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1. Introduction. We consider the linear complementarity problem, LCP for
short,

y = Mx + q, x ≥ 0, y ≥ 0, xT y = 0,

where the matrix M ∈ IRn×n and the vector q ∈ IRn are given. Throughout the paper
we assume that

M is a column sufficient (CS) matrix

(see [1, 2]), i.e., we assume that

xi(Mx)i ≤ 0 ∀i =⇒ xi(Mx)i = 0 ∀i.

We recall that positive semidefinite matrices and sufficient (or, equivalently, P∗-)
matrices are column sufficient, so that the class of CS linear complementarity problems
includes all the classes of LCPs for which interior-point methods have been extensively
studied. We denote by S the solution set of LCP. This set is always closed and it is
known to be convex for every q if and only if M is a CS matrix [1, Theorem 3.5.8].
We further make the blanket assumption that S is nonempty.

In this paper we are interested in techniques that identify the variables that are
zero at a solution of an LCP. Obviously, the zero variables at a solution may be
different from the zero variables at another solution. Therefore, in order to make
more precise our aim, we define the following three index sets:

B := {i|x∗
i > 0, for at least one (x∗, y∗) ∈ S},

N := {i| y∗
i > 0, for at least one (x∗, y∗) ∈ S},

J := {i|x∗
i = y∗

i = 0, for all (x∗, y∗) ∈ S}.
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The following proposition describes two properties of these index sets which are well-
known in the case of a positive semidefinite matrix M .

Proposition 1.1.

(i) The index sets B, N and J form a partition of {1, . . . , n}.
(ii) A point z∗ = (x∗, y∗) ∈ S belongs to the relative interior riS of the solution

set S if and only if

x∗
B > 0, x∗

N = 0, x∗
J = 0, y∗

B = 0, y∗
N > 0, y∗

J = 0.(1.1)

Proof. (i) It is obvious that B∪N ∪J = {1, . . . , n}. So we only have to show that
B, N and J are pairwise disjoint. In turn, since it is easy to see, by the definition of
these sets, that B ∩ J = ∅ = N ∩J , we only have to show that B ∩N = ∅. Suppose
by contradiction that an index i belongs to both B and N . Then there exist two
points (x̄, ȳ) and (x̂, ŷ), both belonging to the solution set S, such that x̄i > 0 and
ŷi > 0. Consequently we have ȳi = 0 and x̂i = 0. Since M is column sufficient, S is
convex. Therefore the point (x(t), y(t)) = t(x̄, ȳ)+ (1− t)(x̂, ŷ) belongs to S for every
t ∈ (0, 1). But by the relations established above we have xi(t) > 0 and yi(t) > 0,
thus contradicting the fact that (x(t), y(t)) belongs to S.

(ii) The proof is identical to the one given in [3, Theorem 2.2] for monotone
complementarity problems. A closer look at that proof shows that the monotonicity
is used there only to establish the convexity of the solution set. Since the convexity
of S holds under the assumption that M is column sufficient, the proof goes through.

Point (ii) of the above proposition shows that, in the relative interior of the set S,
the set of zero variables is invariant with respect to the solution. We recall that, under
very mild assumptions, interior-point methods generate sequences of points such that
every accumulation point is in the relative interior of S and so these solutions share
the same zero-nonzero structure, see, e.g., [14, 16].

Our aim is to identify this structure or, equivalently, the sets B, N and J . The
correct identification of these sets is important from both the theoretical and com-
putational point of view. In fact, the knowledge of the zero-nonzero structure may
allow, on the one hand, to easily recover an exact solution from the approximated
one provided by an interior-point method and, on the other hand, to improve the
efficiency of interior-point methods and column generation techniques [3].

The identification of the zero variables in interior-point methods for linear pro-
grams has been the subject of intense research in the last ten years, and we refer the
reader to [3] for an exhaustive review. It is now accepted that the technique originally
proposed by Tapia [18] for nonlinear programs enjoys the most interesting properties
in the context of interior-point methods for linear programming [3].

This technique has also been extended to the case of linear complementarity
problems [3, 4, 9, 14]. Then, however, a further difficulty can occur. In contrast
to linear programs, where we always have J = ∅, this is no longer true for LCP.
Problems with J = ∅ are called nondegenerate, while those for which J 6= ∅ are
termed degenerate. Degeneracy makes the identification of the sets B, N and J more
difficult [4, 9, 14].

In this paper we present a new technique for identifying the sets B, N and J .
We show that, given a point z = (x, y) belonging to a certain set Zε, we are able to
correctly identify B, N and J . The set Zε is defined in such a way that virtually all
interior-point methods will generate, under standard assumptions, a sequence whose
points eventually belong to this set, thus ensuring finite identification. We want to
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stress from the outset two peculiarities which, in our view, are significant. First,
the class of problems we are able to deal with is considerably broader than the ones
considered in previous works. Secondly, different to other works on the same subject,
we do not make reference to a specific (although general) algorithmic scheme, so that
the results obtained can be applied to a class of methods wider than the interior-point
one.

The approach we use in this paper is reminiscent of the one proposed in [5]
for general nonlinear programs. However there is a major difference: one of the
key assumptions in [5] is that the solution of interest is an isolated solution. This
assumption is not sensible in the LCP case and we therefore drop it by fully exploiting
the structure of the problem. Furthermore, we are able to obtain particularly simple
expressions for the growth functions (see §3) and convergence rates estimates (see §4
and §5) that have no parallel in [5].

The paper is organized as follows. Below we introduce some further notation.
In the next section we present the basic identification results of the paper. §3 and
§4 address some more technical points related to the identification technique. In
§5 we specialize some of the results to an interior-point framework, while numerical
experiments are reported in §6. In §7 we make some final comments.

