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Abstract

Based on a well-known reformulation of the linear complementarity problem
(LCP) as a nondifferentiable system of nonlinear equations, a Newton-type method
will be described for the solution of LCPs. Under certain assumptions, it will be
shown that this method has a finite termination property, i.e., if an iterate is suffi-
ciently close to a solution of LCP, the method finds this solution in one step. This
result will be applied to a recently proposed algorithm by Harker and Pang in order
to prove that their algorithm also has the finite termination property.
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1 Introduction

In this paper, we will consider the linear complementarity problem LCP(q,M)
of finding a vector pair (x, y) ∈ IR2n such that the conditions

x ≥ 0, y ≥ 0, xT y = 0, Mx + q = y

are satisfied, where the matrix M ∈ IRn×n and the vector q ∈ IRn are given.

Several well-known methods for the solution of LCP(q,M) exist. Many of them
are described in the books by Murty [23], Cottle, Pang and Stone [3], Kojima
et al. [19] and Harker [11]. Here, we will focus on a Newton-type method being
applied to the nonlinear system of equations F (z) = 0, where F : IR2n → IR2n
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is defined by

F (z) := F (x, y) :=







Mx + q − y

min{x, y}





 (1)

with the min-operator taken componentwise. Obviously, a vector pair (x, y)
is a solution of LCP(q,M) if and only if (x, y) is a zero of F. A Newton-type
method applied to this characterization was proposed by Pang [24,25] in con-
nection with nonlinear complementarity and variational inequality problems.
This approach has been specialized by Harker and Pang [12] to the linear
complementarity problem. In order to overcome the nondifferentiability of the
operator F , they made use of the so-called B-derivative of F. The numerical re-
sults reported by Harker and Pang [12] are quite promising. In particular, their
method outdoes Lemke’s classical complementary pivot algorithm if measured
in CPU-times. An unsolved question raised by Harker and Pang is, however,
the finite termination of their method. It is the main contribution of this paper
to show that their method has indeed the finite termination property under
some standard assumptions.

We want to mention some relevant works. The characterization (1) of LCP(q,M)
as a system of nonlinear equations is not the only one. The first such approach
can be found in Mangasarian [22], who presents a general class of characteriza-
tions. Theoretical and numerical results for particular members of Mangasar-
ian’s class can be found, e.g., in Watson [31], Subramanian [29] and Ferris
and Lucidi [6]. An even more general approach is given in Kanzow [15] and
Tseng [30]. Special characterizations not belonging to the Mangasarian-class
are considered in Fischer [7–9], Harker and Xiao [13] and Dirkse and Ferris
[4]. Chen and Harker [1] and Kanzow [17] use similar ideas in an interior-point
setting.

Most of the above-mentioned papers consider nondifferentiable characteriza-
tions of the complementarity problem, although there are also some differen-
tiable ones. Methods based on (appropriate) nondifferentiable characteriza-
tions usually seem to be numerically more successful than their differentiable
counterparts. There are at least two reasons for this. First, the differentiable
characterizations involve more complicated functions, i.e., the characteriza-
tions themselves are more nonlinear, and second, the Jacobian matrices of dif-
ferentiable characterizations of LCP(q,M) are singular at degenerate solutions
of LCP(q,M), see Theorem 3.1 and Remark 3.2 in Kanzow and Kleinmichel
[18].

This paper is organized as follows. After reviewing some background material
in Section 2 we will describe our algorithm. In contrast to the approach by
Harker and Pang [12], this algorithm is based on Clarke’s [2] generalized Jaco-
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bian in order to overcome the difficulty of nondifferentiable points. In Section
3, we will prove a finite termination property of this algorithm under certain
assumptions. In Section 4 we will apply our results to a method of Harker
and Pang [12] and prove, in this way, that their algorithm also has the finite
termination property. Some final remarks in Section 5 will conclude this paper.

In the following, ‖z‖ denotes the Euclidean norm of a vector z of appropriate
dimension. The letter “k” is always used as an iteration index, whereas a
subscript “i” usually denotes the ith component of a vector. Throughout this
paper, the index set {1, . . . , n} is abbreviated by I. For arbitrary p ∈ IRn

and J ⊆ I, the vector pJ consists of the components pi, i ∈ J. Similarly, for
a given matrix M ∈ IRn×n,MJJ denotes the submatrix (mij)i,j∈J . Moreover,
Mi· means the ith row vector of M. The n-vector of all ones is denoted by e.

