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1 Introduction

Consider the complementarity problem NCP(F)

x ≥ 0, F (x) ≥ 0, xT F (x) = 0, (1)

where F : IRn → IRn is a given function. In a number of recent papers, this
problem has been reformulated as a minimization problem in order to apply well–
developed optimization methods to problem (1). This might be of particular interest
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in the large–scale case. For example, Mangasarian and Solodov [13] introduce an
unconstrained minimization problem with the property that any global minimizer
of their objective function is a solution of (1) (see Section 5 for a more detailed
description). Yamashita and Fukushima [21] prove that each stationary point of
Mangasarian and Solodov’s function is already a global minimum and thus a solution
of (1) if the function F is continuously differentiable and F ′(x) is positive definite
for all x ∈ IRn. This has also been shown in [8] for a more general class of functions.

In case F ′(x) is only assumed to be positive semidefinite for all x ∈ IRn, Fried-
lander, Martnez and Santos [4] have shown that problem (1) can be formulated
as a bound constrained optimization problem in such a way that each Karush–
Kuhn–Tucker point of this constrained optimization problem leads to a solution of
(1). As a specialization of a more general result for variational inequality problems,
Fukushima [5] also obtains a bound constrained optimization formulation of (1), for
which he proves equivalence to problem (1) for monotone functions F, see also Taji,
Fukushima and Ibaraki [18].

In this paper, we make use of a tool introduced in [8] in order to rewrite problem
(1) as an unconstrained optimization problem. In Section 2, we show that each
stationary point of the unconstrained objective function is a solution of (1) if F is
a continuously differentiable and monotone function. Some global and local conver-
gence properties are proved in Section 3. A descent method for our unconstrained
objective function is proposed in Section 4 which does not use any derivative infor-
mation of F . It is shown that any stationary point is already a solution of NCP(F)
for this method. Section 5 contains a short review of Mangasarian and Solodov’s
approach. Some numerical results are given in Section 6. The results are compared
with the ones obtained using Mangasarian and Solodov’s function. We conclude this
paper with some final remarks in Section 7.

2 The Equivalence Theorem

Let ϕF : IR2 → IR be the function defined by

ϕF (a, b) :=
√

a2 + b2 − a− b. (2)

This function has recently been introduced by Fischer in order to characterize the
Karush–Kuhn–Tucker conditions of a nonlinear program (see [1]) and the linear com-
plementarity problem (see [2]) as a (nondifferentiable) system of equations. Here,
we are interested in the square of Fischer’s function, namely

ϕ(a, b) :=
1

2

(√
a2 + b2 − a− b

)2
. (3)

Some easily established properties of this function are summarized in the following
lemma, see also [10].
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2.1 Lemma. (i) ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.
(ii) ϕ(a, b) ≥ 0∀ (a, b)T ∈ IR2.
(iii) ϕ is continuously differentiable for all (a, b)T ∈ IR2, in particular ∇ϕ(0, 0) =
(0, 0)T .
(iv) ∂ϕ

∂a
(a, b)∂ϕ

∂b
(a, b) ≥ 0 ∀ (a, b)T ∈ IR2.

(v) ∂ϕ
∂a

(a, b)∂ϕ
∂b

(a, b) = 0 =⇒ ϕ(a, b) = 0.

Now, consider the nonlinear complementarity problem (1) and the related un-
constrained optimization problem

min
x∈IRn

Ψ(x), (4)

where Ψ : IRn → IR is defined by

Ψ(x) :=
n∑

i=1

ϕ(xi, Fi(x)), (5)

Fi : IRn → IR being the ith component function of F (i ∈ I := {1, . . . , n}). Due to
Lemma 2.1, properties (i) and (ii), we have the following result:

2.2 Lemma. Assume that the complementarity problem (1) has at least one
solution. Then x∗ ∈ IRn solves the complementarity problem if and only if x∗ is a
global minimum of the unconstrained minimization problem (4).

The equivalence stated in Lemma 2.2 is not true if the complementarity problem
(1) is not solvable. This is shown in the next

2.3 Example. Let n = 1 and F (x) := −x2 − 1. Then it is not difficult to see

that the corresponding function Ψ(x) = 1/2
(√

x2 + (x2 + 1)2 − x + x2 + 1
)2

has
compact level sets and therefore must have a global minimum. On the other hand,
the complementarity problem itself has obviously no solutions.