Throughout the paper ‖ · ‖ denotes the Euclidean norm and

dist(z|S) := inf{‖w − z‖ |w ∈ S}
the Euclidean distance of the point z from the set S. We define the set Z by

Z := {z = (x, y) ∈ IRn+n | z satisfies Conditions (C1)–(C3)},
where

(C1) xB ≥ δ, yN ≥ δ,
(C2) ‖z‖ ≤ C,
(C3) ‖r‖ ≤ η‖Xy‖, with X := diag(x1, . . . , xn) and r := r(z) := y − (Mx + q),

and where δ > 0, C > 0, and η ≥ 0 are constants such that the intersection of Z and
the solution set S is nonempty. Given a positive constant ε, we shall also consider
the following set Zε:

Zε := Z ∩ {z| dist (z|S) ≤ ε},
In this paper we show that, given a point z in Zε, with ε sufficiently small,

we can correctly identify the sets B, N and J . The set Z comprises those points
belonging to a compact set (Condition (C2)) that are neither “too close” to the
boundary of S (Condition (C1)) nor “too much infeasible” in the terminology of
interior-point methods (Condition (C3)). The set Zε is just the part of Z that is not
“too distant” from the solution set. We note that under standard, mild assumptions
the vast majority of existing interior-point methods for LCPs will produce a sequence
of points which belongs to Z (for suitable δ, C and η) and to Zε (for any fixed
positive ε) eventually. To see this, we may refer to [14], where a general framework
is introduced that covers a large number of interior-point methods for monotone
LCPs. It can easily be seen that within this framework the Conditions (C1)–(C3)
are satisfied. In particular, Condition (C2) is explicitly stated in property a) of
that framework, whereas Condition (C3) can be directly obtained from property d).
Moreover, Condition (C1) follows from [14, Lemma 2.2]. For LCPs with P∗-matrices
an infeasible interior-point method is considered in [16]. Using Theorems 2.3 and 4.1
in this paper one can verify that any sequence generated by this infeasible interior-
point method eventually satisfies Conditions (C1) – (C3) for suitable δ, C and η.
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2. Identification results. This section contains the basic identification results
of the paper. We shall show that, given any point z in Zε, if ε is sufficiently small,
we can correctly identify the sets B, N and J . To this end we need some preliminary
results and definitions.

Proposition 2.1. For any z = (x, y) ∈ IRn × IRn, it holds that

|xi| ≤ dist(z|S) ∀i ∈ N ∪ J , |yi| ≤ dist(z|S) ∀i ∈ B ∪ J .

Proof. Let z⊥ = (x⊥, y⊥) denote the orthogonal projection of z = (x, y) onto
S (we recall that S is a nonempty, closed and convex set, so that the orthogonal
projection onto this set is uniquely defined). Since (1.1) holds for all z∗ ∈ riS it
follows that x∗

N∪J = 0 and y∗
B∪J = 0 for all z∗ ∈ S so that

x⊥
N∪J = 0, y⊥

B∪J = 0.

Thus, we get for i ∈ N ∪ J :

|xi| = |xi − 0| = |xi − x⊥
i | ≤ ‖x − x⊥‖ ≤ ‖z − z⊥‖ = dist(z|S).

Similar reasonings can be repeated for yi, i ∈ B ∪ J , and this completes the proof.

The following two definitions are fundamental for our subsequent considerations.
Definition 2.2. A function ρ : IRn+n → [0,∞) is called growth function on Z

if there is a constant c1 ≥ 1 such that

1

c1
dist(z|S) ≤ ρ(z) ≤ c1dist(z|S)(2.1)

for all z ∈ Z.
Note that Definition 2.2 implies that ρ(z) is equal to 0 if and only if z is a so-

lution of the linear complementarity problem. Growth functions are also known as
residual functions and have a wide use in mathematical programming. The inequal-
ities in (2.1) show that ρ can be used as a surrogate of the distance function and
it should therefore be expected to be easier to calculate than the distance function
itself. Growth functions can be used, for example, to define stopping rules for algo-
rithms, or to study their convergence rates; they also play a fundamental role in the
study of penalty functions. The interested reader can found a detailed survey on this
topic in [15]. In the next section we show that in the case of column sufficient linear
complementarity problems, it is always possible, by using the conditions (C1)–(C3),
to obtain very simple growth functions.

Our interest in growth functions is due to their role in the definition of indicator
functions as defined below.

Definition 2.3. Let ρ : IRn+n → [0,∞) be a growth function on Z and α ∈ (0, 1)
be fixed. Then the function S : IR ×Z → IR defined by

S(ξ, z; α) :=







ξ

ξ − ρ(z)α
if ξ 6= ρ(z)α

0 otherwise

is called an indicator function.
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The following proposition justifies the name indicator function and motivates our
interests in indicator functions.

Proposition 2.4. For any α ∈ (0, 1) it holds that

lim
ε→0,z∈Zε

S(xi, z; α) = 1 ∀i ∈ B,(2.2)

lim
ε→0,z∈Zε

S(xi, z; α) = 0 ∀i ∈ N ∪ J ,(2.3)

lim
ε→0,z∈Zε

S(yi, z; α) = 1 ∀i ∈ N ,(2.4)

lim
ε→0,z∈Zε

S(yi, z; α) = 0 ∀i ∈ B ∪ J .(2.5)

Proof. The fact that 0 ≤ dist(z|S) ≤ ε → 0 and the right inequality in (2.1) imply
ρ(z) → 0. This and Condition (C1) yield (2.2).

Suppose now that i ∈ N ∪ J . We need to consider only those (xi, z) with
S(xi, z; α) 6= 0. The very definition of the indicator function S then implies that
xi 6= 0. Using the left inequality of (2.1) and Proposition 2.1, we therefore have

∣
∣
∣
∣

xi − ρ(z)α

xi

∣
∣
∣
∣
≥ ρ(z)α

|xi|
− 1 ≥ dist(z|S)α

cα
1 |xi|

− 1 ≥ |xi|α−1

cα
1

− 1.(2.6)

Proposition 2.1 and dist(z|S) ≤ ε → 0 imply xi → 0. Thus, by (2.6), it follows that

lim
ε→0,z∈Zε

1

|S(xi, z, α)| = lim
ε→0,z∈Zε

∣
∣
∣
∣

xi − ρ(z)α

xi

∣
∣
∣
∣
= ∞,

i.e., (2.3) is valid.
The limits (2.4) and (2.5) can be proved similarly.
The above result suggests to introduce the following approximations to the sets

B, N and J . Let θ ∈ (0, 1/2) and α ∈ (0, 1) be fixed and ρ be a given growth function
on Z; define

B(z; α) := {i |S(xi, z; α) ≥ 1 − θ},
N (z; α) := {i |S(yi, z; α) ≥ 1 − θ},
J (z; α) := {i | max{S(xi, z; α), S(yi, z; α)} ≤ θ}.

