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Abstract. Chen and Mangasarian (1995) developed smoothing approximations to the
plus function built on integral-convolution with density functions. X. Chen (2012) has re-
cently picked up this idea constructing a large class of smoothing functions for nonsmooth
minimization through composition with smooth mappings. In this paper, we generalize
this idea by substituting the plus function for an arbitrary finite max-function. Calculus
rules such as inner and outer composition with smooth mappings are provided, showing
that the new class of smoothing functions satisfies, under reasonable assumptions, gradient
consistency, a fundamental concept coined by Chen (2012). In particular, this guarantees
the desired limiting behavior of critical points of the smooth approximations.
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1 Introduction

An unconstrained optimization problem takes the form

min
x∈Rn

f(x), (1)

for a function f : Rn → R. In case that f is continuously differentiable, see, e.g., [1] or
[21], powerful numerical solution methods have been introduced and successfully employed.
Things are more subtle when the traditional smoothness assumption is not satisfied. An
important class of potentially nonsmooth functions are the convex ones, see [13] for an
overview on solution methods for convex optimization. A generalization of convexity on
the one hand and continuous differentiability on the other, is local Lipschitz continuity, cf.,
e.g., [11] for solution procedures for locally Lipschitz problems.

A well-recognized technique for the numerical solution of (1) in the nonsmooth case is
to replace f by a smooth approximation, and solve a sequence of smooth problems, while
driving the approximation closer and closer to the original function, with the intention
to approximate minimizers (critical points) of f by those of the smooth approximations.
This technique of replacing a nonsmooth problem by a sequence of smooth problems is,
in general, known as smoothing and it has been employed extensively for several different
kinds of problems, see, e.g., [2, 5, 3, 6, 9, 12, 20], or the recent survey [6] which includes
an extensive list of references. Certain smoothing methods are also closely related to the
class of interior-point methods, cf. [16].

In this paper, we are concerned with a class of smoothing functions for finite max-
functions, see Section 4 for a formal definition, which are special piecewise affine map-
pings. These approximations are shown to be well-behaved under both outer and inner
composition with smooth functions such that a satisfactory calculus can be built up, and
hence a class of smoothing approximations for a broad class of nonsmooth, locally Lipschitz
functions is obtained.

Following [6] and [9], respectively, the smoothing functions for the finite max-functions
are constructed via integral-convolution with special density functions.

A major aspect of the analysis consists in showing that the smoothing functions consid-
ered satisfy gradient consistency, see Section 3. Gradient consistency, as defined in [6], is
a fundamental tool for establishing limiting stationarity properties of smoothing methods
for optimization. In particular, it guarantees that (accumulation points of) sequences of
first-order critical points of the smooth approximations yield critical points of the original
function f .

This paper can be viewed as an extension to parts of the recent paper [6] by Chen,
in which the author builds up an analysis of smoothing approximations build on the plus
function, see Section 2. The plus function is a special case of a finite max-function. More-
over, we fill a void which arises from an insufficient proof of [6, Theorem 1 (i)], see Section 5
and [7]. The latter result is key for establishing gradient consistency for composite smooth-
ing functions, and hence of fundamental importance. Not withstanding the insuffiency of
the current proof of [6, Theorem 1 (i)], we conjecture that the assertion is valid, yet not
achievable via a chain rule approach without the assumptions discussed in the sequel.
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The organization of the paper is as follows: In Section 2 we review some concepts
from nonsmooth analysis which are employed in the sequel. In Section 3 we lay out a
general framework for the smoothing functions. Section 4 establishes the class of smoothing
functions for finite-max functions and provides calculus rules for compositions with smooth
mappings. We close with some final remarks in Section 5. In particular, we compare [6,
Theorem 1 (i)] with our main theorem.

Most of the notation used is standard. An element x ∈ Rn is understood as a column
vector. The symbol Rn

+ denotes the set of all vectors whose components are nonnegative.
The space of all real m × n-matrices is denoted by Rm×n, and for A ∈ Rm×n, AT is its
transpose, and rankA denotes its rank. An n× n diagonal matrix D with the vector x on
its diagonal is denoted by

D = diag (x) = diag (xi).

The Euclidean norm on Rn is denoted by ‖ · ‖, i.e.,

‖x‖ =
√
xTx ∀x ∈ Rn.

