that the tangent
cone is polyhedral under these assumptions.

It is interesting to note that Theorem 4.4 does not hold without the assumption I00 = ∅,
i.e., VC-MFCQ may not imply standard ACQ if this set is nonempty. This can be seen
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by an inspection of Example 3.6 which obviously satisfies VC-MFCQ, whereas ACQ was
violated. However, this is an example where I00 6= ∅. The previous proof exploits the fact
that I00 = ∅, since otherwise we would have ∇Hi(x

∗)T d(δ) ≥ 0 for all i ∈ I00, and then it
is no longer possible to apply Lemma 4.2 in order to show that d(δ) belongs to the tangent
cone T (x∗) (because this would require ∇Hi(x

∗)T d(δ) = 0 for all i ∈ I00).
We next introduce a condition that we call VC-LICQ and which may be viewed as a

modification of the standard LICQ condition, taking into account the special structure of
the optimization problem (1).

Definition 4.5 We say that VC-LICQ is satisfied at a local minimum x∗ of (1) if the
gradients

∇hj(x
∗) (j ∈ J),

∇gi(x
∗) (i ∈ Ig),

∇Gi(x
∗) (i ∈ I+0),

∇Hi(x
∗) (i ∈ I0)

are linearly independent.

Note that VC-LICQ is different from standard LICQ. Moreover, it is easy to see that VC-
LICQ implies VC-MFCQ. VC-LICQ, however, might be easier to verify than VC-MFCQ.
Moreover, it guarantees uniqueness of the Lagrange multipliers. More precisely, we have
the following result.

Theorem 4.6 Let x∗ be a local minimum of (1) with I00 = ∅ and such that VC-LICQ is
satisfied. Then the standard Abadie constraint qualification holds at x∗. Moreover, there
exist unique Lagrange multipliers satisfying (20), (21).

Proof. The first statement follows immediately from Theorem 4.4 and the fact that VC-
LICQ implies VC-MFCQ. The second statement follows directly from the KKT conditions
(20), (21) and the linear independence of all gradient vectors belonging to those terms
which might have a nonzero multiplier. �

Note that VC-LICQ is obviously satisfied in Example 3.6, whereas the Abadie constraint
qualification does not hold. Hence an additional assumption like I00 = ∅ used in Theorem
4.6 (and, therefore, also in Theorem 4.4) is certainly needed.

Let us, finally, have a look at the above academic truss example.

Example 4.7 (Exs. 3.4 and 3.8, cont’d) Consider the optimal point x̃∗ of the problem
in Ex. 3.4 (cf. (17)). As noted in Ex. 3.8, ACQ does not hold, although Ĩ00 = ∅ (cf.
(18)). Moreover, ∇h1(x̃

∗) = 0R4 , and thus neither Lemma 4.2 applies, nor VC-MFCQ is
satisfied (nor VC-LICQ). Moreover, in this example, the functions H3 and H4 coincide,
and thus (note that Ĩ0 = Ĩ0− = {3, 4}; cf. (18)), trivially, the gradients ∇H3(x̃

∗),∇H4(x̃
∗)

are linearly dependent since they are identical. ♦
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5 A Modified Abadie Constraint Qualification

The aim of this section is to introduce a modified Abadie constraint qualification tailored
to the special structure of the optimization problem (1). This constraint qualification
will then be used in order to prove a necessary optimality condition that is different from
the KKT conditions stated in Theorem 4.1. We also provide sufficient conditions for the
modified Abadie constraint qualification to be satisfied.

In order to define our modified Abadie constraint qualification, let us introduce the
modified linearized cone

LMOD(x∗) :=
{

d ∈ Rn
∣

∣∇gi(x
∗)T d ≤ 0 (i ∈ Ig),

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d ≥ 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d ≤ 0 (i ∈ I00 ∪ I+0)

}

.

Note that we always have LMOD(x∗) ⊆ L(x∗) in view of Lemma 3.5. Using this modified
linearized cone, we now define our modified Abadie constraint qualification.

Definition 5.1 The modified Abadie constraint qualification (modified ACQ for short) is
said to hold at a local minimizer of (1) if LMOD(x∗) ⊆ T (x∗).

Note that Definition 5.1 only requires that the modified linearized cone is a subset of the
tangent cone. Another idea would be to use equality of these two cones, however, this
would be a much stronger condition since the modified linearized cone is polyhedral and,
therefore, convex, whereas the tangent cone might be non-convex.

The following note says that the modified ACQ condition is strictly weaker than stan-
dard ACQ.