Note that these three sets are pairwise disjoint, but they do not necessarily form a
partition of {1, . . . , n}. The following result is the principal result of this section and
shows that the sets just defined are indeed reasonable estimates of the sets B, N and
J .

Theorem 2.5. Let α ∈ (0, 1) and θ ∈ (0, 1/2) be given. Then there is an ε > 0
such that

B(z; α) = B, N (z; α) = N , J (z; α) = J(2.7)

for all z ∈ Zε.
Proof. Assume the contrary. Then sequences {εk} → 0 and {zk} exist such that,

for every k, zk ∈ Zεk and at least one of the equalities in (2.7) is violated.
Since εk converges to 0, we have that dist(zk|S) also converges to 0, so that

(2.2)–(2.5) hold. This obviously implies that all the equalities in (2.7) hold eventually.
Therefore we got a contradiction and the proof is complete.
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Remark 2.6. Using the indicator function and their properties we can easily
define different approximations to the sets B, N and J . For example, in §6 we shall
use the following approximations in the numerical tests:

B′(z; α) := {i| min{S(xi, z; α), 1 − S(yi, z; α)} ≥ 1 − θ},
N ′(z; α) := {i| min{S(yi, z; α), 1 − S(xi, z; α)} ≥ 1 − θ},
J ′(z; α) := J (z; α).

It is easy to see that these approximations enjoy the same properties established in
Theorem 2.5 and that B′(z; α) ⊆ B(z; α) and N ′(z; α) ⊆ N (z; α) so that B′(z; α) and
N ′(z; α) may be seen as more restrictive versions of the approximations B(z; α) and
N (z; α).

3. Growth Functions. We saw in the previous section that a key role in the
identification of the zero-nonzero pattern of the solutions is played by growth func-
tions. In particular growth functions enter in the definition of indicator functions that,
in turn, are a crucial ingredient in the definition of the estimates B(z; α), N (z; α) and
J (z; α). We can say that our approach hinges on the possibility to define an easily
computable growth function.

Before presenting a first example of a growth function, we need some preliminary
results. Consider the projection of the solution set S on the space of x-variables and
indicate it by Sx:

Sx := {x ∈ IRn | ∃y ∈ IRn : (x, y) ∈ S}.(3.1)

Since, in view of our general assumptions, the solution set S is nonempty, closed and
convex, also Sx is nonempty, closed and convex. The following lemma gives an error
bound result for the set

Zx := {x ∈ IRn | ∃y ∈ IRn : (x, y) ∈ Z},

which, by Condition (C2), is bounded.
Lemma 3.1. There is a constant c2 > 0 such that

dist(x|Sx) ≤ c2‖min{x, Mx + q}‖

for all x ∈ Zx.
Proof. It can be easily derived from [11] that, given a point x̄ ∈ Sx, there exist a

constant κ1 > 0 and a neighborhood Ω of x̄ such that

dist(x|Sx) ≤ κ1‖min{x, Mx + q}‖ ∀x ∈ Ω.(3.2)

Suppose now that the lemma is false. Then a sequence {xk} contained in Zx exists
such that

dist(xk|Sx) > k‖min{xk, Mxk + q}‖ ∀k ∈ IN(3.3)

Since Zx is bounded, we can assume without loss of generality that {xk} converges
to a point x̄. It is also easy to see that x̄ belongs to Sx for, if this were not true, (3.3)
would imply dist(xk|Sx) → ∞, which, in view of the boundedness of Zx, is impossible.
But if x̄ belongs to Sx, we have that eventually, (3.3) contradicts (3.2).

Using Lemma 3.1 we can now give an error bound result for the solution set S.
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Lemma 3.2. There is a constant c3 > 0 such that

dist(z|S) ≤ c3 (‖min{x, y}‖ + η‖Xy‖)(3.4)

for all z ∈ Z, where η ≥ 0 denotes the constant from Condition (C3).
Proof. Let z ∈ Z with z = (x, y) be given. Since, as noted before, Sx is nonempty,

closed and convex, there exists an orthogonal projection x⊥ of x ∈ IRn on the set Sx.
By the definition of Sx, there is a vector y⊥ such that z⊥ = (x⊥, y⊥) ∈ S. Thus, we
get

dist(z|S) ≤ ‖z − z⊥‖
≤ ‖x − x⊥‖ + ‖y − y⊥‖
= ‖x − x⊥‖ + ‖M(x − x⊥) + r‖
≤ (1 + ‖M‖)‖x − x⊥‖ + ‖r‖.

(3.5)

Using Lemma 3.1, we have

dist(x|Sx) ≤ c2‖min{x, Mx + q}‖ = c2‖min{x, y − r}‖,(3.6)

where the equality follows directly from the definition of the vector r in Condition
(C3).

Now, taking into account the easily verified relation

|min{a, b + c}| ≤ |min{a, b}| + |c|, ∀a, b, c ∈ IR,

and the fact that all norms are equivalent in IRn, it follows that there is a constant
κ2 > 0 such that

‖min{x, y − r}‖ ≤ κ2 (‖min{x, y}‖ + ‖r‖) .(3.7)

Combining the inequalities (3.5)–(3.7) and using (C3), we therefore get

dist(z|S) ≤ (1 + ‖M‖)dist(x|Sx) + ‖r‖
≤ (1 + ‖M‖)c2‖min{x, y − r}‖ + ‖r‖
≤ (1 + ‖M‖)κ2c2‖min{x, y}‖ + (1 + ‖M‖)κ2c2η‖Xy‖ + η‖Xy‖
≤ c3(‖min{x, y}‖ + η‖Xy‖),

where

c3 := (1 + ‖M‖)κ2c2 + 1.