2 Mathematical Background and Algorithm

In this section, we will restate some basic definitions which will be used in the
subsequent analysis.

Definition 1 Let M ∈ IRn×n. Then M is said to be a

(a) nondegenerate matrix if det(MJJ) 6= 0 for all J ⊆ I;
(b) P -matrix if det(MJJ) > 0 for all J ⊆ I.

Obviously, any P -matrix is nondegenerate. Moreover, it is well-known that M
is a P -matrix if and only if, for all x ∈ IRn, x 6= 0, an index i ∈ I exists such
that xi 6= 0 and xi[Mx]i > 0, see [3].

Let z∗ := (x∗, y∗) ∈ IR2n be a solution of LCP(q,M), and define the following
index sets:

α := α(z∗) := {i ∈ I|x∗

i > 0 = y∗

i },

β := β(z∗) := {i ∈ I|x∗

i = 0 = y∗

i },

γ := γ(z∗) := {i ∈ I|x∗

i = 0 < y∗

i }.

Note that β is the set of degenerate indices, and that the results of this paper
hold without the assumption that β is an empty set.

Definition 2 A solution z∗ := (x∗, y∗) ∈ IR2n of LCP(q,M) is called

(a) b-regular if the submatrices Mδδ are nonsingular for all α ⊆ δ ⊆ α ∪ β;
(b) R-regular if the submatrix Mαα is nonsingular and the matrix

Mββ − MβαM−1
ααMαβ (2)
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is a P -matrix.

We note that the matrix (2) is the Schur-complement of Mαα in







Mαα Mαβ

Mβα Mββ





 .

Obviously, the b-regularity assumption is weaker than the R-regularity as-
sumption. The latter originates from Robinson’s concept of a strongly regular
solution of a generalized equation [28]. Both assumptions are important for
stability results and to prove fast local convergence of certain Newton-type
methods, see, e.g., [3,5].

Now let F be the nonlinear operator defined in (1). Furthermore, let

D := {z = (x, y) ∈ IR2n|xi 6= yi for all i ∈ I}

denote the set of vectors z at which F is differentiable. Obviously, F is a locally
Lipschitz-continuous operator. Hence, we can define its B-subdifferential (see
[26])

∂BF (z) :=
{

G ∈ IRn×n| ∃{zk} ⊆ D : lim
k→∞

zk = z,G = lim
k→∞

∇F (zk)
}

and its generalized Jacobian (see [2])

∂F (z) := conv {∂BF (z)} ,

where conv(A) is the convex hull of a set A, and ∇F (zk) denotes the Jacobian
matrix of F at zk. If z ∈ D, then ∂BF (z) = ∂F (z) = {∇F (z)} is a singleton.
Otherwise ∂F (z) can be shown to be a nonempty, convex and compact set,
see Clarke [2].

From the definitions of F, ∂BF (z) and ∂F (z), we obtain that any G ∈ ∂F (z)
has the following structure:

G = G(a) :=







M −I

Da I − Da





 , Da := diag(a1, . . . , an), (3)

where the vector a ∈ IRn with ai ∈ [0, 1] for i ∈ I depends on which G ∈
∂F (z) is chosen. More precisely, we get the following representations of the
B-subdifferential and of the generalized Jacobian:

∂BF (z) = {G(a) | ai = 1 if xi < yi, ai = 0 if xi > yi, ai ∈ {0, 1} if xi = yi},(4)

∂F (z) = {G(a) | ai = 1 if xi < yi, ai = 0 if xi > yi, ai ∈ [0, 1] if xi = yi}.(5)
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We will now give a formal description of an algorithm whose theoretical prop-
erties will be analyzed in the following section.

Algorithm 1 (Nonsmooth Newton method)

(S.0) Choose z0 := (x0, y0) ∈ IR2n, β, σ ∈ (0, 1) and set k := 0.
(S.1) If ‖F (zk)‖ = 0, stop. (zk solves the LCP(q,M).)
(S.2) Choose a nonsingular matrix Gk ∈ ∂F (zk) and compute ∆zk := (∆xk, ∆yk)

as the unique solution of the generalized Newton equation

Gk∆z = −F (zk). (6)

(S.3) Set tk := βmk , where mk is the smallest nonnegative integer m satisfying
the Armijo condition

‖F (zk + βm∆zk)‖2 ≤ (1 − βmσ)‖F (zk)‖2.