The closed Euclidean ball centered around x̄ ∈ Rn with radius r ≥ 0 is denoted by Br(x̄),
i.e.,

Br(x̄) := {x ∈ Rn | ‖x− x̄‖ ≤ r}.
For a set S ⊂ Rn its convex hull is denoted by convS. Given a real-valued function
f : Rn → R differentiable at x̄, the gradient is given by ∇f(x̄) which is understood as a
column vector. For a function F : Rn → Rm differentiable at x̄, the Jacobian of F at x̄ is
denoted by F ′(x̄), i.e.,

F ′(x̄) =

 ∇F1(x̄)T

...
∇Fm(x̄)T

 ∈ Rm×n,

whereas ∇F (x̄) is the transposed Jacobian. In order to distinguish between single- and
set-valued maps, we write S : Rn ⇒ Rm to indicate that S maps vectors from Rn to subsets
of Rm. Finally, the symbol xk →X x̄ indicates that {xk} is a sequence converging to the
limit point x̄ such that all iterates xk belong to a set X ⊂ Rn.

2 Preliminaries

In this section we review certain concepts from variational and nonsmooth analysis, which
will be used in the subsequent analysis. At this, the notation is mainly based on [23].

A major role is played by different kinds of subdifferentials as a tool for dealing with
nonsmoothness of the functions considered. To this end, we commence by introducing the
so-called regular and limiting subdifferential. In the definition of the limiting subdifferential,
we employ the outer limit for a set-valued mapping, which we now define: For S : Rn ⇒ Rm

and X ⊂ Rn, we define the outer limit

Lim sup
x→X x̄

S(x) :=
{
v | ∃{xk} →X x̄,∃{vk} → v : vk ∈ S(xk) ∀k ∈ N

}
.
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Definition 2.1 (Regular and limiting subdifferential). Let f : Rn → R be continuous and
x̄ ∈ Rn.

a) The regular subdifferential of f at x̄ is the set given by

∂̂f(x̄) :=
{
v | lim inf

x→x̄

f(x)− f(x̄)− vT (x− x̄)

‖x− x̄‖
≥ 0
}
.

b) The limiting subdifferential of f at x̄ is the set given by

∂f(x̄) := Lim sup
x→x̄

∂̂f(x)

=
{
v | ∃{xk} → x̄,∃{vk} → v : vk ∈ f̂(xk) ∀k ∈ N

}
.

Note that there are different ways of obtaining the limiting subdifferential than the one
described above, which basically goes back to Mordukhovich, cf. [17]. In this context, see
[15] (or [4]) for a construction of the limiting subdifferential via Dini-derivatives.

A very important class of potentially nonsmooth, nonconvex functions are the locally
Lipschitz ones. We call a function F : Rn → Rm locally Lipschitz at x̄ ∈ Rn if there exist
ε > 0 and L ≥ 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖

for all x, y ∈ Bε(x̄). For such an F , we may define the so-called generalized Jacobian, which
goes back to Clarke, see [10, Definition 2.6.1], in a way that is opened up by Rademacher’s
Theorem, see [4, Theorem 9.1.2] or [23, Theorem 9.60], which yields that the complement
of the set

DF := {x | F is differentiable atx}

has Lebesgue measure 0, and hence the set

∇̄F (x̄) :=
{
V | ∃{xk} ⊂ DF : xk → x̄ ∧ F ′(xk)→ V

}
is well-defined, even compact, cf. [23, Theorem 9.62] or [10, p. 63]. Note that the set
∇̄F (x̄) itself is usually called the B-subdifferential of F at x̄, see, e.g., [22], though we will
not use this terminology here.

Definition 2.2 (Generalized Jacobian). For a locally Lipschitz function F : Rn → Rm we
define the generalized Jacobian of F at x̄ by

∂̄F (x̄) := conv ∇̄F (x̄).

For the special case m = 1 we actually recover the Clarke subdifferential with the above
definition, see [10] for an extensive treatment. However, in this case, to be consistent with
the generalized Jacobian, the elements from the Clarke subdifferential are row vectors,
but we prefer to think of them as column vectors, so everytime a generalized Jacobian is
involved, we have to transpose accordingly. The Clarke subdifferential of a locally Lipschitz
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function f : Rn → R can alternatively be obtained via the limiting subdifferential. In fact,
see [23, Theorem 9.61], we have

∂̄f(x̄) = conv ∂f(x̄) ∀x̄ ∈ Rn (2)

in this case.
An important concept in the context of subdifferentiation is (subdifferential) regularity,

which we define only for the locally Lipschitz case. For the general case, cf. [23, Definition
7.25].

Definition 2.3 (Subdifferential regularity). Let f : Rn → R be locally Lipschitz. Then we
say that f is (subdifferentially) regular at x̄ ∈ Rn if

∂̂f(x̄) = ∂f(x̄).

If the above equality holds for all x̄ ∈ Rn, we simply say that f is (subdifferentially) regular.

Note that this notion of regularity actually coincides with the one given by [10, Definition
2.3.4], cf. [10, Theorem 2.4.9 (ii)] in connection with [23, Definition 7.25].