We are now in the position to present a first example of a growth function.
Proposition 3.3. The function ρ1 : IRn+n → [0,∞), defined by

ρ1(z) := ‖min{x, y}‖,

is a growth function on Z.
Proof. Taking into account Condition (C2) and that |ab| = |max{a, b}||min{a, b}|

is valid for arbitrary a, b ∈ IR, we obtain

‖Xy‖ =

√
√
√
√

n∑

i=1

(xiyi)2 ≤
n∑

i=1

|xiyi| ≤ C

n∑

i=1

|min{xi, yi}| ≤ C
√

nρ1(z),(3.8)
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where C > 0 denotes the constant from Condition (C2). Using Lemma 3.2 we there-
fore have, for all z ∈ Z,

dist(z|S) ≤ c3ρ1(z) + c3η‖Xy‖ ≤ κ3ρ1(z),

where κ3 = c3(1 + Cη
√

n). On the other hand, the function ρ1 is globally Lipschitz
continuous on IRn+n, see [10]; let L be its Lipschitz constant. Then, denoting by z⊥

the orthogonal projection of z onto S, we get

ρ1(z) = |ρ1(z) − ρ1(z
⊥)| ≤ L‖z − z⊥‖ = Ldist(z|S)

for each z ∈ Z. Hence, ρ1 satisfies Definition 2.2 with c1 := max{κ3, L}.
Using the previous proposition it is now easy to build other growth functions. In

the next corollary we give two more examples.
Corollary 3.4. The functions ρ2, ρ3 : IRn+n → [0,∞) defined by

ρ2(z) := ‖(
√

x2
1 + y2

1 − x1 − y1, . . . ,
√

x2
n + y2

n − xn − yn)‖

and

ρ3(z) := ‖min{x, y}‖ + ‖Xy‖

are growth functions on Z.
Proof. It is known, see [19], that a positive constant κ4 exists such that

1

κ4
ρ1(z) ≤ ρ2(z) ≤ κ4ρ1(z), ∀z ∈ IR2n

From these relations and from Proposition 3.3 it then easily follows that ρ2 is a growth
function on Z.

We next examine ρ3. Because of Proposition 3.3 and (3.8), it follows immediately
from the definitions of ρ1 and ρ3 that

1

c1
dist(z|S) ≤ ρ1(z) ≤ ρ3(z) ≤ (1 + C

√
n)ρ1(z) ≤ c1(1 + C

√
n)dist(z|S)

for all z ∈ Z, i.e., ρ3 is a growth function.

4. Rates of convergence. The main point to consider when assessing the qual-
ity of estimates B(z, α), N (z, α) and J (z, α) is: How large is the region where these
estimates coincide with the sets they approximate? Unfortunately, it seems difficult
to give theoretical results in this direction, and the only way we know to treat this
point is through numerical experiments. However, in an effort to get some theoretical
insight into this problem, some researchers turned to the study of the convergence
rates of the indicator function values when z tends to the solution set S. In this
section we consider this issue. On the other hand, we think that the importance of
these results should not be overestimated since the connection between convergence
rates and the wideness of the region of correct identification is, from the theoretical
point of view, loose.

We first state a technical lemma.
Lemma 4.1. The inequality

0 ≤ ξ

ξ − r
− 1 ≤ 4r

ξ
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holds for all ξ, r ∈ IR with ξ > 0 and 0 ≤ r ≤ 0.75ξ.
Proof. The left inequality is obvious. On the other hand, the inequality on the

right-hand side is equivalent to

r

ξ − r
≤ 4r

ξ

which, in turn, is equivalent to

rξ ≤ 4r(ξ − r) = 4rξ − 4r2

since ξ > 0 and ξ − r > 0. Now, this inequality is satisfied if and only if

0 ≤ 3ξ − 4r,

and this is true because r ≤ 0.75ξ by assumption.
The following result relates the convergence rate of the indicator functions to the

convergence rate of the distance of the point z to the solution set S.
Theorem 4.2. Let α ∈ (0, 1) be given. Then, for z ∈ Z sufficiently close to S,

it holds

|S(xi, z; α) − 1| = O(dist(z|S)α) ∀i ∈ B,(4.1)

|S(yi, z; α) − 1| = O(dist(z|S)α) ∀i ∈ N ,(4.2)

|max{S(xi, z; α), S(yi, z; α)}| = O(dist(z|S)1−α) ∀i ∈ J .(4.3)

Proof. We prove (4.1) by applying Lemma 4.1 with ξ := xi and r := ρ(z)α. So
let i ∈ B be an arbitrary but fixed index. Since we need to consider only z ∈ Zε

with dist(z|S) ≤ ε sufficiently small, r = ρ(z)α ≤ 0.75xi = 0.75ξ follows for these z
because of Condition (C1) and (2.1). Moreover, ξ = xi > 0 is obvious. Therefore,
Lemma 4.1 can be applied and yields, having Condition (C1) and (2.1) in mind,

|S(xi, z; α) − 1| =
xi

xi − ρ(z)α
− 1 ≤ 4

xi
ρ(z)α ≤ 4

δ
cα
1 dist(z|S)α ∀i ∈ B.(4.4)

The proof of (4.2) is similar and we omit it.
Now, consider an arbitrary but fixed i ∈ J . To prove (4.3) we first show that

|S(xi, z; α)| = O(dist(z|S)1−α). Since only those z ∈ Zε with S(xi, z; α) 6= 0 need
to be considered, the definition of the indicator function S immediately implies that
xi 6= 0. Since i ∈ J , this means that z is not a solution of the linear complementarity
problem so that ρ(z) > 0. Using