(S.4) Set zk+1 := zk + tk∆zk, k := k + 1 and go to (S.1).

Generalized Newton methods of this kind were also considered by Kummer
[21], Qi and Sun [27] and Qi [26]. In order for Algorithm 1 to be well-defined,
we have to guarantee that there is always a nonsingular matrix Gk ∈ ∂F (zk)
(under appropriate assumptions on the matrix M involved in the LCP(q,M))
and that a steplength tk > 0 can always be found, i.e. that ∆zk is a suit-
able descent direction for the merit function ‖F‖2. An answer to the former
problem will be given in Section 3, whereas the latter problem will shortly be
discussed in Section 4. We stress, however, that Algorithm 1 is mainly used as
a theoretical tool in this paper in order to prove finite termination of Harker
and Pang’s algorithm, see Section 4.

We note that in practical computations it seems preferable to use a nonmono-
tone line search instead of step (S.3). For instance, we have successfully used
one modelled on the strategy by Grippo, Lampariello and Lucidi [10].

3 Finite Termination

In this section, we will prove that Algorithm 1 terminates in one step for linear
complementarity problems provided that the current iterate zk := (xk, yk)
is in a sufficiently small neighbourhood of a solution z∗ := (x∗, y∗) of the
LCP(q,M). The following lemma is the key ingredient for this result.

Lemma 3 Let z∗ := (x∗, y∗) ∈ IR2n denote a solution of the LCP(q,M). Then
there is a positive number ε(z∗) such that

F (z) − G(z − z∗) = 0 (7)
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for all z ∈ Bε(z∗) and all matrices G ∈ ∂F (z), where Bε := {z ∈ IR2n | ‖z − z∗‖ < ε}.

Proof. For an arbitrary z = (x, y) ∈ IR2n, we obtain

Mx + q − y − (M(x − x∗) − (y − y∗)) = Mx∗ + q − y∗ = 0,

i.e., the first n equations of system (7) are satisfied. Now it will be shown that
the remaining equations

∆(xi, yi) := min{xi, yi} − ai(xi − x∗

i ) − (1 − ai)(yi − y∗

i ) = 0 (i ∈ I),

where ai comes from the representation of the generalized Jacobian (cf. (3),
(5)), are fulfilled in a certain neighbourhood of the solution z∗ = (x∗, y∗). If
there is at least one index i ∈ I with x∗

i + y∗

i > 0, then set

ε(z∗) :=
1

3
min{x∗

i + y∗

i | i ∈ I, x∗

i + y∗

i > 0}.

Otherwise, let ε(z∗) be any positive number. Now, let z ∈ Bε(z∗) and G ∈ ∂F (z)
be arbitrarily chosen. We distinguish the following cases:

(a) If x∗

i = y∗

i = 0 and xi = yi, we directly get ∆(xi, yi) = 0.
(b) If x∗

i = y∗

i = 0 and xi < yi, it follows that ai = 1 and therefore ∆(xi, yi) =
0.

(c) If x∗

i = y∗

i = 0 and xi > yi, the same is obvious with ai = 0.
(d) If x∗

i = 0 < y∗

i , we obtain yi ≥ y∗

i −ε(z∗) ≥ 2ε(z∗) > ε(z∗) ≥ |xi−x∗

i | ≥ xi.
This yields ai = 1 and ∆(xi, yi) = 0.

(e) If y∗

i = 0 < x∗

i , it follows analogously to case (d) that ai = 0 and
∆(xi, yi) = 0.

Consequently, we have ∆(xi, yi) = 0 for all i ∈ I and all z ∈ Bε(z∗). 2

We note that Lemma 3 is true even for infeasible vectors z = (x, y) ∈ Bε(z∗),
i.e., y = Mx + q need not be satisfied.

Theorem 4 Let z∗ := (x∗, y∗) ∈ IR2n denote a solution of the LCP(q,M). If
zk ∈ Bε for some sufficiently small ε > 0 and if Gk ∈ ∂F (zk) is nonsingular,
then zk+1 as generated by Algorithm 1 solves the LCP(q,M).

