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Abstract

A variant of the classical augmented Lagrangian method was recently pro-
posed in [29, 38] for the solution of quasi-variational inequalities (QVIs). In
this paper, we describe an improved convergence analysis to the method.
In particular, we introduce a secondary QVI as a new optimality concept for
quasi-variational inequalities and discuss several special classes of QVIs within
our theoretical framework. Finally, we present a modification of the aug-
mented Lagrangian method which turns out to be an exact penalty method,
and also give detailed numerical results illustrating the performance of both
methods.

1 Introduction

Let F : Rn → Rn and c : R2n → Rr be given functions, and let K : Rn ⇒ Rn be the
set-valued mapping defined by

K(x) = {y ∈ Rn | c(y, x) ≤ 0}. (1)

With these definitions, we consider the quasi-variational inequality problem, denoted
QVI(F,K), which consists of finding a point x ∈ K(x) such that

F (x)T (y − x) ≥ 0 ∀y ∈ K(x). (2)

Note that we could have included equality constraints in the definition of K, but we
chose to omit these for the sake of notational simplicity.

The QVI was first introduced in [4]. Note that, if c is a function of y only, then
K(x) = K and (2) reduces to the standard variational inequality problem (VI),
which consists of finding an x ∈ K such that

F (x)T (y − x) ≥ 0 ∀y ∈ K.
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Hence, the QVI encompasses the VI and, by extension, convex optimization prob-
lems. However, the true strength of the QVI lies in its ability to model significantly
more complex problems such as generalized Nash equilibrium problems [3, 23]. Some
other areas where QVIs arise include mechanics [2, 5, 24, 32, 36, 37], economics [27,
28], statistics [31], transportation [10, 8, 39], biology [22], or stationary problems
in superconductivity, thermoplasticity, and electrostatics [25, 26, 33]. For a more
comprehensive description of QVIs and their properties, we refer the reader to the
two monographs by Baiocchi [2] and Mosco [35].

In this paper, we follow the augmented Lagrangian approach which was first used
in [38] and later improved in [29]. Our aim is to give a refined convergence theory
which is both simple and expressive, and includes the convergence theorems from
[29] as special cases. This is done by introducing a secondary QVI called Feasibility
QVI as a new optimality concept and, hence, splitting the convergence theory into
a discussion of feasibility and optimality.

The separate treatment of feasibility and optimality turns out to be the main
ingredient to obtain stronger or new convergence results for several special classes of
QVIs. To this end, recall that, for optimization problems, feasibility is closely linked
to optimality, in particular for penalty-type schemes which includes the augmented
Lagrangian method (ALM). This motivates to have a closer look at the feasibility
issue. We note that we did a similar analysis for the generalized Nash equilibrium
problem [30] before which will be shown to be a special case of our current setting.

As a further extension to the algorithm, we describe a modification which is
an exact penalty method. The basic approach behind this goes back to [11] (for
optimization problems) and was extended to standard variational inequalities in [1].
Moreover, it turns out that our exact penalty method integrates very well with the
theoretical framework of the ”standard” augmented Lagrangian method.

This paper is organized as follows. In Section 2, we give some preliminary theo-
retical background which forms the basis for our subsequent analysis. Section 3 con-
tains a precise statement of the augmented Lagrangian method. We continue with a
compact convergence analysis in Section 4, where we introduce the aforementioned
Feasibility QVI. In Section 5, we deal with properties of the Feasibility QVI and
consider some special classes of QVIs including the generalized Nash equilibrium
problem and the well-known moving set case. Finally, Section 6 describes a mod-
ification of the augmented Lagrangian method which is an exact penalty method,
and we conclude with numerical results and some final remarks in Section 7 and 8,
respectively.

Notation: Given a scalar α, we define α+ := max{0, α}. Similarly, for a vector
x, we write x+ for the vector where the plus-operator is applied to each component.
A vector-valued function q : Rn → Rm is called convex if all component functions
are convex. Finally, for a continuously differentiable function c : R2n → Rr in the
variables (y, x), we denote the partial (with respect to y) transposed Jacobian by
∇yc(y, x). Hence, for the i-th component, ∇yci(y, x) is the gradient, viewed as a
column vector.
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2 Preliminaries

This section contains some theoretical background on QVIs. We first recall the
definition of a KKT point.

Definition 2.1. A tuple (x, λ) is called a KKT point of (2) if the system

F (x) +∇yc(x, x)λ = 0 and min{−c(x, x), λ} = 0 (3)

is satisfied.

Note that the condition min{−c(x, x), λ} = 0 is equivalent to c(x, x) ≤ 0, λ ≥ 0
and c(x, x)Tλ = 0. Any vector x ∈ Rn satisfying x ∈ K(x), i.e. c(x, x) ≤ 0, will
be called feasible for the QVI from (2), (1). Using an idiom which is common in
optimization theory, we will also call a point x ∈ Rn a KKT point of the QVI if
there is a multiplier vector λ such that (3) holds.

The relation between the QVI and its KKT conditions is well-established [18]
and is, essentially, a generalization of the well-known correspondence for classical
optimization problems. Note that, in particular, the KKT conditions are sufficient
optimality conditions if the set K(x) is convex for every x.

We next introduce some constraint qualifications. Note that we call a collection
of vectors v1, . . . , vk positively linearly dependent if the system λ1v1 + . . .+λkvk = 0,
λ ≥ 0, has a nontrivial solution. Otherwise, the vectors are called positively linearly
independent.