Remark. Let x∗ ∈ Rn be a local minimizer of (1) such that standard ACQ is satisfied at
x∗. Then modified ACQ also holds at x∗ since LMOD(x∗) ⊆ L(x∗) = T (x∗). Moreover, the
modified Abadie CQ is strictly weaker than the standard Abadie CQ. To see this, let us
consider Example 3.6 once again. There we have

LMOD(x∗) =
{

d ∈ Rn
∣

∣ d1 + d2 ≥ 0, d1 ≤ 0
}

⊆ T (x∗),

hence the modified ACQ holds whereas standard Abadie was violated.

Example 5.2 (Exs. 3.4, 3.8, 4.7, cont’d) Again consider the minimizers x∗ and x̃∗ of
Ex. 3.4 (cf. (15) and (17)). The definition of LMOD gives

LMOD(x∗) = {d ∈ R4 | d1 = d4 ≥ 0, d2 = 0, d3 ≤ 0}
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which is strictly smaller than the linearized cone L(x∗) (cf. (19) in Ex. 3.8 where d3 is
arbitrary). However, as already seen in Ex. 3.8, T (x∗) = L(x∗), and thus the modified
ACQ is trivially satisfied at x∗.

Now consider x̃∗. Since Ĩ00 = ∅ (cf. (18)), we have

LMOD(x̃∗) = L(x̃∗).

Hence, the modified ACQ is not satisfied at x̃∗ because T (x̃∗) $ L(x̃∗) as already seen in
Ex. 3.8. ♦

Since modified ACQ is weaker than standard ACQ, we cannot expect the KKT conditions
from Theorem 4.1 to hold at a local minimum x∗ where the modified ACQ is satisfied. How-
ever, we get another optimality condition under modified ACQ as stated in our following
result.

Theorem 5.3 Let x∗ be a local minimum of (1) such that the modified ACQ condition
holds at x∗. Then there exist Lagrange multipliers λi ∈ R (i = 1, . . . , m), µj ∈ R (j ∈
J), ηH

i , ηG
i ∈ R (i = 1, . . . , l) such that

∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) +

∑

j∈J

µj∇hj(x
∗) −

l
∑

i=1

ηH
i ∇Hi(x

∗) +

l
∑

i=1

ηG
i ∇Gi(x

∗) = 0 (26)

and
λi ≥ 0, gi(x

∗) ≤ 0, λigi(x
∗) = 0 ∀i = 1, . . . , m,

hj(x
∗) = 0 ∀j ∈ J,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I00 ∪ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I0+ ∪ I0− ∪ I+−), ηG

i ≥ 0 (i ∈ I00 ∪ I+0).

(27)

Proof. The technique of proof is standard in optimization, and we present it here only for
the sake of completeness. Since x∗ is a local minimum of (1), it follows that

∇f(x∗)T d ≥ 0 ∀d ∈ T (x∗).

Using the modified ACQ condition, this implies

∇f(x∗)T d ≥ 0 ∀d ∈ LMOD(x∗). (28)

Using the fact that LMOD(x∗) is a polyhedral cone, and splitting all equality constraints
into two inequalities, we may rewrite (28) as

∇f(x∗)T d ≥ 0 for all d with Ad ≤ 0, (29)

where A denotes the matrix whose rows are given by the vectors

∇gi(x
∗)T (i ∈ Ig),
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∇hj(x
∗)T (j ∈ J),

−∇hj(x
∗)T (j ∈ J),

∇Hi(x
∗)T (i ∈ I0+),

−∇Hi(x
∗)T (i ∈ I0+),

−∇Hi(x
∗)T (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T (i ∈ I00 ∪ I+0).

Farkas’ Lemma applied to (29) shows that there is a vector y satisfying the linear system

AT y = −∇f(x∗), y ≥ 0. (30)

We now partition the vector y in the same way as the rows of the matrix A and denote
the elements of y by

λi (i ∈ Ig),

µ+
j (j ∈ J),

µ−

j (j ∈ J),

ηH,+
i (i ∈ I0+),

ηH,−
i (i ∈ I0+),

ηH
i (i ∈ I00 ∪ I0−),

ηG
i (i ∈ I00 ∪ I+0).

Finally, setting

µj := µ+
j − µ−

j (j ∈ J) and ηH
i := ηH,−

i − ηH,+
i (i ∈ I0+)

and
λi := 0 (i 6∈ Ig), ηH

i := 0 (i ∈ I+), ηG
i := 0 (i ∈ I0+ ∪ I0− ∪ I+−),

we immediately obtain the desired statement from (30). �

The conditions (26), (27) will sometimes be called the modified KKT conditions of the
optimization problem (1). Note that the only difference between the standard KKT con-
ditions from (20), (21) and these modified KKT conditions is in the multipliers ηG

i for
i ∈ I00: In the KKT conditions, these multipliers are zero, whereas in the modified KKT
conditions, they are only nonnegative. Hence the modified KKT conditions are weaker
than the standard KKT conditions, however, they also hold under the weaker modified
Abadie constraint qualification.