ρ(z) ≤ c1dist(z|S) ≤ c1ε

for all z ∈ Zε, we therefore obtain the existence of a sufficiently small ε > 0 such that

c1ρ(z) = [c1ρ(z)1−α]ρ(z)α < ρ(z)α

holds for all z ∈ Zε. Now Proposition 2.1 and (2.1) imply that

|xi| ≤ dist(z|S) ≤ c1ρ(z) < ρ(z)α
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for all z ∈ Zε with z = (x, y). Thus, we can introduce a(z) := ρ(z)α/|xi| and observe
that, by Proposition 2.1, (2.1), and ρ(z) > 0,

0 <
1

a(z)
≤ cα

1 dist(z|S)1−α.(4.5)

This yields a(z) → ∞ for dist(z|S) → 0. Therefore, we have, for z ∈ Zε with ε
sufficiently small,

|S(xi, z; α)| =

∣
∣
∣
∣

xi

xi − ρ(z)α

∣
∣
∣
∣
=

1

|1 − ρ(z)α/xi|
≤ 1

|a(z)| − 1
≤ 2

a(z)
.

Together with (4.5) this gives

|S(xi, z; α)| = O(dist(z|S)1−α).

The same result can be shown for |S(yi, z; α)| in a similar way so that (4.3) follows.

5. Rates of convergence and complementarity gap. The result in the pre-
vious section is geometrically very appealing, since it relates the convergence rates
of the indicator functions to the Euclidean distance to the solution set. However, in
connection with interior-point methods, it is also important to relate this distance to
the normalized complementarity gap

µ := µ(z) :=
xT y

n
.

In fact, in interior-point methods a convergence rate is often established for µ (and
not for the distance), see, for example, the recent books [17, 20, 21] for a general
background on interior-point methods.

Instead of the set Z we will now make use of its nonnegative part

Z+ := {z ∈ Z | z ≥ 0}.

Note that virtually every interior-point method will generate sequences {zk} belonging
to Z+ eventually.

Before giving the main result of this section we relate the distance dist(z|S) to
the complementarity gap.

Proposition 5.1. If J 6= ∅, there is a constant c4 > 0 such that

dist(z|S) ≤ c4
√

µ(5.1)

for all z ∈ Z+. If, instead, J = ∅, then there is a constant c5 > 0 such that

dist(z|S) ≤ c5µ(5.2)

for all z ∈ Z+ sufficiently close to S.
Proof. From Lemma 3.2, we have

dist(z|S) ≤ c3 (‖min{x, y}‖ + nηµ) .(5.3)

Since min{a, b} ≤
√

ab is valid for arbitrary a, b ≥ 0 and since z ≥ 0, we obtain that

‖min{x, y}‖2 =

n∑

i=1

min2{xi, yi} ≤
n∑

i=1

xiyi = xT y = nµ.
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This and (5.3) gives

dist(z|S) ≤ c3

(√
n + nη

√
µ
)√

µ.

In view of Condition (C2), there is a constant κ5 > 0 such that

√
µ =

√

xT y

n
≤ κ5

for all z = (x, y) ∈ Z+. Hence it follows that

dist(z|S) ≤ c4
√

µ

for c4 := c3(
√

n + nηκ5).
If J = ∅, we have B ∪ N = {1, . . . , n} by Proposition 1.1. Thus, Condition (C1)

gives

min{xi, yi} ≤ xiyi

δ

for every i and for every z ∈ Z+ sufficiently close to S. Hence, we get from Condition
(C1):

‖min{x, y}‖ ≤ 1

δ

( n∑

i=1

x2
i y

2
i

)1/2

≤ 1

δ

n∑

i=1

xiyi =
n

δ
µ.

Inequality (5.2) now follows from (5.3) by taking c5 := c3(n/δ + nη).
Note that Proposition 5.1 depends on the column sufficiency of the matrix M

because we use both Lemma 3.2 (which presupposes convexity of S) and Proposition
1.1.

If the matrix M is assumed to be positive semidefinite, Proposition 5.1 can be
derived from known error bound results. We refer the reader to [13, 14] for the case
J 6= ∅ and to [12] for J = ∅. Here we proved Proposition 5.1 under the mere
conditions that z ∈ Z+ and that M is column sufficient.

In the next theorem we give convergence rates with respect to µ. These conver-
gence rates easily follow from Theorem 4.2 and Proposition 5.1.

Theorem 5.2. Let α ∈ (0, 1) be given. If J 6= ∅ then, for z ∈ Z+ and µ → 0, it
holds

|S(xi, z; α) − 1| = O(µα/2) ∀i ∈ B,

|S(yi, z; α) − 1| = O(µα/2) ∀i ∈ N ,

|max{S(xi, z; α), S(yi, z; α)}| = O(µ(1−α)/2) ∀i ∈ J .

If, instead, J = ∅ then, for z ∈ Z+ and µ → 0, it holds

|S(xi, z; α) − 1| = O(µα) ∀i ∈ B,

|S(yi, z; α) − 1| = O(µα) ∀i ∈ N .

Theorem 4.2 and Theorem 5.2 clearly show that the convergence rate of the indi-
cator functions depend on α. In general if we want to maximize the slower convergence
rate, the best value for α is 0.5. On problems which are known to be nondegenerate,
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for example in the linear programming case, a value of α close to 1 may be preferred
instead. The different way in which α influences the convergence rate of nondegen-
erate and degenerate indices also suggests the idea of using two different values of
α: a value close to 1 in the definition of B(z; α) and N (z; α), and a value close to
0 in the definition of J (z; β) (where we used the symbol β to point out that this
value is different from the one used in the approximation of nondegenerate indices).
It is not difficult to see that all the results we proved go through after this minor
modification. However, in this case the sets B(z; α), N (z; α) and J (z; β) need not
be everywhere pairwise disjoint, even if this will always be the case eventually, and
this may require the definition of additional rules to decide to which set to assign an
index which belongs to more than one set among B(z; α), N (z; α) and J (z; β).

