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Abstract: We introduce a new NCP-function in order to reformulate the nonlinear comple-
mentarity problem as a nonsmooth system of equations. This new NCP-function turns out
to have stronger theoretical properties than the widely used Fischer-Burmeister function and
other NCP-functions suggested previously. Moreover, numerical experience indicates that a
semismooth Newton method based on this new NCP-function performs considerably better
than the corresponding method based on the Fischer-Burmeister function.
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1 Introduction

Let F be a continuously differentiable function from IRn into itself. The nonlinear comple-
mentarity problem NCP(F ) is to find a vector x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.

Many algorithms developed for NCP(F ) or related problems are based on reformulating
them as a system of equations using so-called NCP-functions. Here, a function φ : IR2 → IR
is called an NCP-function if

φ(a, b) = 0 ⇐⇒ ab = 0, a ≥ 0, b ≥ 0.

Given an NCP-function φ, let us define

Φ(x) = vec{φ(xi, Fi(x))},

where vec{zi} denotes a vector whose ith element is given by zi. By definition, x∗ ∈ IRn is
a solution of NCP(F ) if and only if it solves the system of equations Φ(x) = 0.
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One popular choice of an NCP-function is the Fischer-Burmeister function [5]:

φFB(a, b) := a+ b−
√
a2 + b2.

The Fischer-Burmeister function has many interesting properties. However, it has limitations
in dealing with monotone complementarity problems, and it is too flat in the positive orthant,
the region of main interest for a complementarity problem.

In view of the above shortcomings of the Fischer-Burmeister function, we introduce the
following new NCP-function

φλ(a, b) := λφFB(a, b) + (1− λ)a+b+,

where λ ∈ (0, 1) is an arbitrary but fixed parameter. Clearly, the new NCP-function is a
convex combination of the Fischer-Burmeister function φFB and the term a+b+; the latter
term penalizes violations of the complementarity condition and will play a significant role
from both a theoretical and a practical point of view.

Throughout this note, the equation operator Φ based on this new NCP-function will be
denoted by Φλ, i.e.,

Φλ(x) := vec{φλ(xi, Fi(x))}.

Moreover, let us write

ψλ(a, b) :=
1

2
φλ(a, b)

2.

Then a natural merit function of Φλ is given by

Ψλ(x) :=
1

2
Φλ(x)

TΦλ(x) =
n∑

i=1

ψλ(xi, Fi(x)).

We denote the Euclidean norm by ‖ · ‖. We say that a mapping G : IRn → IRm is an LC1

function if G′ is locally Lipschitzian. To present our results by this short note, we state all
the results without proof. The detailed proofs can be found in the report version [1].

2 Properties of New NCP-Function

First we present some properties of φλ and Φλ.

Proposition 1 The function φλ : IR2 → IR satisfies the following properties:

1. φλ is an NCP-function.

2. φλ is continuously differentiable on IR2 \ {(a, b) | a ≥ 0, b ≥ 0, ab = 0}.

3. φλ is strongly semismooth on IR2.

4. The generalized gradient ∂φλ(a, b) is equal to the set of all (va, vb) such that

(va, vb) =

{
λ(1− a

‖(a,b)‖ , 1−
b

‖(a,b)‖) + (1− λ)(b+∂a+, a+∂b+) if (a, b) 6= (0, 0),

λ(1− ξ, 1− ζ) if (a, b) = (0, 0),
(1)
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where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖ ≤ 1 and

∂z+ =


1 if z > 0,
[0, 1] if z = 0,
0 if z < 0.

5. Let {ak}, {bk} ⊂ IR be any two sequences such that either ak
+b

k
+ → ∞, or ak → −∞,

or bk → −∞. Then |φλ(a
k, bk)| → ∞.

Result 2 implies that the Fischer-Burmeister function is smoother than φλ. φFB is nondif-
ferentiable only at (0, 0), while φλ is nondifferentiable on {(a, b) | a ≥ 0, b ≥ 0, ab = 0}.
However, this additional nonsmoothness does not affect the convergence analysis.

The next theorem is a consequence of Result 3 in Proposition 1.

Theorem 2 Φλ is semismooth. Moreover, Φλ is strongly semismooth if F is LC1.

Based on Result 4 of Proposition 1, we obtain the following overestimation of the C-
subdifferential ∂CΦλ(x)

T := ∂Φλ,1(x)× . . .× ∂Φλ,n(x).