A prominent class of (potentially nonsmooth) locally Lipschitz, regular functions are
the convex ones. Here we refer to [4] or [14] for the fact that (finite-valued) convex functions
are locally Lipschitz, and to [10, Proposition 2.3.6 b)] or [23, Example 7.27] to see that
they are indeed regular.

It is a well-known fact, see [23, Proposition 8.12], that in case f : Rn → R is convex,
all subdifferentials from above coincide with the subdifferential of convex analysis, i.e.,

∂̄f(x̄) = ∂f(x̄) = ∂̂f(x̄) =
{
v | f(x) ≥ f(x̄) + vT (x− x̄) ∀x ∈ Rn

}
for all x̄ ∈ Rn.

As an illustrating example for the concepts introduced above, we consider the function
(·)+ : R→ R given by

(t)+ := max{t, 0},
called the plus function, which appears, as a motivational special case, along the lines in
Section 4.

Example 2.4 (Subdifferentiation of the plus function).

a) Let f1 : R→ R be given by f1(t) := (t)+. Then the convexity of f1 implies that

∂̂f1(t) = ∂f1(t) = ∂̄f1(t) =


0 if t < 0,

[0, 1] if t = 0,
1 if t > 0,

(3)

whereas we have

∇̄f1(t) =


0 if t < 0,

{0, 1} if t = 0,
1 if t > 0.
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b) Let f2 : R → R be given by f2(t) := −(t)+. Considering the only interesting point
t = 0, an elementary calculation shows that

∂̂f2(0) = ∅, ∂f2(0) = ∇̄f2(0) = {0,−1} and ∂̄f(0) = [−1, 0].

We close this section by introducing the coderivative, which goes back to Mordukhovich,
see [18], which is a derivative concept for set-valued maps. Here we are only interested
in a special case where F : Rn → Rm is single-valued and locally Lipschitz. Then the
coderivative of F at x̄ can be defined as the set-valued map D∗F (x̄) : Rm ⇒ Rn given by

D∗F (x̄)(u) = ∂(uTF )(x̄),

where uTF : Rn → R, (uTF )(x) :=
∑m

i=1 uiFi(x). This is, in fact, the so-called scalarization
formula, see [19, Theorem 1.90] or [23, Proposition 9.24 (b)]. Furthermore, we have

∂̄F (x̄)Tu = convD∗F (x̄)(u) ∀u ∈ Rm,

see [23, Theorem 9.62]. If F is even continuously differentiable, we have

D∗F (x̄)(u) = {F ′(x̄)Tu},

see [19, Theorem 1.38] or [23, Example 8.34].

3 The general smoothing setup

Let f : Rn → R be continuous. Then we call sf : Rn × R+ → R a smoothing function for
f if the following assumptions are fulfilled:

• sf (·, µ) converges continuously to f in the sense of [23, Definition 5.41], i.e.,

lim
µ↓0,x→x̄

sf (x, µ) = f(x̄) ∀x̄ ∈ Rn, (4)

• sf (·, µ) is continuously differentiable for all µ > 0.

For algorithmic purposes, provided that one has sequences {xk} → x̄ and {µk} ↓ 0 such
that

lim
k→∞
∇sf (xk, µk)→ 0,

the following question is of crucial importance:

Is x̄ a critical point of f in the sense that 0 ∈ ∂f(x̄) (or 0 ∈ ∂̄f(x̄)) ?
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The answer is positive if
Lim sup
x→x̄,µ↓0

∇xsf (x, µ) ⊂ ∂f(x̄),

where, for the sake of completeness, we recall that, according to the general definition of
the outer limit, we have

Lim sup
x→x̄,µ↓0

∇xsf (x, µ) =
{
v | ∃{(xk, µk)} → (x̄, 0) : ∇xsf (x

k, µk)→ v
}
.

The next result shows that the converse inclusion is always valid if sf is a smoothing
function for f .

Lemma 3.1. Let f : Rn → R be continuous and let sf be a smoothing function for f .
Then for x̄ ∈ Rn we have

∂f(x̄) ⊂ Lim sup
x→x̄,µ↓0

∇xsf (x, µ).

If further f is locally Lipschitz at x̄, then

∂̄f(x̄) ⊂ conv
{

Lim sup
x→x̄,µ↓0

∇xsf (x, µ)
}
.