Definition 2.2. Consider a constraint function c : R2n → Rr and a point x ∈ Rn.
We say that

(a) LICQ holds in x if the set of gradients ∇yci(x, x) with ci(x, x) = 0 is linearly
independent.

(b) MFCQ holds in x if the set of gradients ∇yci(x, x) with ci(x, x) = 0 is positively
linearly independent.

(c) EMFCQ holds in x if the set of gradients ∇yci(x, x) with ci(x, x) ≥ 0 is posi-
tively linearly independent.

(d) CPLD holds in x if, for every I ⊂ {i | ci(x, x) = 0} such that the vectors
∇yci(x, x) (i ∈ I) are positively linearly dependent, there is a neighbourhood
of x where the gradients ∇yci(x, x) (i ∈ I) are linearly dependent.

In the simple case where c does not depend on a second argument, it is clear that
the above conditions are equivalent to their well-known classical counterparts. The
only difference is that we define, for example, LICQ at an arbitrary point x that is
not necessarily feasible for the underlying QVI. This slightly more general definition
is required in our exact penalty approach, cf. Section 6.

Based on the CPLD constraint qualification, which is the weakest among the
above conditions, we now prove the following theorem which describes the relation-
ship between the KKT conditions and an asymptotic analogue thereof.
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Theorem 2.3. Let (xk) be a sequence converging to x and let (λk) ⊂ Rr be a
sequence of multipliers such that

F (xk) +∇yc(x
k, xk)λk → 0 and min{−c(xk, xk), λk} → 0.

Then, if CPLD holds in x, it follows that x is a KKT point of the QVI.

Proof. First note that our assumption implies that the limit x is feasible with respect
to the constraints c(x, x) ≤ 0. Moreover, we point out that the assumption remains
valid if we replace λk by λk+, hence we may assume, without loss of generality, that
λk ≥ 0 for all k. Since λki → 0 holds for every i with ci(x, x) < 0, we obtain

F (xk) +
∑

ci(x,x)=0

λki∇yci(x
k, xk)→ 0.

Using a Carathéodory-type result, cf. [7, Lem. 3.1], we can choose subsets Ik ⊂
{i | ci(x, x) = 0} such that the gradients ∇yci(x

k, xk), i ∈ Ik, are linearly indepen-
dent and we can write∑

ci(x,x)=0

λki∇yci(x
k, xk) =

∑
i∈Ik

λ̂ki∇yci(x
k, xk)

with suitable vectors λ̂k ≥ 0. Subsequencing if necessary, we may assume that
Ik = I for every k, i.e. we get

F (xk) +
∑
i∈I

λ̂ki∇yci(x
k, xk)→ 0. (4)

Hence, to conclude the proof, it suffices to show that (λ̂k) is bounded. If this were
not the case, we could divide (4) by ‖λ̂k‖, take the limit k → ∞ on a suitable
subsequence and obtain a nontrivial positive linear combination of the gradients
∇yci(x, x), i ∈ I, which vanishes. Hence, by CPLD, these gradients should be
linearly dependent in a neighbourhood of x, which is a contradiction.

Theorem 2.3 is a natural analogue of [7, Thm. 3.6] and will be a central building
block for our subsequent analysis. Note that it is easy to carry out a similar proof
under MFCQ and conclude that, in this case, the sequence (λk) itself must be
bounded. Due to the similarity of the two proofs, we have omitted this additional
result. Note also that Theorem 2.3 is slightly more general than the corresponding
result on approximate KKT points of optimization problems in [7] since we do not
require the intermediate multipliers λk to be nonnegative.

3 The Augmented Lagrangian Method

Throughout the remainder of this paper, we consider QVIs where the constraint
function c has the decomposition

c(y, x) =

(
g(y, x)
h(y, x)

)
4



with two continuously differentiable functions g : R2n → Rm and h : R2n → Rp. The
purpose of this approach is to account for the possibility of partial penalization:
the constraints defined by g will be penalized, whereas h is an (optional) constraint
function which will stay as a constraint in the penalized subproblems. We stress that
this framework is very general and gives us some flexibility to deal with different
situations. The most natural choices are probably the following ones:

1. Penalize all contraints. This full penalization approach is the simplest and
most straightforward approach where, formally, we set p = 0. The resulting
subproblems are unconstrained and therefore become nonlinear equations.

2. Another natural splitting is the case where h covers the non-parametric con-
straints (i.e. those which do not depend on x), whereas g subsumes the remain-
ing constraints. The resulting penalized problems then become standard VIs
and are therefore easier to solve than the original QVI since the (presumably)
difficult constraints are moved to the objective function. This is the approach
taken in [29, 38].

3. Finally, for certain problems, it might make sense to include some of the
parametric constraints into h. In this case, the subproblems themselves are
QVIs, but might still be easier to solve than the original QVI, for example, in
the particular case where the penalized subproblems belong to a special class
of QVIs such as the moving-set class.

Note that the decomposition of c into g and h also entails two multiplier vectors,
which we will usually refer to as λ and µ, respectively. For instance, the KKT
conditions from Definition 2.1 take on the form

F (x) +∇yg(x, x)λ+∇yh(x, x)µ = 0,

min{−g(x, x), λ} = 0 and min{−h(x, x), µ} = 0.