Proposition 3 For any x ∈ IRn, we have ∂CΦλ(x) ⊆ Da(x) +Db(x)F
′(x), where Da(x) =

diag{ai(x)} and Db(x) = diag{bi(x)} are diagonal matrices with entries (ai(x), bi(x)) ∈
∂φλ(xi, Fi(x)), where ∂φλ(xi, Fi(x)) denotes the set from Proposition 1 with (a, b) being re-
placed by (xi, Fi(x)).

We now provide a procedure to calculate an element of the C-subdifferential ∂CΦλ(x) at an
arbitrary point x ∈ IRn.

Algorithm 4 (Procedure to evaluate an element V ∈ ∂CΦλ(x))

(S.0) Let x ∈ IRn be given, and let Vi denote the ith row of a matrix V ∈ IRn×n.

(S.1) Set S1 = {i|xi = Fi(x) = 0} and S2 = {i|xi > 0, Fi(x) > 0}.

(S.2) Set z ∈ IRn such that zi = 0 for i 6∈ S1 and zi = 1 for i ∈ S1.

(S.3) For i ∈ S1, set

Vi = λ

(
1− zi

‖(zi,∇Fi(x)Tz‖

)
eT

i + λ

(
1− ∇Fi(x)

Tz

‖(zi,∇Fi(x)Tz)‖

)
∇Fi(x)

T .

(S.4) For i ∈ S2, set

Vi =

[
λ

(
1− xi

‖(xi, Fi(x))‖

)
+ (1− λ)Fi(x)

]
eT

i

+

[
λ

(
1− Fi(x)

‖(xi, Fi(x))‖

)
+ (1− λ)xi

]
∇Fi(x)

T .
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(S.5) For i 6∈ S1 ∪ S2, set

Vi = λ

(
1− xi

‖(xi, Fi(x))‖

)
eT

i + λ

(
1− Fi(x)

‖(xi, Fi(x))‖

)
∇Fi(x)

T .

The following proposition is a consequence of Results 2 and 4 of Proposition 2.1.

Proposition 5 The matrix V calculated by Algorithm 4 is an element of ∂CΦλ(x).

To ensure fast local convergence for a semismooth algorithm, we require all elements in the
C-subdifferential ∂CΦλ(x

∗) to be nonsingular at a solution point x∗ of NCP(F ). The next
result shows that the R-regularity condition [8] is sufficient for this purpose.

Theorem 6 If x∗ is an R-regular solution of NCP(F ), all V ∈ ∂CΦλ(x
∗) are nonsingular.

Next, we present some properties of ψλ and Ψλ.

Theorem 7 The merit function Ψλ is continuously differentiable with ∇Ψλ(x) = V TΦλ(x)
for any V ∈ ∂CΦλ(x). In addition, if x∗ is a stationary point of Ψλ such that the Jacobian
F ′(x∗) is a P0-matrix, then x∗ is a solution of NCP(F ).

We next consider the level sets

L(c) := {x ∈ IRn|Ψλ(x) ≤ c}.

It is known [3] that the level sets of the Fischer-Burmeister function are compact if F is
a uniform P -function. The following result shows that this is also true for the new merit
function Ψλ. More importantly, this result states that the level sets of Ψλ are also bounded
for many monotone complementarity problems, which is not true for the merit function ΨFB,
as pointed out in [6].

Proposition 8 The level sets L(c) of the merit function Ψλ are compact for any c ≥ 0 if
one of the following two conditions are satisfied:

1. F is a uniform P -function.

2. F is monotone and NCP(F ) has a strictly feasible vector.

The next result shows that
√

Ψλ provides a global error bound for a complementarity problem
with a uniform P -function.

Theorem 9 If F is a uniform P -function, then there exists a constant τ > 0 such that

‖x− x∗‖2 ≤ τΨλ(x)

for all x ∈ IRn, where x∗ is the unique solution of NCP(F ) .
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Notice that the above result does not require F to be Lipschitz continuous, a condition often
needed for similar results based on merit functions derived from the Fischer-Burmeister
function or related NCP-functions. See [6] for another NCP-function with this property.

Now we elaborate on Result 2 of Proposition 8. More precisely, we show that the as-
sumption on the existence of a strictly feasible point is also necessary for L(c) to be bounded
for monotone complementarity problems.

Proposition 10 If F is a P0-function and NCP(F ) has a nonempty and bounded solution
set, then there is a strictly feasible point for NCP(F ).