Proof. Let v ∈ ∂f(x̄) be given. Since, by assumption, sf (·, µ) converges continuously to
f , it converges, in particular, epigraphically, cf. [23, Theorem 7.11], and hence we may
invoke [23, Corollary 8.47] in order to obtain sequences {µk} ↓ 0, {xk} → x̄ and {vk} with
vk ∈ ∂xsf (xk, µk) such that vk → v. Now, since sf (·, µk) is continuously differentiable by
assumption, we have

vk = ∇xsf (x
k, µk),

which identifies v as an element of Lim supx→x̄,µ↓0∇xsf (x, µ) and thus, the first inclusion
follows. The second inclusion is an immediate consequence of the first one and the fact
that conv ∂f(x̄) = ∂̄f(x̄) in the presence of local Lipschitz continuity, see (2).

A trivial consequence is the following corollary.

Corollary 3.2. Let f : Rn → R be locally Lipschitz at x̄ and let sf be a smoothing function
for f . Then we have the inclusions

∂f(x̄) ⊂

 Lim sup
x→x̄,µ↓0

∇xsf (x, µ)

∂̄f(x̄)

 ⊂ conv
{

Lim sup
x→x̄,µ↓0

∇xsf (x, µ)
}
.

It is clear that, in the locally Lipschitz setting, the condition

Lim sup
x→x̄,µ↓0

∇xsf (x, µ) = ∂f(x̄) (5)

implies
conv

{
Lim sup
x→x̄,µ↓0

∇xsf (x, µ)
}

= ∂̄f(x̄), (6)
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a condition which is called gradient consistency in [6]. In particular, both conditions coin-
cide, when ∂f(x̄) = ∂̄f(x̄) (which is the case if f is locally Lipschitz and subdifferentially
regular).

The following example shows that, for locally Lipschitz f , condition (6) is in fact weaker
than (5).

Example 3.3. Let f : R2 → R, f(a, b) := min{a, b}. Then sf ((a, b), µ) := 1
2
(a + b −√

(a− b)2 + 4µ) is a smoothing function for f , sometimes called the CHKS-function due
to its origin from [8, 16, 25]. It holds that for all a ∈ R we have

∂f(a, a) =
{(1

0

)
,

(
0

1

)}
( conv

{(1

0

)
,

(
0

1

)}
= ∂̄f(a, a),

but

Lim sup
(x,y)→(a,a),µ↓0

∇sf ((x, y), µ) = conv
{

Lim sup
(x,y)→(a,a),µ↓0

∇sf ((x, y), µ)(a, a)
}

= ∂̄f(a, a).

The following result is the main motivation for the analysis in Section 4. In this context,
for f : Rn → R locally Lipschitz, we call x̄ ∈ Rn Clarke-stationary, C-stationary for short,
if 0 ∈ ∂̄f(x̄).

Theorem 3.4. Let f : Rn → R be locally Lipschitz and let sf be a smoothing function for
f . Furthermore let {xk} ⊂ Rn and {µk} ↓ 0 such that

‖∇xsf (x
k, µk)‖ ≤ cµk ∀k ∈ N, (7)

for some c > 0. Then every accumulation point x̄ of {xk} such that the gradient consistency
condition (6) holds at x̄ is a C-stationary point of f .

Proof. Let x̄ be a limit point of a subsequence {xk}K such that gradient consistency holds
at x̄. Since {µk}K ↓ 0 on the same subsequence, we can deduce from (7) that

0 ∈ Lim sup
x→x̄,µ↓0

∇xsf (x, µ).

This implies
0 ∈ conv

{
Lim sup
x→x̄,µ↓0

∇xsf (x, µ)
}

= ∂̄f(x̄)

by the gradient consistency assumption.

We point out that, in particular, the smoothing gradient method proposed in [6] fits into
the framework of Theorem 3.4, cf. [6, Theorem 2].

We close this section with the remark that Theorem 3.4 can be refined in the following
sense: Suppose that, in the situation of the latter theorem, the stronger condition (5) holds
at x̄. Then it follows from the previous proof that 0 ∈ ∂f(x̄), which is (without regularity)
a tighter property than C-stationarity (typically called M-stationarity in the corresponding
literature). However, we are not aware of a class of (non-regular) functions, for which (5)
holds. Example 3.3 displays our impression that, in the non-regular case, the gradient
consistency (6) is substantially weaker, hence much more likely to hold than (5) in the
smoothing setup described above. This is also confirmed by the analysis in the upcoming
section.
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4 Smoothing via integral-convolution

In this section we generalize (and to a certain extent correct, see [7]) the results from [6,
Section 3-4], in the sense that we do not entirely focus on the plus function.