In order to formally describe the partial penalization scheme, we now consider the
set-valued mapping Kh : Rn ⇒ Rn which is given by

Kh(x) = {y ∈ Rn | h(y, x) ≤ 0}. (5)

Finally, we define the (partial) Lagrangian and augmented Lagrangian as

L(x, λ) = F (x) +∇yg(x, x)λ, (6)

Lρ(x, λ) = F (x) +∇yg(x, x)(λ+ ρg(x, x))+.

Here, ρ > 0 is a given penalty parameter and λ ∈ Rm is a multiplier. A basic
ALM considers a sequence of QVIs, each defined by the augmented Lagrangian (for
given values ρ and λ) and the set-valued mapping Kh. The following is a precise
statement of our augmented Lagrangian method for the solution of QVIs. Note that
the method is identical to the one used in [29].

Algorithm 3.1. (Augmented Lagrangian method for QVIs)

(S.0) Let (x0, λ0, µ0) ∈ Rn+m+p, ρ0 > 0, umax > 0, γ > 1, τ ∈ (0, 1), and set k = 0.
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(S.1) If (xk, λk, µk) is a KKT point of the QVI: STOP.

(S.2) Choose uk ∈ [0, umax]m and compute an approximate KKT point (see below)
(xk+1, µk+1) of the penalized QVI, which consists of finding an x ∈ Kh(x) such
that

Lρk(x, u
k)T (y − x) ≥ 0 ∀y ∈ Kh(x). (7)

(S.3) Set λk+1 =
(
uk + ρkg(xk+1, xk+1)

)
+

. If

‖min{−g(xk+1, xk+1), λk+1}‖ ≤ τ‖min{−g(xk, xk), λk}‖ (8)

holds, set ρk+1 = ρk. Else, set ρk+1 = γρk+1.

(S.4) Set k ← k + 1 and go to (S.1).

Note that we have deliberately left some aspects of the algorithm unspecified. For
instance, we do not give an explicit formula for the sequence (uk), which is meant
to be a ”bounded analogue” of the multipliers. The most natural choice [7, 29] is
uk = min{λk, umax}, which is just the projection of λk+1 onto the m-dimensional
hypercube [0, umax]m.

Secondly, we have not specified what constitutes an approximate KKT point in
Step 2. To this end, we make the following assumption about the variables xk+1 and
µk+1. The main idea is that there is no need to solve the penalized QVIs in (S.2)
exactly, but with increasing accuracy for k →∞.

Assumption 3.2. At Step 2 of Algorithm 3.1, we obtain xk+1 and µk+1 such that

Lρk(x
k+1, uk) +∇yh(xk+1, xk+1)µk+1 → 0

min{−h(xk+1, xk+1), µk+1} → 0

holds for k →∞.

This is a very natural assumption which asserts that the pair (xk+1, µk+1) satisfies
an approximate KKT condition for the subproblems, and the degree of inexactness
converges to zero for k →∞. However, it should be noted that the multipliers µk+1

which arise from the subproblems are allowed to be negative. Hence, Assumption 3.2
is actually weaker than classical approximate KKT conditions which have been used
in similar contexts [7, 29]. In particular, it permits the use of standard algorithms
such as Newton-type methods for the (approximate) solution of the subproblems,
which may yield a negative multiplier estimate.

4 Convergence Analysis

We proceed by considering the convergence properties for Algorithm 3.1. Our anal-
ysis is split into a discussion of feasibility and optimality. Regarding the former,
note that Assumption 3.2 already implies that every limit point of (xk) satisfies the
h-constraints. For the discussion of feasibility with respect to g, we introduce an
auxiliary QVI which consists of finding x ∈ Kh(x) such that(

∇y‖g+(x, x)‖2
)T

(y − x) ≥ 0 ∀y ∈ Kh(x). (9)
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This QVI will simply be referred to as the Feasibility QVI. Note that the function
‖g+(y, x)‖2 is continuously differentiable, so the Feasibility QVI is well-defined. It
turns out that the behaviour of Algorithm 3.1 is closely related to this auxiliary
problem. We proceed by formally proving this connection and then giving a possible
interpretation.

Theorem 4.1. Assume that (xk) is a sequence generated by Algorithm 3.1 and x
is a limit point of (xk). Then, if h satisfies CPLD in x, it follows that x is a KKT
point of the Feasibility QVI.

Proof. Let K ⊂ N be such that xk+1 →K x. If (ρk) is bounded, then x is feasible
and there is nothing to prove. Hence, we assume that ρk →∞. By Assumption 3.2,
we have

Lρk(x
k+1, uk) +∇yh(xk+1, xk+1)µk+1 → 0

for some multiplier sequence (µk) which satisfies min{−h(xk+1, xk+1), µk+1} → 0.
From (6), we obtain

F (xk+1) +∇yg(xk+1, xk+1)(uk + ρkg(xk+1, xk+1))+ +∇yh(xk+1, xk+1)µk+1 → 0.

Dividing by ρk and using the boundedness of (uk) and (F (xk+1))K , it follows that

∇yg(xk+1, xk+1)g+(xk+1, xk+1) +∇yh(xk+1, xk+1)
µk+1

ρk
→K 0.

Since ∇y‖g+(x, x)‖2 = 2∇yg(x, x)g+(x, x), the result follows from Theorem 2.3.