Proof. Let ε := ε(z∗) be as in Lemma 3. Based on this lemma and the non-
singularity of Gk, step (S.2) of Algorithm 1 yields

(zk + ∆zk) − z∗ = zk − G−1
k F (zk) − z∗ = −G−1

k (F (zk) − Gk(z
k − z∗)) = 0.
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Therefore, we have

‖F (zk + ∆zk)‖2 = ‖F (z∗)‖2 = 0 ≤ (1 − σ)‖F (zk)‖2,

i.e., step (S.3) of Algorithm 1 computes tk = 1 and step (S.4) provides
zk+1 = zk + ∆zk = z∗. 2

The proof of this theorem is based on an idea of Kojima and Shindo [20]
in connection with Newton’s method for piecewise continuously differentiable
equations, see also Kummer [21] and Fischer [7] for related results.

Theorem 4 raises the following question - under what assumptions can we
find a nonsingular matrix Gk ∈ ∂F (zk) ? The following results give sufficient
conditions.

Theorem 5 Let M ∈ IRn×n be a P-matrix and let z ∈ IR2n be an arbitrary
vector. Then every element G ∈ ∂F (z) is nonsingular.

Proof. Let z ∈ IR2n and G ∈ ∂F (z) be arbitrary. Then, we consider p =
(p(1), p(2)) ∈ IR2n such that Gp = 0 is satisfied. With regard to (3) we have

Mp(1) − p(2) = 0, (8)

aip
(1)
i + (1 − ai)p

(2)
i = 0 (i ∈ I), (9)

where ai ∈ [0, 1]. From (8), we obtain p(2) = Mp(1) and therefore p
(2)
i =

(Mp(1))i = Mi·p
(1). Together with (9) it follows that

aip
(1)
i + (1 − ai)Mi·p

(1) = 0 (i ∈ I). (10)

Multiplying the ith equation by p
(1)
i and recalling that M is a P -matrix, we

immediately get p(1) = 0. This and (8) yields p(2) = 0. Consequently, the
matrix G is indeed nonsingular. 2

As a direct consequence of Theorems 4 and 5, we get the result that Algorithm
1 possesses the finite termination property for P -matrix linear complementar-
ity problems independent of the particular choice of the matrix G ∈ ∂F (z).

The following theorem deals with the case where the matrix M is only assumed
to be nondegenerate and states a somewhat weaker assertion.

Theorem 6 Let M ∈ IRn×n be a nondegenerate matrix and let z ∈ IR2n be an
arbitrarily chosen vector. Then all elements G ∈ ∂BF (z) are nonsingular.
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Proof. The proof is similar to the one given for Theorem 3.1 in [16]. Let
z ∈ IRn and G ∈ ∂BF (z) be arbitrary. According to (3) and (4) there is a
vector a ∈ IRn with ai ∈ {0, 1} such that G = G(a). Define the index sets

J := {i ∈ I|ai = 0} and J̄ := {i ∈ I|ai = 1}.

Since ai ∈ {0, 1}, we have J̄ = I \ J. Let p = (p(1), p(2)) ∈ IR2n with Gp = 0,
i.e., let equations (8) and (9) hold. The latter and the definitions of J and J̄
yield

p
(1)

J̄
= 0 and p

(2)
J = 0. (11)

Using this, it follows from (8) that

MJJp
(1)
J = 0. (12)

Since M is nondegenerate, the submatrix MJJ is nonsingular. Therefore, equa-
tion (12) implies

p
(1)
J = 0.

This together with the first equation in (11) yields p(1) = 0 and we obtain
from (8) that p(2) = 0. Thus, p = 0. Therefore, all matrices G ∈ ∂BF (z) are
nonsingular for any z ∈ IRn. 2

If z ∈ D, then ∂BF (z) consists solely of the Jacobian matrix ∇F (z), which
must then be nonsingular for nondegenerate matrices M because of Theorem
6. The following example, however, shows that if z = (x, y) is a vector not
belonging to D, then singular matrices G ∈ ∂F (z) might exist.

Example 7 Let n = 1,M = (−1) ∈ IR1×1, q ∈ IR1 arbitrary and z = (x, y) ∈
IR2 such that x = y. Obviously, M is a nondegenerate matrix, but not a P -
matrix. From the representation of the generalized Jacobian ∂F (z), it follows
directly that the singular matrix

G =







−1 −1

0.5 0.5







is an element of ∂F (z) (just take a = 0.5).