For these purposes, let p : R→ R be a finite max-function, i.e.,

p(t) = max
i=1,...,r

{fi(t)}

where fi : R→ R is affine linear, i.e.,

fi(t) = ait+ bi

with scalars ai, bi ∈ R for all i = 1, . . . , r (r ∈ N). Note that p is, in particular, piecewise
affine, hence (globally) Lipschitz, see [24, Proposition 2.2.7] and convex, cf. [14, Proposition
B 2.1.2]. Moreover, it can be seen (cf. Figure 1) that, after skipping all indices which do
not contribute in the maximization, and after reordering the remaining indices, we can
assume without loss of generality that

a1 < a2 < · · · < ar−1 < ar, (8)

and there exists a partition of the real line

−∞ = t1 < t2 < · · · < tr < tr+1 = +∞

such that
aiti+1 + bi = ai+1ti+1 + bi+1 ∀i = 1, . . . , r − 1, (9)

and

p(t) =


a1t+ b1 if t ≤ t2,
ait+ bi if t ∈ [ti, ti+1] (i ∈ {2, . . . , r − 1}),
art+ bt if t ≥ tr.

(10)

Let ρ : R→ R be a piecewise continuous, symmetric density function, i.e.,

ρ(t) = ρ(−t) (t ∈ R) and

∫
R
ρ(t) dt = 1, (11)

such that

ρ ≥ 0 and

∫
R
|t|ρ(t) dt < +∞. (12)

We denote the distribution function that goes with the density ρ by F , i.e., F : R→ [0, 1]
is given by

F (x) =

∫ x

−∞
ρ(t) dt.

In particular, since ρ is piecewise continuous, F is continuous with

lim
x→+∞

F (x) = 1 and lim
x→−∞

F (x) = 0.
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gph p

t

p(t)

t2 t3

Figure 1: Illustration for the choices in (8)-(10)

Lemma 4.1. Let p : R → R be a finite max-function. Furthermore, let ρ : R → R+ be a
piecewise continuous function satisfying (11) and (12). Then the convolution

sp(t, µ) :=

∫
R
p(t− µs)ρ(s) ds

is a (well-defined) smoothing function for p with

Lim sup
t→t̄,µ↓0

d

dt
sp(t, µ) = ∂p(t̄) ∀t̄ ∈ R.

Proof. The fact that sp(t, µ) exists for all µ > 0 is a consequence of the conditions imposed
on ρ in (11) and (12) and the representation of p from (8)-(10), which we can assume
without loss of generality.

Next we show that limt→t̄,µ↓0 sp(t, µ) = p(t̄) for all t̄ ∈ R. This is due to the fact that

|p(t̄)− sp(t, µ)| =
∣∣∣ ∫

R
p(t̄)ρ(s) ds−

∫
R
p(t− µs)ρ(s) ds

∣∣∣
≤

∫
R
|p(t̄)− p(t− µs)|ρ(s) ds

≤ Lp

∫
R
|t̄− t+ µs|ρ(s) ds

≤ Lp|t̄− t|+ Lpµ

∫
R
|s|ρ(s) ds,

11



where Lp is the (global) Lipschitz constant of p. Taking into account assumption (12), it
follows that the last expression tends to 0 as t → t̄ and µ ↓ 0. This shows that sp(·, µ)
converges continuously to p.

We will now compute the derivative of sp(·, µ) for some fixed µ > 0. To this end, recall
that, without loss of generality, we may assume that p admits a representation as in (10).
Hence, we get

sp(t, µ) =
r∑
i=1

∫ t−ti
µ

t−ti+1
µ

[ai(t− µs) + bi]ρ(s) ds,

where we have t−t1
µ
≡ +∞ and t−tr+1

µ
≡ −∞. Thus, we obtain

d

dt
sp(t, µ) =

r∑
i=1

d

dt

[ ∫ t−ti
µ

t−ti+1
µ

[ai(t− µs) + bi]ρ(s) ds
]
, (13)

where the existence of the corresponding derivatives follows, e.g., from the Leibniz integral
rule with variable limits. More precisely, this rule allows us to compute the derivatives
explicitly. For the summands i = 2, . . . , r − 1, we obtain

d

dt

[ ∫ t−ti
µ

t−ti+1
µ

[ai(t− µs) + bi]ρ(s) ds
]

= ai

∫ t−ti
µ

t−ti+1
µ

ρ(s) ds+ (aiti + bi)
ρ( t−ti

µ
)

µ
− (aiti+1 + bi)

ρ( t−ti+1

µ
)

µ
.

For the summand i = 1 we compute

d

dt

[ ∫ +∞

t−t2
µ

[a1(t− µs) + b1]ρ(s) ds
]

= a1

∫ +∞

t−t2
µ

ρ(s) ds− (a1t2 + b1)
ρ( t−t2

µ
)

µ
,

and for i = r we get

d

dt

[ ∫ t−tr
µ

−∞
[ar(t− µs) + br]ρ(s) ds

]
= ar

∫ t−tr
µ

−∞
ρ(s) ds+ (artr+1 + br)

ρ( t−tr
µ

)

µ
.