The above theorem establishes the aforementioned connection between the Feasibil-
ity QVI (9) and Algorithm 3.1. Note that the Feasibility QVI has a very natural
interpretation. If x is a solution, then we have(

∇y‖g+(x, x)‖2
)T

(y − x) ≥ 0 ∀y ∈ Kh(x),

which means that, roughly speaking, we cannot find a descent direction for the
constraint violation ‖g+(x, x)‖2 which does not harm the feasibility with respect to
h. Equivalently, x satisfies the first-order necessary conditions of the optimization
problem

min ‖g+(x, x)‖2 s.t. x ∈ Kh(x).

One of the most important special cases of Theorem 4.1 arises if we omit the function
h. In other words, we are performing a full penalization. In this case, the CPLD
condition is superfluous, and we obtain

∇y‖g+(x, x)‖2 = 0,

which means that x is a stationary point of the constraint violation ‖g+(·, x)‖2.
We now turn to the optimality of limit points of Algorithm 3.1. To this end,

note that we can restate Assumption 3.2 as

F (xk+1) +∇yg(xk+1, xk+1)λk+1 +∇yh(xk+1, xk+1)µk+1 → 0 (10)

min{−h(xk+1, xk+1), µk+1} → 0,

which already suggests that the sequence of triples (xk, λk, µk) satisfies an approx-
imate KKT condition for the QVI (2). In fact, the only missing ingredient is the
asymptotic complementarity of g and λ.
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Theorem 4.2. Let (xk) be a sequence generated by Algorithm 3.1 and x be a limit
point of (xk). Assume that one of the following conditions holds:

(a) x is feasible and the function (g, h) satisfies CPLD in x.

(b) The function (g, h) satisfies EMFCQ in x.

Then x is a KKT point of the QVI (2).

Proof. Due to Theorem 5.1 (which we will encounter later), it suffices to consider
(a). To this end, let K ⊂ N be such that xk+1 →K x. By (10) and Theorem 2.3, we
only need to show that

min{−g(xk+1, xk+1), λk+1} →K 0

holds. If (ρk) is bounded, this readily follows from (8). If, on the other hand,
ρk →∞ and i is an index such that gi(x, x) < 0, the updating scheme from Step 3
of Algorithm 3.1 together with the boundedness of (uki ) implies

λk+1
i =

(
uki + ρkgi(x

k+1, xk+1)
)
+

= 0

for sufficiently large k. This completes the proof.

The above theorem shows that attaining feasibility is a crucial aspect of Algo-
rithm 3.1. Since we know that, by Theorem 4.1, every limit point of the sequence
(xk) is a KKT point of the Feasibility QVI, it is natural to ask whether an implication
of the form

x is a KKT point of the Feasibility QVI
?

=⇒ x is feasible

holds. Judging by the interpretation of the Feasibility QVI given earlier in this
section, it is natural to expect this implication to hold under certain assumptions
on the constraint functions g and h. This is the subject of the following section.

5 Properties of the Feasibility QVI

We now discuss properties of the Feasibility QVI (9). The first result in this direc-
tion deals with general nonlinear constraints using EMFCQ (cf. Definition 2.2) and
therefore completes the proof of Theorem 4.2.

Theorem 5.1. Let x be a KKT point of the Feasibility QVI and assume that the
function (g, h) satisfies EMFCQ in x. Then x is feasible for the QVI (2).

Proof. By assumption, there is a multiplier λ ∈ Rp such that

∇y‖g+(x, x)‖2 +∇yh(x, x)λ = 0 and min{−h(x, x), λ} = 0.

Expanding the sums and omitting some vanishing terms, we obtain

2
∑

gi(x,x)>0

∇ygi(x, x)gi(x, x) +
∑

hj(x,x)=0

∇yhj(x, x)λj = 0.

Hence, by EMFCQ, it follows that the first sum must be empty, and x is feasible.
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Since Theorem 5.1 guarantees the feasibility of x, the EMFCQ assumption boils
down to standard MFCQ which is known to imply CPLD, hence all conditions from
Theorem 4.2 (a) hold.

We see that our convergence theory includes, as a special case, the approach from
[29, 38] which directly uses the extended MFCQ to prove corresponding optimality
results. However, our approach has the advantage that it allows us to conduct a
dedicated analysis for special instances of QVIs. To this end, we consider some of
the classes of QVIs discussed in [16].

5.1 The Moving Set Case

Possibly the most prominent special class of QVIs is the moving set case, where we
have K(x) = c(x) +Q for some closed and convex set Q. Usually, Q is given by

Q = {x ∈ Rn | q(x) ≤ 0} (11)

with a convex mapping q : Rn → Rn. Recalling the constraint system (1) of the
general QVI, we see that the moving set case can be modeled by the function
g(y, x) = q(y − c(x)). For the sake of simplicity, we perform a full penalization
and omit the function h. Note that

∇y‖g+(y, x)‖2 = 2∇q(y − c(x))q+(y − c(x))

holds for every x, y ∈ Rn. Hence, if x is a KKT point of the Feasibility QVI (9), it
follows that

0 = ∇y‖g+(x, x)‖2 = 2∇q(x− c(x))q+(x− c(x)).

In other words, the point x−c(x) is a stationary point of the function ‖q+(x)‖2. But
this is a convex function and, hence, x−c(x) is a global minimum. This immediately
yields the following result.

Theorem 5.2. Consider the moving set case with Q given by (11) and assume that
Q is nonempty. Then, if x is a KKT point of the Feasibility QVI, x is feasible.

Proof. Like above, we see that x−c(x) is a global minimum of ‖q+(x)‖2. But if Q is
nonempty, the global minimum of this function is zero and we obtain x− c(x) ∈ Q
or, equivalently, x ∈ K(x).