Based on the following example, it is clear that it may happen that there is
no nonsingular element G ∈ ∂F (z) if the underlying matrix M is degenerate
(i.e., not nondegenerate).
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Example 8 Let n = 1,M = (0) ∈ IR1×1, q ∈ IR1 arbitrary and z = (x, y) ∈
IR2 such that x > y. Then M is degenerate and ∂F (z) solely contains the
singular matrix

G =







0 −1

0 1





 .

Now let z∗ := (x∗, y∗) ∈ IR2n be a solution of LCP(q,M), and let α, β and γ
denote the corresponding index sets as defined in Section 2. Without loss of
generality we can partition the matrix M as well as the diagonal matrix Da

as follows:

M =















Mαα Mαβ Mαγ

Mβα Mββ Mβγ

Mγα Mγβ Mγγ















, Da =















Da,α

Da,β

Da,γ















,

where Da,α = (Da)αα etc. Similarly, for an arbitrary vector q ∈ IRn, we use
the corresponding partitioning

q = (qα, qβ, qγ).

Based on this notation, we are able to formulate and prove our next results.

Theorem 9 Let z∗ := (x∗, y∗) ∈ IR2n be an R-regular solution of LCP(q,M).
Then all elements G ∈ ∂F (z∗) are nonsingular.

Proof. Taking an arbitrary G ∈ ∂F (z∗), we consider p = (p(1), p(2)) ∈ IR2n

such that Gp = 0. With regard to (3) as well as to (8) and (9), we get

Dap
(1) + (I − Da)Mp(1) = 0 (13)

and p(2) = Mp(1). Therefore, we only have to show that p(1) = 0 follows from
(13). Using the definition of the index sets α, β, γ and formula (3) together
with the representation (5) of ∂F (z), it follows in the above notation that
Da,α = 0αα and Da,γ = Iγγ. Consequently, (13) can be rewritten as

Mααp(1)
α + Mαβp

(1)
β + Mαγp

(1)
γ = 0α, (14)

Da,βp
(1)
β + (I − Da,β)

[

Mβαp(1)
α + Mββp

(1)
β + Mβγp

(1)
γ

]

= 0β, (15)

p(1)
γ = 0γ. (16)
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According to (16) and the R-regularity of z∗, we get

p(1)
α = −M−1

ααMαβp
(1)
β (17)

from (14). Substituting this into (15) and rearranging terms yields

(

Da,β + (I − Da,β)
[

Mββ − MβαM−1
ααMαβ

])

p
(1)
β = 0β. (18)

Due to the R-regularity the bracketed term in (18) is a P -matrix. Hence, we

can argue as in the proof of Theorem 5 that p
(1)
β = 0β. This implies p(1)

α = 0α

(cf. (17)). Because of (16) the proof is complete. 2

Theorem 10 Let z∗ = (x∗, y∗) ∈ IR2n be a b-regular solution of LCP(q,M).
Then all elements G ∈ ∂BF (z∗) are nonsingular.

Proof. Let G ∈ ∂BF (z∗) be arbitrarily chosen. Keeping the representation
(4) of the B-subdifferential ∂BF (z) and formula (3) in mind, we see that an
index set δ exists with α ⊆ δ ⊆ α ∪ β and

aδ = 0δ, aδ̄ = eδ̄, (19)

where δ̄ = I \ δ. If we write

M =







Mδδ Mδδ̄

Mδ̄δ Mδ̄δ̄





 , Da =







Da,δ

Da,δ̄







and assume that Gp = 0 for some vector p = (p(1), p(2)) ∈ IR2n, then (13) can
be rewritten as

Da,δp
(1)
δ + (Iδδ − Da,δ)

[

Mδδp
(1)
δ + Mδδ̄p

(1)

δ̄

]

= 0δ, (20)

Da,δ̄p
(1)

δ̄
+ (Iδ̄δ̄ − Da,δ̄)

[

Mδ̄δp
(1)
δ + Mδ̄δ̄p

(1)

δ̄

]

= 0δ̄. (21)

With regard to (3) and (19), we have Da,δ = 0δδ and Da,δ̄ = Iδ̄δ̄. Therefore,
(20) and (21) can be reduced to

p
(1)

δ̄
= 0δ̄, Mδδp

(1)
δ = 0δ.