Inserting these expressions in (13) and exploiting the fact that aiti+1 + bi = ai+1ti+1 +
bi+1 (i = 1, . . . , r − 1) (see (9)), we obtain

d

dt
sp(t, µ)

=
r∑
i=1

ai

∫ t−ti
µ

t−ti+1
µ

ρ(s) ds

= a1

(
1− F

(t− t2
µ

))
+

r−1∑
i=2

ai

(
F
(t− ti

µ

)
− F

(t− ti+1

µ

))
+ arF

(t− tr
µ

) (14)
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due to the telescoping structure of the resulting sum. In particular, since F is continuous,
so is d

dt
sp(·, µ) for all µ > 0. Altogether, we have shown that sp is a smoothing function

for p.
In order to verify the remaining assertion, first note that, in view of (8)-(10), we have

∂p(t̄) =


{a1} if t̄ < t2,
{ai} if t̄ ∈ (ti, ti+1) (i = 2, . . . , r − 1),
{ar} if t̄ > tr,

[ai, ai+1] if t̄ = ti+1 (i = 1, . . . , r − 1).

(15)

Now, recall that Lemma 3.1 guarantees that Lim supt→t̄,µ↓0
d
dt
sp(t, µ) ⊃ ∂p(t̄), as sp is a

smoothing function for p. In order to see the converse inclusion, let v ∈ Lim supt→t̄,µ↓0
d
dt
sp(t, µ)

be given. Then there exist sequences {µk} ↓ 0 and {tk} → t̄ such that

d

dt
sp(tk, µk)→ v.

Clearly, if t̄ ∈ (tj, tj+1) for some j ∈ {2, . . . , r − 1}, we obtain

F
(tk − ti

µk

)
− F

(tk − ti+1

µk

)
→ 0 ∀i 6= j,

F
(tk − tj

µk

)
− F

(tk − tj+1

µk

)
→ 1− 0 = 1,

and

1− F
(tk − t2

µk

)
→ 0, F

(tk − tr
µk

)
→ 0. (16)

The representation (14) of the gradient of sp therefore shows that v = aj, hence we have
v = aj ∈ {aj} = ∂p(t̄).

Furthermore, if t̄ < t2, we infer that v = a1 and, if t̄ > tr we get v = ar, which yields
v ∈ ∂p(t̄) also in these cases.

It remains to consider the cases where t̄ = tj+1 for some j ∈ {1, . . . , r − 1}. First
consider the case where j ∈ {2, . . . , r − 2}. Then

F
(tk − ti

µk

)
− F

(tk − ti+1

µk

)
→ 0 ∀i /∈ {j, j + 1},

and since F : R→ [0, 1], we get (at least on a subsequence)

F
(tk − tj

µk

)
− F

(tk − tj+1

µk

)
→ 1− λ

and

F
(tk − tj+1

µk

)
− F

(tk − tj+2

µk

)
→ λ,

for some λ ∈ [0, 1]. Using once more the limit conditions from (16) as well as the repre-
sentation (14), we obtain v = aj(1− λ) + aj+1λ ∈ [aj, aj+1] = ∂p(t̄).

Finally, the arguments are similar if t̄ = t1 or t̄ = tr−1, hence we skip the details.
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Note that the former result is still valid for a function p, which admits a piecewise-affine
representation as given by (9) and (10), without demanding (8). The latter condition
corresponds to convexity and hence, regularity of p, which will be needed already in the
following result.

Corollary 4.2. Let p : R → R be a finite max-function, h : Rn → R continuously
differentiable and let f : Rn → R be given by f(x) := p(h(x)). Then, if sp is defined as in
Lemma 4.1, the function sf (·, ·) := sp(h(·), ·) is a smoothing function for f with

Lim sup
x→x̄,µ↓0

∇xsf (x, µ) = ∂f(x̄) ∀x̄ ∈ R.

In particular, the gradient consistency property (6) holds.

Proof. The fact that sf is a smoothing function for f is due to the fact that sp has this
property with respect to p and h is continuously differentiable. Hence, given x̄ ∈ Rn, the
inclusion Lim supx→x̄,µ↓0∇xsf (x, µ) ⊃ ∂f(x̄) is clear from Lemma 3.1.