We next provide some sufficient conditions for the modified Abadie constraint quali-
fication to hold. In particular, Theorem 5.3 then holds under these conditions. We first
show that the modified ACQ holds if all constraint functions are linear.
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Theorem 5.4 Let x∗ be a local minimum of (1), and suppose that all constraint functions
gi, hj, Gi, and Hi are affine. Then modified ACQ holds at x∗.

Proof. We have to show that the inclusion LMOD(x∗) ⊆ T (x∗) holds. To this end, take
an arbitrary vector d ∈ LMOD(x∗), and define xk := x∗ + tkd for some sequence {tk} ↓ 0.
Then it follows immediately that xk → x∗ and (xk − x∗)/tk → d. Moreover, taking into
account the definition of LMOD(x∗) and exploiting the fact that all constraint functions are
assumed to be affine mappings, it is easy to see that {xk} ⊆ X for all k ∈ N sufficiently
large. Hence it follows from the definition of the tangent cone T (x∗) that d ∈ T (x∗). �

Note that the assumptions of Theorem 5.4 are satisfied, in particular, for Example 3.6.
In order to present some other sufficient conditions for the modified ACQ to hold, we

first state the following technical result.

Lemma 5.5 Let x∗ be a local minimum of (1), and suppose that the gradients

∇hj(x
∗) (j ∈ J), ∇Hj(x

∗) (i ∈ I0+)

are linearly independent, and that there is a vector d̂ ∈ Rn satisfying

∇hj(x
∗)T d̂ = 0 (j ∈ J), ∇Hj(x

∗)T d̂ = 0 (i ∈ I0+)

and

∇gi(x
∗)T d̂ < 0 (i ∈ Ig), ∇Gi(x

∗)T d̂ < 0 (i ∈ I00∪I+0), ∇Hi(x
∗)T d̂ > 0 (i ∈ I00∪I0−).

Then there is an ε > 0 and a continuously differentiable curve x : (−ε, +ε) → Rn such
that x(0) = x∗, x′(0) = d̂, and x(t) ∈ X for all t ∈ [0, ε).

Proof. The proof is essentially the same as the one of Lemma 4.2. To see this, define
z : Rn → Rq, q := |J | + |I0+|, by

z(x) :=

(

hj(x) (j ∈ J)
Hi(x) (i ∈ I0+)

)

and proceed almost word-by-word as in the proof of Lemma 4.2. This gives us a suitable
curve x(t) with a number of desired properties. The only difference between the proof of
Lemma 4.2 and the current proof is in showing that this curve stays feasible with respect
to the constraints θi(x) ≤ 0. In Lemma 4.2, this was shown by using a linearization of
the mapping θi. Here we cannot use a linearization argument. However, we still have
θi(x(t)) ≤ 0 for all i = 1, . . . , l because it is easy to see that the properties of the vector d̂
guarantees that Gi(x(t)) < 0 and Hi(x(t)) > 0 holds for all i ∈ I+ ∪ I00 ∪ I0− and all t > 0
sufficiently small, whereas for i ∈ I0+ we have θi(x(t)) = 0 since Hi(x(t)) = 0 for all these
indices. �
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As a consequence of Lemma 5.5, we obtain another sufficient condition for the modified
ACQ condition to be satisfied.

Theorem 5.6 Let x∗ be a local minimum of (1), and suppose that the assumptions of
Lemma 5.5 hold. Then the modified ACQ condition is satisfied at x∗.

Proof. We have to verify the inclusion LMOD(x∗) ⊆ T (x∗). To this end, take an arbitrary
d ∈ LMOD(x∗), and let d̂ ∈ Rn be the vector having the properties from Lemma 5.5. Then
define d(δ) := d + δd̂. Exploiting the definition of the modified linearized cone LMOD(x∗),
it follows that this vector has the subsequent properties:

∇gi(x
∗)T d(δ) < 0 (i ∈ Ig),

∇hj(x
∗)T d(δ) = 0 (j ∈ J),

∇Hi(x
∗)T d(δ) = 0 (i ∈ I0+),

∇Hi(x
∗)T d(δ) > 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d(δ) < 0 (i ∈ I00 ∪ I+0).

Using Lemma 5.5 and the technique of proof from Theorem 4.4, it is easy to see that
d(δ) ∈ T (x∗) for all δ > 0 sufficiently small. This implies d ∈ T (x∗) since the tangent cone
is closed. �

Finally, we present a sufficient condition which uses an LICQ-type assumption.

Theorem 5.7 Let x∗ be a local minimum of (1), and suppose that the gradients

∇gi(x
∗) (i ∈ Ig),

∇hj(x
∗) (j ∈ J),

∇Hi(x
∗) (i ∈ I0),

∇Gi(x
∗) (i ∈ I00 ∪ I+0)

are linearly independent. Then modified ACQ holds, and there exist unique Lagrange mul-
tipliers satisfying (26), (27).