Owing to the b-regularity assumption, the submatrix Mδδ is nonsingular and
we get

p
(1)
δ = 0δ.
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This shows that p(1) = 0. Finally, p(2) = Mp(1) = 0, according to (8), implies
p = 0. 2

From well-known properties of the B-subdifferential and the generalized Jaco-
bian, see [26,2], it follows that the nonsingularity results given in Theorems 9
and 10 remain true in a certain small neighbourhood of the solution z∗. Hence
we can also apply Theorem 4 under the R- and b-regularity assumptions. In
contrast to the case of a nondegenerate or P -matrix complementarity prob-
lem, however, the neighbourhood for the finite termination is possibly smaller
and not necessarily given by the constant ε(z∗) defined in the proof of Lemma
3.

In order to illustrate the finite termination of Algorithm 1, we implemented
that algorithm in MATLAB (using a nonmonotone line search) and tested it
on the following problem found in Harker and Pang [12].

Example 11 Let

M := AT A + B + diag(ci).

The matrix A ∈ IRn×n, the skew-symmetric matrix B ∈ IRn×n and the vectors
c, q ∈ IRn are randomly generated with uniformly distributed entries

aij , bij ∈ (−5, 5), ci ∈ (0, 0.3), qi ∈ (−500, 0) (i, j ∈ I).

In our MATLAB-implementation we chose Gk ∈ ∂F (zk) such that ai = 1
if xk

i < yk
i and otherwise ai = 0. Figure 1 shows the convergence history of

Algorithm 1 for one typical instance of Example 11. This figure is interesting
since it clearly demonstrates both the nonmonotone line search and the finite
termination (note that the norm ‖F (zk)‖/‖F (z0)‖ for the sixth iterate k = 6
is relatively large, whereas ‖F (z7)‖/‖F (z0)‖ is almost around the machine
precision).

4 Application to Harker and Pang’s Algorithm

We will first give a review of Harker and Pang’s algorithm [12], see also Pang
[24]. They have considered the characterization H(x) = 0 of the LCP(q,M)

11



with H : IRn → IRn being defined by

H(x) = min{x,Mx + q}. (22)

Their algorithm is as follows:

Algorithm 2 (Harker-Pang method)

(S.0) Choose x0 ∈ IRn, β, σ ∈ (0, 1) and set k := 0.
(S.1) If ‖H(xk)‖ = 0, stop. (xk solves the LCP(q,M).)
(S.2) Compute ∆xk as a solution of the generalized Newton equation

BH(xk; ∆x) = −H(xk). (23)

(S.3) Set tk := βmk with mk being the smallest nonnegative integer m satisfy-
ing the Armijo condition

‖H(xk + βm∆xk)‖2 ≤ (1 − βmσ)‖H(xk)‖2.

(S.4) Set xk+1 := xk + tk∆xk, k := k + 1 and go to(S.1).

By BH(x; ·) the B-derivative of H at x is denoted, see e.g. [13,24] for details.
In particular, BH(x; ·) is a positive homogeneous but not necessarily linear
mapping. Therefore, in contrast to Algorithm 1, the Newton equation (23)
of Algorithm 2 is in general nonlinear. For the particular function H, the
B-derivative at xk is given by

(BH(xk; ∆x))i =



























Mi·∆x if i ∈ α(xk) := {i ∈ I| (Mxk + q)i < xk
i }

min{Mi·∆x, ∆xi} if i ∈ β(xk) := {i ∈ I| (Mxk + q)i = xk
i }

∆xi if i ∈ γ(xk) := {i ∈ I| (Mxk + q)i > xk
i }

.

The generalized Newton equation (23) (with ∆x = ∆xk) can therefore be
rewritten as follows:

Mi·∆xk =−(Mxk + q)i (i ∈ α(xk)), (24)

min{Mi·∆xk, ∆xk
i }=−xk

i (i ∈ β(xk)), (25)

∆xk
i =−xk

i (i ∈ γ(xk)). (26)

In order to avoid nonlinear subproblems, Harker and Pang proposed a modi-
fication of step (S.3) of Algorithm 2, see also [3]. This modification, together
with a nondegenerate starting point x0, ensures that all iterates xk remain
nondegenerate, i.e., β(xk) = ∅ for k = 0, 1, . . . Consequently, the subproblems
only consist of the linear equations (24) and (26).
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A further modification of Algorithm 2 is obtained if the Newton-type algorithm
given in [25] is used for linear complementarity problems LCP(q,M). There,
roughly speaking, another index set definition possibly enlarges the dimension
of the linear complementarity part (25) in the subproblems. However, stronger
results on global and locally quadratic convergence can be proved.