Note that Proposition 10 for a continuous P0-function was independently derived by Ravin-
dran and Gowda in their very recent paper [7]. As a consequence of previous discussions, we
have the following interesting result about monotone NCPs.

Corollary 11 If F is a monotone function, the following three statements are equivalent:

1. NCP(F ) has a nonempty and bounded solution set.

2. NCP(F ) has a strictly feasible point.

3. L(c) is bounded for all c ≥ 0.

3 Numerical Results

Based on the discussion of the previous section, the NCP-function φλ as well as the merit
function Ψλ possess all the nice features of the Fischer-Burmeister function and the cor-
responding merit function ΨFB. Moreover, Ψλ has some stronger properties than ΨFB.
Therefore, by replacing φFB and ΨFB by φλ and Ψλ, respectively, in any semismooth based
algorithm designed for the former functions, we can preserve and in some cases improve
the convergence properties of the algorithm. Here, we choose the modified damped Newton
method proposed by De Luca, Facchinei and Kanzow [2] to test the new NCP-function.
This algorithm, based on the new function, is guaranteed to solve not only complementar-
ity problems with uniform P -functions, but also monotone problems with a strictly feasible
point.

We implemented this algorithm in MATLAB using the parameters λ = 0.95, β =
0.5, σ = 10−4, ρ = 10−10, p = 2.1. The main termination criterion is Ψλ(x) ≤ 10−12.
We applied Algorithm 4 to compute an element in ∂CΦλ(x

k). In addition, we incorpo-
rated some strategies to improve the numerical behaviour of the algorithm to some extent,
namely a nonmonotone line search as well as a backtracking strategy in order to avoid pos-
sible domain violations. In order to compare the behaviour of our new function with the
Fischer-Burmeister function, we also run the algorithm with λ = 1.

We tested our algorithm on all test problems from the MCPLIB and GAMSLIB libraries
(see [4]), using all the different starting points which are available within the MATLAB
framework. In Table 1, we present the results only for those test problems where the number
of iterations used by the two methods differ by at least 5. In particular, the columns in Table
1 have the following meanings:

5



problem: name of test example,
n : dimension of test example,
SP: number of starting point (see the M-file cpstart.m),
Ψλ/ΨFB: results for the new function/FB-function,
k: number of iterations,
F : number of function evaluations,
G: number of gradient steps,
Ψλ(x

f )/ΨFB(xf ): function value of Ψλ/ΨFB at the final iterate xf ,

Table 1: Results for some MCPLIB and GAMSLIB test problems

Ψλ ΨFB

problem n SP k F G Ψλ(x
f ) k F G ΨFB(xf )

bertsekas 15 2 19 72 0 1.1e-14 31 231 0 6.7e-16
bertsekas 15 3 27 34 0 2.7e-16 17 28 0 3.4e-16
billups 1 1 441 5260 0 4.2e-13 – – – –
colvdual 20 1 14 16 0 5.0e-15 34 82 0 4.0e-19
colvdual 20 2 37 49 0 2.6e-19 – – – –
hanskoop 14 5 11 15 1 3.1e-14 16 20 1 2.4e-20
josephy 4 1 7 8 0 2.7e-20 100 128 0 6.1e-17
josephy 4 3 15 16 0 1.1e-23 81 98 0 3.2e-14
pgvon106 106 1 500 3864 121 5.2e-11 – – – –
powell 16 3 15 18 1 1.2e-19 27 112 9 7.0e-13
scarfbsum 40 2 26 28 1 2.1e-14 46 427 10 1.3e-16
sppe 27 1 10 32 2 2.1e-18 15 24 2 5.7e-29
tobin 42 2 10 13 0 5.9e-16 15 16 0 5.5e-24
dmcmge 170 1 22 51 0 7.4e-16 – – – –
harkmcp 32 1 9 10 1 3.7e-14 14 16 1 8.5e-15
nsmge 212 1 18 21 0 6.2e-18 12 16 0 9.8e-16
transmcp 11 1 13 38 2 9.0e-17 20 37 1 1.5e-27
vonthmcp 125 1 58 335 10 1.5e-14 – – – –
vonthmge 80 1 37 324 4 9.9e-22 51 243 1 3.2e-23

Table 1 clearly indicates the superior behaviour of the new function. In particular, we
were able to solve all test problems, while the same method based on the Fischer-Burmeister
function has a couple of failures. Moreover, the new method usually needs fewer number of
iterations even on the other test problems.
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