6. Numerical results. In order to get a feeling for the practical results that
can be obtained with the new identification technique, in this section we present a
summary of the results of an extensive numerical testing [6]. We report the results
obtained by using:

(i) the Tapia indicator [3, 9, 14], probably the best indicator available to date
for linear programs [3],

(ii) the new indicator, and
(iii) the intersection indicator, that is a combination of Tapia indicator and the

new indicator.
The Tapia indicator and its characteristics are studied in detail in references [3, 9, 14].
Here we only recall some essential facts:

(a) The Tapia indicator can be applied only to a specific (although broad) class
of interior-point methods for linear complementarity problems.

(b) Given a sequence of points {zk} generated by a suitable interior-point method
and converging to the solution set of LCP, quantities T k

x and T k
y are associated with

each zk = (xk, yk) so that, under assumptions which are similar, but stronger than
conditions (C1)–(C3) used in this paper,

lim
k→∞

T k
x =







1 if i ∈ B,
0.5 if i ∈ J ,
0 if i ∈ N ,

lim
k→∞

T k
y =







0 if i ∈ B,
0.5 if i ∈ J ,
1 if i ∈ N .

We tested the three identification strategies mainly on the netlib collection of
linear programming problems. Although our identification technique can be applied
to a much broader class of problems, we believe that linear programming represents
the major field of application of the techniques described in this paper; furthermore,
no collection of (column sufficient) linear complementarity test problems comparable
to netlib exists to date. Therefore we decided, in this first stage of our numerical
experience, to deal almost exclusively with LPs. We stress, however, that these tests
cover only a special case of the theory developed in the previous sections. In fact, the
Goldman-Tucker theorem, see [7] or [20] for a more recent reference, shows that any
linear program is nondegenerate, so that in the LP case we never encounter the case
J 6= ∅. For that reason, we will also include a short discussion with some numerical
results obtained for linear complementarity problems.

For each LP problem, we used the LIPSOL program by Zhang [22, 23] to generate
a sequence of points converging to the solution set of the linear program. LIPSOL is
a MATLAB/FORTRAN implementation of a predictor-corrector infeasible interior-
point method. We added some lines in this code in order to calculate, at each iteration,
approximations of the index sets B and N (recall that J = ∅). More precisely, within
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each iteration, we calculate the values S(xk
i , zk; α) and S(yk

i , zk; α) after each corrector
step and T k

x and T k
y after each predictor step. Based on these values, we approximate

the index sets B and N at iteration k as follows:
(i) For the Tapia indicator we set:

Bk
T := {i| min{T k

x , 1 − T k
y } ≥ 1 − θ},

N k
T := {i| min{T k

y , 1 − T k
x } ≥ 1 − θ}.

(ii) For the new indicator we set, in a similar way:

Bk
S := {i | min{S(xk

i , zk; α), 1 − S(yk
i , zk; α)} ≥ 1 − θ},

N k
S := {i | min{S(yk

i , zk; α), 1 − S(xk
i , zk; α)} ≥ 1 − θ}.

(iii) Finally, for the intersection indicator, we calculate approximations Bk
ST and

N k
ST by intersecting the previous estimates:

Bk
ST := Bk

S ∩ Bk
T ,

N k
ST := N k

S ∩N k
T .

The rationale behind this last estimate is simply that our new indicator and the Tapia
indicator are based on a totally different approach, so that if an index is estimated
to be active (or non active) by both indicators then, and only then, we expect this
prediction to be true. Note that the use of two indicators to confirm the information
obtained from each one of them is also advocated in [3].

For all test runs we chose θ = 0.1. Moreover, we set α = 0.5 at the beginning of
each test run and updated α after each step by

α = max{α, 1 − 100 ∗ TRERROR}

where TRERROR denotes a certain residual calculated within the LIPSOL program
which, basically, measures the violation of the optimality conditions at the current
iterate. Furthermore, we used ρ1 as a growth function in order to compute S(xk

i , zk; α)
and S(yk

i , zk; α). In view of our preliminary experience, however, the results do not
change dramatically by using another growth function.

The first problem we have to tackle when analyzing the results is how to assess
the quality of an indicator. While it is intuitively clear that an indicator is good if it
can accurately estimate, at an early stage, the sets B and N , it is not entirely clear the
exact way we should measure this accuracy. In our experiments we chose to consider
the following three quality indices. For simplicity we describe them making reference
to the new estimates Bk

S and N k
S only, but it is obvious that analogous considerations

can be made with reference to the Tapia indicator and to the intersection indicator.
1. Percentage of misclassified indices at iteration k. At each iteration a variable,

xi for example, can either be classified as active (i ∈ N k
S ), or non-active (i ∈ Bk

S) or
can be not classified at all (i 6∈ N k

S and i 6∈ Bk
S). The percentage of misclassified indices

at iteration k is the number of indices estimated to belong to B (N ) at that iteration
and that instead, at a solution belonging to the relative interior of the solution set,
belong to N (B). In formulas this corresponds to

100

∣
∣Bk

S \ B
∣
∣ +

∣
∣N k

S \ N
∣
∣

n
.
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2. Percentage of correctly classified indices at iteration k. This is easily under-
stood to be

100

∣
∣Bk

S ∩ B
∣
∣ +

∣
∣N k

S ∩N
∣
∣

n
.

3. Percentage of globally correctly classified indices at iteration k. We say that
a certain index is globally correctly identified at iteration k if its identification status
is correct at iteration k and does not change from that iteration on.

Roughly speaking, the first quality index described above measures the excess of
Bk

S and N k
S over B and N respectively; while the second index measures the the excess

of B and N over Bk
S and N k

S respectively. All the indices are correctly classified at
iteration k if the percentage of misclassified indices is 0 and that of correctly classified
ones is 100. However, neither of the two quality indices alone allows us to assess the
quality of the current guessing. The third quality index is similar to the second one
with a greater emphasis on stability of the indicators, though. According to one’s
purposes one of the three quality indices above may be more important than the
others, and other indices may be of interest too. However we think that these three
quality indices, considered together, give a fairly reasonable picture of the behavior
of the indicators.