It can easily be seen that the subsequent considerations, in particular Theo-
rems 12 and 13, also hold for these modified versions of Harker and Pang’s
algorithm.

Throughout this section, we will follow Harker and Pang [12] and assume that
the system (24)–(26) has a solution ∆xk for all iteration steps k = 0, 1, . . . We
will now show that (under this assumption) both Algorithm 1 and Algorithm
2 generate the same sequence x0, x1, . . . if we take y0 := Mx0 +q in Algorithm
1 and choose a particular matrix Gk ∈ ∂F (zk). From y0 = Mx0 + q and a
simple induction argument, we first get

yk = Mxk + q (k = 0, 1, . . .). (27)

Let ∆xk ∈ IRn denote a solution of (24)–(26) and define

ai := ak
i :=











1 if ∆xk
i ≤ Mi·∆xk

0 if ∆xk
i > Mi·∆xk

(i ∈ β(xk)). (28)

From this choice of ai it follows that the corresponding matrix Gk is an element
of the B-subdifferential ∂BF (zk). Moreover, using (28) and (27), it can easily
be verified that the system Gk∆zk = −F (zk) leads to exactly the same system
as (24)–(26), i.e., both algorithms are indeed identical. Since Algorithm 1 has
the finite termination property for nondegenerate matrices M with the choice
of ai given in (28), it follows directly from the results of Section 3 that the
same holds for Algorithm 2. We will summarize these considerations in the
following theorem, which answers the unsolved question raised by Harker and
Pang [12].

Theorem 12 Let M ∈ IRn×n be a nondegenerate matrix, and let x∗ be a
solution of the LCP(q,M). If xk ∈ Bε for some small enough ε > 0, and if
the generalized Newton-equation (23) has a solution ∆xk, then the next iterate
xk+1 generated by Algorithm 2 will coincide with x∗.

As noted in [12], the system (23) is always solvable for P -matrix linear com-
plementarity problems. Therefore, if we assume M ∈ IRn×n being a P -matrix,
the additional assumption that the system (23) is solvable can be omitted in
Theorem 12.
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From Theorem 10, we further get the following result.

Theorem 13 Let x∗ be a b-regular solution of LCP(q,M). If xk ∈ Bε for
some small enough ε > 0, and if the generalized Newton-equation (23) has a
solution ∆xk, then the next iterate xk+1 generated by Algorithm 2 will coincide
with x∗.

Once again, we note that if the b-regularity assumption of Theorem 13 is
replaced by the stronger R-regularity, the additional assumption of the solv-
ability of the subproblems (23) becomes superfluous.

We conclude this section by noting that Harker and Pang [12] were able to
prove that their search direction ∆xk is a descent direction for ‖H‖2. This in
turn implies that the search direction ∆zk obtained in Algorithm 1 for the
choice of Gk ∈ ∂F (zk) based on (28), is also a descent direction for ‖F‖2.
However, this particular choice of Gk is unknown a priori.

5 Final Remarks

In this paper, we proved that a certain iterative method for the solution of
linear complementarity problems terminates after a finite number of steps
under suitable assumptions. In particular, this result can be applied to an
algorithm of Harker and Pang [12] and gives an affirmative answer to an
unsolved question raised by these authors.

In order to prove finite termination of Harker and Pang’s method, we in-
troduced (as a theoretical tool) the generalized Newton method described in
Algorithm 1. Here we want to mention that there is a close relationship be-
tween Algorithm 1 and (block) principal pivoting methods (see, e.g., Júdice
[14] for a recent survey). The central idea of pivoting methods is to maintain
the equations

yk = Mxk + q, xk
i y

k
i = 0 (i ∈ I) (29)

at all steps k = 0, 1, . . . and to reach the feasibility condition xk ≥ 0, yk ≥ 0
during the iteration. Now consider Algorithm 1 and assume that the matrix
Gk is always taken from the B-subdifferential ∂BF (zk). Let z0 = (x0, y0) be a
starting vector such that (29) is satisfied for k = 0 (e.g., take x0 = 0, y0 = q).
Then it is not difficult to see that (29) holds for all k = 0, 1, . . . as long as
the full stepsize tk = 1 is accepted by Algorithm 1. Although the line search
procedure in Step (S.3) distinguishes Algorithm 1 from pivoting methods this
procedure can be viewed as another kind of pivoting rule, see also [12,3].
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