In order to establish the converse inclusion, note first that

∂f(x̄) = ∇h(x̄)∂g(h(x̄)),

since p is convex, hence regular and h is smooth, cf. [23, Theorem 10.6]. Let v ∈
Lim supx→x̄,µ↓0∇xsf (x, µ). Then, there exist sequences {xk} → x̄ and {µk} ↓ 0 such
that

∇h(xk)
d

dt
sp(h(xk), µk) = ∇xsf (x

k, µk)→ v. (17)

Since we have (see (14))

d

dt
sp(h(xk), µk)

= a1

(
1− F

(h(xk)− t2
µk

))
+

r−1∑
i=2

ai

(
F
(h(xk)− ti

µk

)
− F

(h(xk)− ti+1

µk

))
+arF

(h(xk)− tr
µk

)
,

and F : R → [0, 1], the sequence { d
dt
sp(h(xk), µk)} is bounded. Hence Lemma 4.1 implies

that { d
dt
sp(h(xk), µk)} converges (at least on a subsequence) to some element τ ∈ ∂g(h(x̄)).

It therefore follows from (17) that v = ∇h(x̄)τ ∈ ∇h(x̄)∂g(h(x̄)) = ∂f(x̄). This concludes
the proof.

To prepare the main theorem of this section, we need the following preliminary result.

Lemma 4.3. Let H : Rn → Rm be continuously differentiable as well as G : Rm → Rm

given by
G(y) := (ϕi(yi))

m
i=1,

where ϕi : R→ R (i = 1, . . . ,m) is regular. Then for F := G ◦H the following holds:

14



a) For all x̄ ∈ Rn

∂̄F (x̄)Td = H ′(x̄)T ∂̄G(H(x̄))d ∀d ∈ Rm
+ .

b) If rankH ′(x̄) = m, it holds that

∂̄F (x̄)Td = H ′(x̄)T ∂̄G(H(x̄))d ∀d ∈ Rm.

Proof. a) For d ∈ Rm
+ and x̄ ∈ Rn we have

∂̄F (x̄)Td = convD∗F (x̄)(d)

= conv ∂(dTF )(x̄)

= ∂̄(dTF )(x̄)

= ∂̄
[ m∑
i=1

diFi
]
(x̄)

=
m∑
i=1

di∂̄Fi(x̄)

=
m∑
i=1

di∂ϕi(Hi(x̄))∇Hi(x̄)

= H ′(x̄)T ∂̄G(H(x̄))d.

At this, the first equality follows from [23, Theorem 9.62], the second one is the scalarization
formula, see Section 2. The third equality uses the fact that the Clarke subdifferential is the
convex hull of the limiting subdifferential, cf. (2). The fourth equality is just the definition
of the function x 7→ (dTF )(x), and the fifth one is due to the fact that the functions Fi are
regular by [10, Theorem 2.3.9 (iii)], and hence the sum rule from [10, Proposition 2.3.3]
holds with equality, see [10, Corollary 3] (note that d ≥ 0 is required here!). The sixth
equality is once again the chain rule from [10, Theorem 2.3.9 (iii)], and the final line is just
a short-hand form of the previous one.

b) If H ′(x̄) has rank m it follows from [19, Theorem 1.66] that for d ∈ Rm we have

D∗F (x̄)(d) = D∗(G ◦H)(x̄)(d) = H ′(x̄)TD∗G(H(x̄))(d).

Taking the convex hull and using [23, Theorem 9.62] yields

∂̄F (x̄)Td = convD∗F (x̄)(d)

= conv
{
H ′(x̄)TD∗G(H(x̄))(d)

}
= H ′(x̄)T conv

{
D∗G(H(x̄))(d)

}
= H ′(x̄)T ∂̄G(H(x̄))d.

This completes the proof
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The following example shows that if in the above theorem d ∈ Rm has negative compo-
nents and H ′(x̄) is not onto, the desired assertion may fail. It is this chain rule which is
erroneously applied in the proof of [6, Theorem 1 (i)] without further assumptions, which
leads to the insufffiency there. However, we point out, again, that we believe the assertion
of [6, Theorem 1 (i)] to be true anyway.

Example 4.4 (Failure in Lemma 4.3). Consider the function F := G ◦H with H : R →
R2, H(x) :=

(
x
x

)
and G : R2 → R2, G(y) :=

(
(y1)+
(y2)+

)
, i.e., F (x) =

(
(x)+
(x)+

)
. It follows that

∂̄F (0) =
{(a

a

)
| a ∈ [0, 1]

}
,

hence, for d :=
(

1
−1

)
we have

∂̄F (0)Td = {0} 6= [−1, 1] = H ′(0)T ∂̄G(H(0))d.

The following is the main result of this section.

Theorem 4.5. Let H : Rn → Rm and g : Rm → R be continuously differentiable and
define f : Rn → R by f(x) := g(G(H(x))), where

G(y) := [pi(yi)]
m
i=1

and pi : R → R (i = 1, . . . ,m) is a finite max-function. Then sf : Rn × R+ → R given
by sf (x, µ) := g([spi(Hi(x), µ)])mi=1), where spi is given as in Lemma 4.1, is a smoothing
function for f . If furthermore x̄ ∈ Rn is such that

∇g(G(H(x̄))) ∈ Rm
+ or rankH ′(x̄) = m

holds, then
Lim sup
x→x̄,µ↓0

∇xsf (x, µ) ⊂ ∂̄f(x̄).

and hence
conv

{
Lim sup
x→x̄,µ↓0

∇xsf (x, µ)
}

= ∂̄f(x̄),

i.e., the gradient consistency property (6) holds.