There is another difficulty we must mention. The evaluation of the above quality
indices assumes the knowledge of B and N , but this is not the case, in general, for
the netlib problems we used. Therefore we assumed that if in the final iteration the
estimates obtained using the new indicator and the Tapia indicator coincide, i.e., if
at the last iteration Bk

S = Bk
T and N k

S = N k
T holds, then these estimates coincide with

B and N . We run LIPSOL on all the problems using the default parameters, but
it turned out that on a considerably high percentage of problems the new indicator
and the Tapia one do not coincide at the last iteration. Hence we changed the main
stopping criterion (TOL) of LIPSOL from 10−8 to 10−11. The satisfaction of this more
stringent termination criterion usually required only one or two additional iterations
and increased the number of problems on which the two indicators coincide at the
last iteration.

Unfortunately, it is not always possible to reach this higher accuracy and we
were therefore forced to consider only the 73 problems that were successfully solved
with TOL=10−11. For 9 of these 73 problems we do not have coincidence of the
indications obtained by the new and the Tapia indicator. Since the resulting set
of 64 test problems appears to be significant we have not tried to enlarge this set
of test problems. In the next three subsections we summarize the behavior of the
indicators on the test problem set. Because of lack of space, it is impossible to report
here the complete numerical results. We tried to give a fair representation of these
results by reporting some summary tables that highlight the main features of the
indicators. However, it should always be kept in mind that our comments are based
on the complete set of numerical results. The interested reader can find the complete
and detailed numerical results in the companion report [6].

6.1. Misclassified indices. We recall that the percentage of misclassified in-
dices appears to be particularly important in those cases in which one wants to reduce
the dimension of the problem by fixing variables to 0. In this case a high number of
misclassified indices can adversely affect the efficiency of the procedure (see [3]). More
in general, we tend to view this index as an important one because it tells us how
much we can trust the guessing. It is useless to have a high percentage of correctly
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identified indices (something assessed by the indices analyzed in the next two sections)
if these indices are mixed with too many misclassified ones. We also recall that the
misclassified indices should not be confused with the unclassified ones.

We summarize the results in two tables. In Table 6.1 we report the number of
test examples for which we have less than 1% of misclassified variables during the last
24 iterations. In this table, and in the following ones, kf denotes the final iteration,
and so kf − 1 is the last but one iteration and so on.

Table 6.1

Number of problems with less than 1% misclassified variables

Iteration Tapia indicator New indicator Intersection

kf 64 64 64
kf − 1 64 61 64
kf − 2 64 49 64
kf − 3 62 34 62
kf − 4 57 24 58
kf − 5 40 20 52
kf − 6 28 18 47
kf − 7 17 15 40
kf − 8 10 10 31
kf − 9 5 9 28
kf − 10 3 5 27
kf − 11 1 4 22
kf − 12 1 3 17
kf − 13 1 3 13
kf − 14 1 3 11
kf − 15 1 2 8
kf − 16 0 2 7
kf − 17 0 1 5
kf − 18 0 1 3
kf − 19 0 0 3
kf − 20 0 0 2
kf − 21 0 0 2
kf − 22 0 0 1
kf − 23 0 0 1

We see that the Tapia indicator has a better behavior than the new indicator.
Indeed, for the majority of test examples the Tapia indicator has less than 1% of
misclassified variables in the last 5 iterations, whereas for the new indicator there is
a considerable amount of problems with more than 1% misclassified variables even 3
or 4 steps before the final iteration.

The most interesting conclusion one can draw from Table 6.1, however, is the su-
perior behavior of the intersection indicator. In view of its very definition, it is clear
that this indicator has less misclassified variables than the other two indicators, how-
ever, it is not clear, a priori, that such a good behavior could be obtained. Actually,
the analysis of the complete numerical results [6] shows that the number of misclassi-
fied variables by the intersection indicator is very small at almost all iterations and for
almost all test examples. To further illustrate the behavior of the intersection indica-
tor, in Table 6.2, we report how many test problems have no misclassified variables
in the last 10 iterations when using the intersection indicator.

The numbers provided by this table are still very encouraging and show that a
suitable combination of the new and the Tapia indicator provides useful information.



16 F. FACCHINEI, A. FISCHER AND C. KANZOW

Table 6.2

Number of problems with no misclassified variables (intersection indicator)

Iteration kf kf − 1 kf − 2 kf − 3 kf − 4 kf − 5 kf − 6 kf − 7 kf − 8 kf − 9
64 64 62 51 40 20 12 6 4 3

6.2. Correctly identified indices. As we already observed, this is the second
index essential to assess the quality of an indicator. Table 6.3 shows for how many test
examples we have at least 50% correctly identified indices in the last 15 iterations. We
do not consider iterations before kf −14 because, by the results reported in Table 6.1,
before this iteration for most problems the number of misclassified indices is higher
than 1% so that the information provided by the indicators is not reliable. Table 6.4
is analogous to Table 6.3 but in this case we consider problems for which all classified
indices are correctly classified.

Table 6.3

Number of problems with 50% correct identification

Iteration Tapia indicator New indicator Intersection

kf 64 64 64
kf − 1 64 64 64
kf − 2 64 64 64
kf − 3 64 64 64
kf − 4 64 61 58
kf − 5 63 58 52
kf − 6 61 57 46
kf − 7 57 54 37
kf − 8 48 51 32
kf − 9 46 48 27
kf − 10 41 44 23
kf − 11 30 37 20
kf − 12 25 33 18
kf − 13 24 27 15
kf − 14 22 27 14

Table 6.4

Number of problems with 100% correct identification

Iteration Tapia indicator New indicator Intersection

kf 64 64 64
kf − 1 51 46 42
kf − 2 18 14 13
kf − 3 2 2 0

From Tables 6.3 and 6.4 we see that the new indicator and the Tapia one have a
similar behavior, although the new indicator seems able to better classify indices in
early stages while the Tapia indicator behaves better when close to a solution. By its
very definition the intersection indicator is expected to have the worst behavior with
respect to the percentage of correctly classified indices. However, the performance of
this percentage is still more than acceptable and furthermore the results of this section
should always be read in the light of the results of the previous section showing that
the intersection indicator is ”slower” than the other two, but more reliable.