As a direct consequence of the previous results, we obtain that every limit point
of Algorithm 3.1 is a KKT point of the QVI in the moving set case. The precise
statement is as follows.

Corollary 5.3. Consider the moving set case with nonempty Q given by (11). Then
every limit point x of Algorithm 3.1 is a KKT point of the QVI provided that the
corresponding function g satisfies CPLD in x.

Proof. Recall that there are no h-constraints. Hence Theorem 4.1 implies, without
any further assumptions, that x is a KKT point of the Feasibility QVI. Therefore,
Theorem 5.2 yields that x is feasible. The result then follows from Theorem 4.2.
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Note that we could have carried out a similar proof in the slightly more general
setting where

g(y, x) = q1(y − c(x)) and h(y, x) = q2(y − c(x)).

This corresponds to the case where both g and h describe sets moving along the
trajectory c, and the feasible set is given by K(x) = c(x) +Q1 ∩Q2 with Qi defined
as in (11).

5.2 Generalized Nash Equilibrium Problems

The well-known generalized Nash equilibrium problem [13, 20], which we simply
refer to as GNEP, consists of N ∈ N players, each in control of a vector xν ∈ Rnν .
Furthermore, every player attempts to solve his respective optimization problem

min
xν

θν(x) s.t. gν(x) ≤ 0, hν(x) ≤ 0, (12)

where x = (x1, . . . , xN) denotes the vector of variables of all players. Note that
we also write x = (xν , x−ν) for the vector, where x−ν subsumes the variables of all
players except player ν. This notation is particularly useful to stress the importance
of the block vector xν within x.

In order to account for the possibility of partial penalization, we have equipped
each player with two constraint functions gν and hν . It is well-established [23] that,
under certain convexity assumptions, the GNEP (12) is equivalent to the quasi-
variational inequality problem QVI(F,K) with

F (x) =

 ∇x1θ1(x)
...

∇xN θN(x)

 (13)

and
K(x) =

{
y | gν(yν , x−ν) ≤ 0, hν(yν , x−ν) ≤ 0 for every ν

}
. (14)

In fact, this equivalence follows from the simple observation that the KKT system
of the GNEP (which is just the concatenation of the KKT systems for every player)
is identical to the KKT system of the QVI(F,K).

With regard to (14), it follows that the GNEP can be modeled as a QVI by using
the constraint functions

g(y, x) =

 g1(y1, x−1)
...

gN(yN , x−N)

 , h(y, x) =

 h1(y1, x−1)
...

hN(yN , x−N)

 .

It is easily verified that, in this setting, Algorithm 3.1 is basically equivalent to the
augmented Lagrangian method for GNEPs which was recently considered in [30].
In fact, this equivalence goes even further: a closer look at the Feasibility QVI (9)
shows that

∇y‖g+(y, x)‖2 =

 ∇y1‖g1+(y1, x−1)‖2
...

∇yN‖gN+ (yN , x−N)‖2

 .
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Hence, the Feasibility QVI is nothing but the QVI reformulation of the GNEP where
player ν’s optimization problem is given by

min
xν
‖gν+(x)‖2 s.t. hν(x) ≤ 0.

This is the Feasibility GNEP from [30] and is used to model the feasibility properties
of the respective players. A simple corollary of this analysis is the following, which
corresponds to the well-known jointly-convex GNEP as a special case.

Corollary 5.4. Consider a GNEP of the form (12) where gν = g̃ is a joint constraint
and hν depends on xν only. Then every solution of the Feasibility GNEP is a feasible
point.

Proof. See [30, Thm. 4.4].

Note that, in the GNEP setting, the CPLD constraint qualification from Defini-
tion 2.2 becomes the GNEP-CPLD condition from [30]. Furthermore, it goes with-
out saying that a direct consequence of Corollary 5.4 is that every limit point of
Algorithm 3.1 is a KKT point of the GNEP.

5.3 The Bilinear Case

Here, we have

g(y, x) =

 xTQ1y − γ1
...

xTQmy − γm

 and h(y, x) =

q1(y)
...

qp(y)

 , (15)

where the matrices Qi ∈ Rn×n are symmetric positive semidefinite, γi ∈ R are given
numbers and the functions qi are convex. It is easy to see that

∇y‖g+(y, x)‖2 = 2∇yg(y, x)g+(y, x) = 2
m∑
i=1

max {0, gi(y, x)}Qix

and the full gradient of x 7→ ‖g+(x, x)‖2 is given by

∇
(
‖g+(x, x)‖2

)
= 4

m∑
i=1

max {0, gi(x, x)}Qix.

Moreover, since h depends on y only, it therefore follows that every KKT point of
the Feasibility QVI is a KKT point (and, hence, a global solution) of the convex
optimization problem

min ‖g+(x, x)‖2 s.t. h(x, x) ≤ 0. (16)

We therefore get the following result.

Theorem 5.5. Consider the bilinear case with g given by (15) and assume that the
feasible set is nonempty. Then, if x is a KKT point of the Feasibility QVI, x is
feasible.

Proof. In this case, x is a global minimum of (16). But the minimum of this problem
is zero and, hence, x is feasible.