Proof. The first statement follows from Theorem 5.6 by noting that the assumptions
of that result are obviously satisfied in our case. The second statement (uniqueness of
multipliers) follows immediately from the modified KKT conditions (26), (27) and the
linear independence of all gradient vectors with possibly nonzero multipliers. �

We believe that the linear independence assumption used in Theorem 5.7 is rather natural.
In fact, if we view the two factors Gi(x) and Hi(x) of the mapping θi from (10) separately,
then the assumptions of Theorem 5.7 just say that the gradients of all active constraints
are linearly independent. Hence this condition is a natural modification of the standard
LICQ assumption. Therefore, we also think that this modified LICQ condition can be
exploited for the development of numerical algorithms for the solution of mathematical
programs with vanishing constraints.
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6 Comparison with MPECs and Final Remarks

There is another optimization problem that has received much attention during the last
decade and that is closely related to problem (1), namely the mathematical program with
equilibrium constraints (or complementarity constraints), MPEC for short, see, e.g., the two
monographs [10, 12]. An MPEC looks like an ordinary constrained optimization problem,
however, its feasible set has a very special structure: Besides some standard equality
and inequality constraints, all feasible points also have to satisfy some complementarity
conditions. More precisely, an MPEC has the following form:

min f̃(z)
s.t. g̃i(z) ≤ 0 ∀i = 1, . . . , m,

h̃j(z) = 0 ∀j = 1, . . . , p,

G̃i(z) ≥ 0 ∀i = 1, . . . , l,

H̃i(z) ≥ 0 ∀i = 1, . . . , l,

G̃i(z)H̃i(z) = 0 ∀i = 1, . . . , l.

(31)

MPECs are difficult programs since most of the standard constraint qualifications are
violated. In fact, standard LICQ and standard MFCQ never hold (see [6]), whereas the
standard Abadie constraint qualification is satisfied only in some rare situations. In fact,
if z∗ denotes a local minimum of (31) and

β := β(z∗) :=
{

i
∣

∣ G̃i(z
∗) = 0, H̃i(z

∗) = 0
}

denotes the degenerate or bi-active index set, then the standard tangent cone at z∗ is usually
the union of finitely many polyhedral cones, each of this polyhedral cones is generated by a
partitioning of the degenerate set β, see [13, 8] for more details. Being the union of finitely
many cones, the tangent cone is therefore nonconvex in general, hence the usual Abadie
constraint qualification is not satisfied. The situation is different if β = ∅ since then the
above union of finitely many polyhedral cones reduces to the union over a single polyhedral
cone.

Now let us come back to our mathematical program with vanishing constraints (1). We
first show that this program may be rewritten as an MPEC. In fact, introducing “slack
variables” si, i = 1, . . . , l, problem (1) is equivalent to the following MPEC in the variables
z := (x, s):

min
x,s

f(x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) − si ≤ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
si ≥ 0 ∀i = 1, . . . , l,
Hi(x)si = 0 ∀i = 1, . . . , l.

(32)

More precisely, the relation between the two problems (1) and (32) is as follows.
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Lemma 6.1 (a) If x∗ is a local minimum of (1), then z∗ := (x∗, s∗) is a local minimum
of (32), where s∗ denotes any vector with components

s∗i

{

= 0, if Hi(x
∗) > 0,

≥ max{Gi(x
∗), 0}, if Hi(x

∗) = 0.

(b) If z∗ = (x∗, s∗) is a local minimum of (32), then x∗ is a local minimum of (1).

The proof of Lemma 6.1 follows from the fact that the corresponding vectors are feasible
for the respective optimization problems, and by noting that the objective function is the
same for both programs. Note that, in statement (a), we have some freedom in the choice
of the components s∗i with indices i such that Hi(x

∗) = 0.
In principle, it is therefore possible to reformulate a mathematical program with van-

ishing constraints as an MPEC. We believe, however, that this reformulation is not useful
from a practical point of view, and that one should try to deal with problem (1) directly.
For example, our discussion in Section 4 clearly shows that the standard Abadie constraint
qualification has a good chance to be satisfied at a local minimum of a mathematical pro-
gram with vanishing constraints, whereas it is usually violated for MPECs. Moreover, the
dimension of the MPEC formulation (32) is larger than the one of the original program (1),
and the slack variables in the program (32) are not defined uniquely, which might cause
some troubles when solving (32) by suitable algorithms.

Hence we believe that a mathematical program with vanishing constraints is an inter-
esting class of optimization problems for its own that deserve further investigation in order
to get a better understanding, both from a theoretical and a numerical point of view.
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