Proof. First, note that sf is a smoothing function for f since spi has this property with
respect to pi for all i = 1, . . . ,m and g and H are continuously differentiable.

Moreover, we compute the Clarke subdifferential of f at x̄ as

∂̄f(x̄) = ∂̄(G ◦H)(x̄)T∇g(G(H(x̄)))

= H ′(x̄)T ∂̄G(H(x̄))T∇g(G(H(x̄)))

= H ′(x̄)Tdiag (∂pi(Hi(x̄)))∇g(G(H(x̄))),
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where the first equality is due to [10, Theorem 2.6.6], the second one follows (with d =
∇g(G(H(x̄)))) from Lemma 4.3, and the third one exploits the componentwise structure
of G.

Now, we show that Lim supx→x̄,µ↓0∇xsf (x, µ) ⊂ ∂̄f(x̄) for all x̄ ∈ Rn. To this end, we
first note that

∇xsf (x, µ) = H ′(x)Tdiag
( d
dt
spi(Hi(x), µ)

)
∇g([spi(Hi(x), µ)]mi=1),

by the ordinary chain rule. Now, let v ∈ Lim supx→x̄,µ↓0∇xsf (x, µ) be given. Then there
exist sequences {xk} → x̄ and {µk} ↓ 0 such that

H ′(xk)Tdiag
( d
dt
spi(Hi(x

k), µk)
)
∇g([spi(Hi(x

k), µk)]
m
i=1)→ v.

Since, due to (14), we have

d

dt
spi(Hi(x

k), µk) =

= a1

(
1− F

(Hi(x
k)− t2
µk

))
+

r−1∑
i=2

ai

(
F
(Hi(x

k)− ti
µk

)
− F

(Hi(x
k)− ti+1

µk

))
+arF

(Hi(x
k)− tr
µk

)
,

and F : R → [0, 1], the sequence {diag ( d
dt
spi(Hi(x

k), µk))} is bounded, hence convergent
on a subsequence, with a cluster point D ∈ diag (∂pi(Hi(x̄))), due to Lemma 4.1, and
hence

v = H ′(x̄)TD∇g(G(Hi(x̄))) ∈ ∂̄f(x̄),

which gives the asserted inclusion. The remaining statements now follow from Lemma
3.1.

We close this section with drawing the reader’s attention to the following result which is
an immediate consequence of Example 7.19 and Theorem 9.67 in [23].

Theorem 4.6. Let f : Rn → R be locally Lipschitz. Let ψ : Rn → R+ be continuous with∫
Rn ψ(x) dx = 1 and such that the sets B(µ) := {x | φ(x

µ
) > 0} form a bounded sequence

and converge to {0} as µ ↓ 0. Then the function sf given by

sf (x, µ) :=

∫
Rn
f(x− z)

1

µ
ψ
( z
µ

)
dz

is a smoothing function for f with

conv Lim sup
x→x̄,µ↓0

∇xsf (x, µ) = ∂̄f(x̄) ∀x̄ ∈ Rn,

and when f is regular the convex hull is superfluous.

Although this is a very powerful and very general result it does not cover our analysis,
since we do not restrict ourselves to mollifiers ψ which are continuous or have compact
support, in the sense that is suggested by the boundedness condition above.
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5 Final remarks

We investigated smoothing functions, based on integral-convolution, for a class of finite
max-functions, which generalizes the analysis in [6] carried out for the plus function. In
the main result it was shown that, under reasonable assumptions, (inner and outer) com-
positions with smooth functions fully agree with the framework layed out for the finite-max
functions, and hence a satisfactory calculus is available.

Some words on the relation of Section 4 to the analysis in [6]: In [6, Theorem 1 (i)] it
is stated that the assertions of our Theorem 4.5, when applied to pi := (·)+ (i = 1, . . . ,m),
were valid without any further assumptions on H or g. However, in the proof of [6, Theorem
1 (i)], the chain rule representation (using our notation)

∂̄f(x̄) = H ′(x̄)T ∂̄G(H(x̄))∇g(G(H(x̄)))

is invoked, which is shown to be false by Example 4.4. On the other hand we conjecture
that the assertions of [6, Theorem 1 (i)] are still valid, but for the general case considered
in Theorem 4.5, we believe that the rank condition on H ′(x̄) is essential.
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