As in the previous cases, it follows that every limit point of Algorithm 3.1 is a KKT
point of the QVI.
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5.4 Linear Constraints with Variable Right-hand Side

For this class of QVIs, we have

g(y, x) = Ay − b− c(x), (17)

where A ∈ Rm×n, b ∈ Rn and c : Rn → Rm is a given function. For the sake of
simplicity, we assume that there is no additional constraint function h. It follows
that

∇y‖g+(y, x)‖2 = 2∇yg(y, x)g+(y, x) = 2ATg+(y, x).

Hence, if x is a KKT point of the Feasibility QVI (9), we have

0 = ∇y‖g+(x, x)‖2 = 2ATg+(x, x).

This motivates the following theorem.

Theorem 5.6. Consider a QVI where g is given by (17) and rank(A) = m. Then,
if x is a KKT point of the Feasibility QVI, x is feasible.

Proof. The above formulas show that ATg+(x, x) = 0 and, hence, g+(x, x) = 0.

As in the previous cases, it follows that every limit point of Algorithm 3.1 is a KKT
point of the QVI.

5.5 Box Constraints

Here, we have

g(y, x) =

(
`(x)− y
y − u(x)

)
, (18)

where `, u : Rn → Rn are given mappings which describe lower and upper bounds on
the variable y, where these bounds are allowed to depend on the vector x. Note that
this is actually a particular case of linear constraints with variable right-hand side.
More precisely, it corresponds to the general setting (17) by means of the definitions

A =

(
−I
I

)
and c(x) =

(
`(x)
−u(x)

)
.

Following the same argument as in Section 5.4, we see that, if x is a KKT point of
the Feasibility QVI, then

0 = ATg+(x, x) = (x− u(x))+ − (`(x)− x)+.

In particular, it follows that x is feasible if the constraint functions ` and u satisfy
`(x) ≤ u(x).

Theorem 5.7. Consider a QVI where g is given by (18). Then, if x is a KKT
point of the Feasibility QVI and `(x) ≤ u(x) holds, x is feasible.

Proof. This follows from the calculations above.

As in the previous cases, it follows that every limit point of Algorithm 3.1 is a KKT
point of the QVI.
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6 An Exact Penalty Method

We consider a modification of the augmented Lagrangian method (Algorithm 3.1)
which, under suitable conditions, is an exact penalty method. This approach only
works if we are performing a full penalization of the constraints. Hence, we will
omit the function h throughout this section.

The basic approach is to remove the explicit multipliers in the augmented La-
grangian and replace them by a multiplier function which is dependent on x. More
precisely, for a given x, we compute λ as a solution of the minimization problem

min
λ
‖F (x) +∇yg(x, x)λ‖2 + ‖G(x)λ‖2, (19)

where G(x) = diag(g1(x, x), . . . , gm(x, x)). This is a linear least-squares problem,
and the following lemma precisely states when it has a unique solution.

Lemma 6.1. The multiplier problem (19) has a unique solution for every x ∈ Rn

such that g satisfies LICQ in x. In this case, the solution vector λ(x) is given by

λ(x) = −M0(x)−1∇yg(x, x)TF (x), (20)

where M0(x) is the positive definite matrix

M0(x) = ∇yg(x, x)T∇yg(x, x) +G(x)2.

As a logical consequence of the above lemma, we make the blanket assumption that
g satisfies LICQ at every point x ∈ Rn. This implies that λ : Rn → Rm is a well-
defined and continuously differentiable function. With this in mind, we consider the
following basic algorithm for the realization of the exact penalty approach.

Algorithm 6.2. (Exact penalty method for QVIs)

(S.0) Choose x0 ∈ Rn, ρ0 > 0, γ > 1, and set k = 0.

(S.1) If (xk, λ(xk)) is a KKT point of the QVI: STOP.

(S.2) Compute a zero xk+1 of the function Lρk(x, λ(x)).

(S.3) Set ρk+1 = γρk, set k ← k + 1, and go to (S.1).

It turns out that this method is very similar to Algorithm 3.1. To see this, note
that, if xk+1 is a zero of Lρk(x, λ(x)), then it is also a zero of the function

Lρk(x, u
k), with uk = λ(xk+1).

Furthermore, if (xk+1) converges to x on some subsequence K ⊂ N, then (uk)K is
bounded. This implies that Algorithm 6.2 inherits many convergence properties of
Algorithm 3.1.

Theorem 6.3. Assume that Algorithm 6.2 does not terminate finitely and x is a
limit point of the sequence (xk). Then x satisfies

∇y‖g+(x, x)‖2 = 0. (21)
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Proof. The proof is identical to that of Theorem 4.1, with h omitted.

It should be noted that (21) is nothing but the Feasibility QVI from (9), which takes
on the above form in the case of full penalization.

We now turn to the central property of Algorithm 6.2, which is the exactness
property. To this end, we first prove a technical lemma.

Lemma 6.4. Let x be a zero of Lρ(x, λ(x)) and let

s = min

{
−g(x, x),

λ(x)

ρ

}
, t = max

{
−g(x, x),

λ(x)

ρ

}
.

Then Ms = 0, where M is the matrix M = ∇yg(x, x)T∇yg(x, x) − G(x) diag(t).
Furthermore, if s = 0, then (x, λ(x)) is a KKT point of the QVI.

Proof. From the definition of λ(x), we obtain

∇yg(x, x)TL(x, λ(x)) = −G(x)2λ(x).

But a simple case-by-case analysis shows that

−gi(x, x)λi(x) = ρsiti for every i = 1, . . . ,m.