Looking at the complete results we may also note that there is a surprisingly high
number of problems where more than 50% of indices are correctly classified already
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in the very first iterations.

6.3. Globally correctly identified indices. Also for this quality index we
report two tables to summarize the results. This quality index is similar to the
previous one with a greater emphasis on stability of the indicators. To give the reader
a different point of view, however, the tables we report have a different structure than
those of Subsection 6.2. In Table 6.5 we report, for each indicator, the number of
problems for which the percentage of globally correctly identified indices at the first
iteration is between 0 and 10 percent, 10 and 20 percent and so on. The same kind
of data is reported in Table 6.6 for the iteration kf − 4.

Table 6.5

Globally correctly identified variables at first iteration

% Tapia indicator New indicator Intersection

0–10 37 9 42
10–20 4 7 1
20–30 4 13 3
30–40 6 7 7
40–50 10 7 8
50–60 3 8 3
60–70 0 6 0
70–80 0 1 0
80–90 0 6 0
90–100 0 0 0

Table 6.6

Globally correctly identified variables at iteration kf − 4.

% Tapia indicator New indicator Intersection

0–10 0 0 0
10–20 0 0 0
20–30 0 0 0
30–40 0 1 2
40–50 0 2 4
50–60 1 6 6
60–70 2 6 7
70–80 9 11 14
80–90 10 22 18
90–100 42 16 13

Obviously the globally correct classification of indices is more difficult than the
simple correct identification of a certain number of indices. However the qualitative
behavior that emerges from the two tables and also from the analysis of the complete
numerical results is very similar to the one described in the previous subsection: The
new indicator behaves (considerably) better in early stages than the Tapia indicator
which, however, is superior eventually. The intersection indicator is obviously worst
than the other two indicators, even if not drastically so, but the information it provides
should be regarded as more reliable.

6.4. Linear complementarity problems. In addition to our numerical re-
sults obtained for linear programs based on a suitable modification of the LIPSOL
solver, we also wanted to see the behavior of the indicators when applied to linear
complementarity problems, mainly because here we may have J 6= ∅. To this end, we
implemented an infeasible interior-point method in MATLAB using the framework
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from [4]. As test problems, we used some convex optimization problems from [8] as
well as several randomly generated problems. The overall behavior of the different
indicators seem to be very similar for most of these test problems; however, we also
observed that J = ∅ for almost all these test problems.

In the following, we therefore report some more details only on one particular
example which has a nonempty index set J . This example is of dimension n = 30
and constructed as follows: Let

x∗ := (1, . . . , 1
︸ ︷︷ ︸

15×

, 0, . . . , 0
︸ ︷︷ ︸

15×

)T y∗ := (0, . . . , 0
︸ ︷︷ ︸

20×

, 1, . . . , 1
︸ ︷︷ ︸

10×

)T

be a given solution of the LCP, let D be the positive semidefinite diagonal matrix

D := diag(0, . . . , 0
︸ ︷︷ ︸

5×

, 1, . . . , 1
︸ ︷︷ ︸

25×

),

let A be an n × n matrix with randomly distributed entries aij ∈ [0, 10], and define

X := AT A + I.

Then X is nonsingular. Hence

M := XT DX

is a positive semidefinite matrix with the same number of zero and positive eigenvalues
as D (by Sylvester’s law of inertia), i.e., M has 5 zero and 25 positive eigenvalues.
Finally, let us define

q := y∗ − Mx∗.

This guarantees that (x∗, y∗) is indeed a solution of the LCP which violates the strict
complementarity condition x∗

i + y∗
i > 0 for i = 1, . . . , n.

We illustrate the behavior of the Tapia- and the new indicator for one particular
instance of this example in Figures 6.1 and 6.2, respectively. These figures give the
values of T k

x and S(xk
i , zk; α).

From these figures, it is obvious to see that the Tapia indicator has a somewhat
unpredictable behavior even in a small neighborhood of a solution, whereas the new
indicator behaves much more smoothly and seems to provide considerably more reli-
able information than the Tapia indicator. The reason for this significant difference is
not totally clear to us. Maybe it is because J 6= ∅ for this example. However, it might
also have to do with the fact that the Tapia indicator depends on an accurate solution
of a linear system which typically becomes almost singular close to the solution set,
and that the MATLAB linear system solver is less robust than the FORTRAN solver
called within the LIPSOL program for the LP test problems.

7. Summary and conclusions. In this paper we introduced a new technique
for identifying the status of variables in the relative interior of the solution set of a
column sufficient linear complementarity problem by using the information available
in ”nearby” points. The theoretical properties of the new indicator appear to be
interesting. The technique we propose may be the only available option for some
classes of problems (column sufficient LCP which are not monotone, for example) or
algorithms (smoothing techniques, for example).
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Fig. 6.1. Behavior of the Tapia indicator for a degenerate LCP

Fig. 6.2. Behavior of the new indicator for a degenerate LCP

We tested the technique on linear programming problems, in an interior-point
framework, and compared its behavior to the Tapia indicator. The results are en-
couraging and, in our opinion, indicate the practical viability of our approach. In
particular, the combination of the new indicator with the Tapia one appears to be
particularly promising. Since the computational cost of our technique is very low,
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this combination certainly deserves further study, at least in the linear programming
case. However, the numerical results we reported should be regarded as preliminary.
In fact, on the one hand the behavior of the new technique can probably be improved
by considering different choices for the parameters α, θ (for example, a different α
can be used for each index or in the definition of the sets Bk, N k and J k) and for
the indicator function, on the other hand the behavior of the identification technique
on wider classes of problems should also be investigated.

Finally, the use of identification techniques to actually facilitate the solution of
linear complementarity problems is an issue that certainly deserves careful examina-
tion and that we intend to study in the near future. We refer the interested reader to
[3] for a good introduction to this kind of problems.

Acknowledgment. The authors would like to thank Jun Ji for some very helpful
discussions on interior-point methods for P∗-matrix linear complementarity problems.
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