Hence, it follows that ∇yg(x, x)TL(x, λ(x)) = ρG(x) diag(t)s. Since

0 = Lρ(x, λ(x)) = L(x, λ(x))− ρ∇yg(x, x)s, (22)

we finally obtain

0 = ∇yg(x, x)TLρ(x, λ(x)) = ρ
[
G(x) diag(t)−∇yg(x, x)T∇yg(x, x)

]
s.

This proves the first part. If s = 0, then min{−g(x, x), λ(x)} = 0 and (22) implies
that (x, λ(x)) is a KKT point of the QVI.

The following is the central property of Algorithm 6.2. Due to Lemma 6.4, the proof
is rather short.

Theorem 6.5. Assume that the iterates (xk) generated by Algorithm 6.2 remain
bounded and that every solution of (21) is a feasible point. Then the algorithm
terminates finitely and produces a KKT point of the QVI.

Proof. We assume that the method does not terminate finitely, i.e. we obtain se-
quences (xk) and (ρk) with ρk →∞. Since (xk) is bounded, we can choose a subset
K ⊂ N such that xk+1 →K x. By Theorem 6.3 and our assumptions, it follows that
x is feasible. Using the notation from Lemma 6.4 and the fact that xk+1 is a zero of
Lρk(x, λ(x)), we now obtain a sequence of matrices Mk with Mksk = 0, where

Mk = ∇yg(xk+1, xk+1)T∇yg(xk+1, xk+1)−G(xk+1) diag(tk).

But we have tk = max
{
−g(xk+1, xk+1), λ(xk+1)/ρk

}
→K −g(x, x) and, hence,

Mk →K M0(x) with M0 from Lemma 6.1. Since M0 is regular, it follows that
Mk is regular for sufficiently large k ∈ K. This implies sk = 0 and the result follows
from Lemma 6.4.
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Note that the above theorem uses two central assumptions: first, we require the se-
quence (xk) to remain bounded. This is a rather standard condition in the context
of similar exact penalty methods [1, 11]. Secondly, we require that every solution of
the Feasibility QVI (which, in this case, takes on the form (21)) is a feasible point.
This is a similar condition to those discussed in the context of the inexact aug-
mented Lagrangian method, cf. Section 5. Furthermore, it is essentially equivalent
to Assumption B from [11].

We close this section by noting that, for the special case of generalized Nash equi-
librium problems, there already exist exact penalty methods, see [14, 17, 21]. In the
terminology of optimization problems, however, these exact penalty methods corre-
spond to the nonsmooth exact `1 penalty function, whereas our penalty approach is
motivated by the differentiable exact penalty function from [11]. Consequently, even
in the context of generalized Nash equilibrium problems, our approach has better
smoothness properties than existing (exact) penalty schemes which implies that the
resulting subproblems are usually easier to solve.

7 Numerical Results

The purpose of this section is to give detailed results illustrating the practical per-
formance of both the augmented Lagrangian method (Algorithm 3.1) and the exact
penalty method (Algorithm 6.2). To this end, we implemented both methods in
MATLAB R© and used the QVILIB library of test problems [15]. The QVIs in this
library follow a simple structure: for each problem, the constraint set K(x) is given
by

K(x) = {y ∈ Rn | gI(y) ≤ 0 and gP (y, x) ≤ 0},

where gI and gP describe the independent and parametrized constraints, respectively.
This structure lends itself to both partial and full penalization (recall that, for the
exact penalty method, we always perform a full penalization). The resulting sub-
problems then become either standard VIs or, in the latter case, nonlinear equations.
For the solution of these problems, we decided to employ a semismooth Levenberg-
Marquardt type method together with the well-known Fischer-Burmeister comple-
mentarity function [18, 19], which allows us to transform a VI into a nonlinear equa-
tion. The implementation details of this method are rather standard and, hence, we
do not explicitly report them here.

After the above discussion, we are left with four methods:

• the semismooth Levenberg-Marquardt method, applied directly to the KKT
system of the QVI by use of the Fischer-Burmeister function. This method
will be denoted by Semi.

• the augmented Lagrangian method (Algorithm 3.1) using partial penalization
and the formula uk = min{λk, umax}. This method will be denoted by ALMP.

• the augmented Lagrangian method like above, but with full penalization, de-
noted ALMF.

• the exact penalty method (Algorithm 6.2), denoted Exact.
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We now describe some implementation details for our methods. The starting points
x0 are given by the test problems themselves, and the subproblems occuring within
the penalty methods are solved with a precision of 10−8. Furthermore, we use the
overall stopping criterion∥∥∥∥∥∥

F (x) +∇yg(x, x)λ+∇yh(x, x)µ
min{−g(x, x), λ}
min{−h(x, x), µ}

∥∥∥∥∥∥
∞

≤ ε := 10−4,

which can, of course, be written more tersely for the methods which do not use
h. Finally, we use the initial Lagrange multipliers (λ0, µ0) = 0 and the iteration
parameters

ρ0 = 1, umax = 1010, γ = 5 and τ = 0.9,

which are chosen to favour robustness over efficiency. Note that some algorithms,
such as the exact penalty method, only use a subset of the above parameters.

The results are presented as follows. Each row represents a problem from the
QVILIB library. The name of the problem is given in the first column, followed by
the dimensions n, m and p. The final four columns list the iteration numbers for
each of our four methods, where - denotes a failure. In view of the results, some
remarks are in order:

1. The augmented Lagrangian methods (ALMP and ALMF) are able to solve
most problems, the only exceptions being Box1B and MovSet1B. A quick anal-
ysis shows that the failure for these problems is due to the inability of the
Newton method to solve the subproblems at certain iterations. This possibly
could have been avoided with a different choice of sub-algorithm. However, a
detailed discussion of such methods is outside the scope of this paper.

2. The Newton method has 5 failures, which shows that our implementation
(although fairly simple) is quite robust (in particular, more robust than the
standard semismooth Newton method investigated in [18]), but not as robust
as the augmented Lagrangian methods. Note that the raw iteration numbers
of this method are very hard to compare to those of the other methods, since
a single step of the Newton method merely consists of one linear equation.

3. The exact penalty method is able to solve most of the smaller problems ex-
tremely quickly, usually requiring only 1 or 2 iterations. However, it exhibits
failures for some of the larger problems. A quick analysis shows that, in par-
ticular, the Kun* and Scrim* examples do not satisfy LICQ, which makes the
exact penalty method entirely unsuited for these problems.

4. We also tested all four algorithms with an overall accuracy of ε = 10−8. For
most problems, this did not cause any difficulties. The failure numbers in this
setting are given by 8 (Semi), 4 (ALMP and ALMF), and 3 (Exact).

5. For some problem classes, the algorithms exhibit completely different be-
haviour. For instance, the RHS* examples turn out to be extremely easy for the
augmented Lagrangian methods and quite hard for the semismooth Newton
method.
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Name n m p Semi ALMP ALMF Exact
BiLin1A 5 3 10 27 23 22 2
BiLin1B 5 3 10 18 49 49 1
Box1A 5 10 0 5 38 38 1
Box1B 5 10 0 - - - 1
Box2A 500 1000 0 49 13 13 1
Box2B 500 1000 0 11 16 16 1
Box3A 500 1000 0 105 12 12 1
Box3B 500 1000 0 391 38 38 2
KunR11 2500 2500 0 245 12 12 ∗
KunR12 4900 4900 0 450 11 11 ∗
KunR21 2500 2500 0 8 1 1 ∗
KunR22 4900 4900 0 9 1 1 ∗
KunR31 2500 2500 0 112 29 29 ∗
KunR32 4900 4900 0 371 35 35 ∗
MovSet1A 5 1 0 8 36 36 1
MovSet1B 5 1 0 - - - 2
MovSet2A 5 1 0 9 42 42 1
MovSet2B 5 1 0 - 44 44 1
MovSet3A1 1000 1 0 53 3 3 1
MovSet3A2 2000 1 0 71 3 3 1
MovSet3B1 1000 1 0 59 3 3 4
OutKZ31 62 62 62 10 16 19 -
OutKZ41 82 82 82 9 22 10 -
OutZ40 2 2 4 5 1 1 1
OutZ41 2 2 4 5 1 1 1
OutZ42 4 4 4 9 6 6 1
OutZ43 4 4 0 6 8 8 1
OutZ44 4 4 0 6 7 7 1
RHS1A1 200 199 0 - 1 1 1
RHS1B1 200 199 0 774 1 1 1
RHS2A1 200 199 0 - 1 1 1
RHS2B1 200 199 0 527 1 1 1
Scrim21 2400 2400 2400 495 28 30 ∗
Scrim22 4800 4800 4800 512 28 30 ∗

Table 1: Numerical results of the four algorithms from Section 7.
Note: ∗ denotes a problem where LICQ is violated.
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6. The two problems Box1B and MovSet1B appear to be very hard for the first
three methods, which agrees with the numerical results from [29]. Interestingly,
though, the exact penalty method is able to solve these problems very easily,
requiring only 1 and 2 iterations, respectively.

8 Final Remarks

We have revisited the augmented Lagrangian method for quasi-variational inequal-
ities and described an elegant theoretical framework which explains its behaviour.
This framework includes the known convergence properties from [29] and improves
upon some of them, for instance, by always allowing the multipliers which arise
from the subproblems to be negative. Another new feature of our analysis is a sim-
ple modification of the ALM which possesses an interesting exactness property and
shows that the concept of exact penalty methods can be extended from classical
optimization problems and VIs to QVIs without much additional work.

The numerical testing we have done on both methods indicates that they work
quite well in practice. In particular, they are quite robust and achieve good accuracy;
it should be mentioned, though, that the exact penalty method requires a quite
strong regularity property to work properly.

Furthermore, we remark there are still many aspects which might lead to substan-
tial numerical improvements. Aside from the fine-tuning of iteration parameters, we
could consider some of the various improvements which the classical exact penalty
method (for optimization problems) has seen throughout the last decades, cf. [12,
34] among others. Some possible extensions for the augmented Lagrangian method
include second-order multiplier iterations or approaches such as the exponential
method of multipliers [6].

Finally, one result of this paper that deserves a special mention is the Feasibility
QVI which we introduced in Section 4. This is a generalization of a corresponding
concept for classical optimization problems [7, 9] and generalized Nash equilibrium
problems [30]. In the context of our work, it is the central building block of the
whole theoretical framework, since it offers a simple and practical explanation of
how the augmented Lagrangian method (and its exact penalty counterpart) achieve
feasibility. Our analysis has also shown that an application of this concept to spe-
cial classes of QVIs (cf. Section 5) yields a variety of strong convergence results.
Hence, we hope that this concept will find further applications in the study of
quasi-variational inequalities.
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