The problem of finding a global minimum is in general quite difficult. It is there-
fore of interest under what assumptions on the function F stationary points of Ψ
are already global minima. The following result has been shown in [8].

2.4 Theorem. Let F ∈ C1(IRn) have a positive definite Jacobian F ′(x) for all
x ∈ IRn. Then x∗ is a global minimum of Ψ if and only if x∗ is a stationary point of Ψ.

In fact, a more general theorem has been proved in [8], since it was a main pur-
pose of that paper to provide general conditions on the functions ϕ and F such that
Theorem 2.4 is true for an entire class of functions Ψ. For the particular function Ψ
defined in (5)/(3), however, we can prove the following stronger result. Note that
this result holds although Ψ is in general a nonconvex function. Moreover, the result
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is independent of whether or not the complementarity problem is solvable.

2.5 Theorem. Let F ∈ C1(IRn) be a monotone function, i.e. (x− y)T (F (x)−
F (y)) ≥ 0 for all x, y ∈ IRn. Then x∗ ∈ IRn is a global minimum of the unconstrained
optimization problem (4) if and only if x∗ is a stationary point of Ψ.

Proof. First, let x∗ be a global minimum of Ψ. Since F is continuously dif-
ferentiable, our function Ψ is also continuously differentiable because of Lemma 2.1
(iii). Thus, the gradient of Ψ exists and vanishes in x∗. Next, assume that x∗ is a
stationary point of Ψ, i.e., let

0 = ∇Ψ(x∗) =
n∑

i=1

(
∂ϕ

∂a
(x∗i , Fi(x

∗))ei +
∂ϕ

∂b
(x∗i , Fi(x

∗))∇Fi(x
∗)

)
, (6)

where ei denotes the ith column vector of the identity matrix In. Let us abbreviate

the vectors
(
. . . , ∂ϕ

∂a
(x∗i , Fi(x

∗)), . . .
)T

and
(
. . . , ∂ϕ

∂b
(x∗i , Fi(x

∗)), . . .
)T

by ∂ϕ
∂a

(x∗, F (x∗))

and ∂ϕ
∂b

(x∗, F (x∗)), respectively. Then, the stationary conditions (6) can be rewritten
as

0 =
∂ϕ

∂a
(x∗, F (x∗)) + F ′(x∗)T ∂ϕ

∂b
(x∗, F (x∗)). (7)

Premultiplying (7) by
(

∂ϕ
∂b

(x∗, F (x∗))
)T

yields

0 =
n∑

i=1

(
∂ϕ

∂a
(x∗i , Fi(x

∗))
∂ϕ

∂b
(x∗i , Fi(x

∗))

)
+

∂ϕ

∂b
(x∗, F (x∗))T F ′(x∗)T ∂ϕ

∂b
(x∗, F (x∗)).

(8)
Since F is monotone, the Jacobian F ′(x∗) is positive semidefinite (see, e.g., Ortega
and Rheinboldt [17], p. 142). Using property (iv) of Lemma 2.1, we therefore obtain
from (8):

∂ϕ

∂a
(x∗i , Fi(x

∗))
∂ϕ

∂b
(x∗i , Fi(x

∗)) = 0 (i = 1, . . . , n).

This, however, yields

ϕ(x∗i , Fi(x
∗)) = 0 (i = 1, . . . , n)

because of Lemma 2.1 (v). Consequently, we have Ψ(x∗) = 0, i.e., x∗ is a global
minimizer of Ψ. 2

From Lemma 2.2 and Theorem 2.5 we directly obtain the following result:

2.6 Corollary. Let F ∈ C1(IRn) be a monotone function. If the complementarity
problem (1) is solvable, then x∗ is a solution of (1) if and only if x∗ is a stationary
point of Ψ.
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3 Convergence Properties

We first prove that the level sets of our unconstrained objective function (5) are
bounded for strongly monotone functions F . Recall that F : IRn → IRn is said to
be strongly monotone (with modulus µ > 0) if

(x− y)T (F (x)− F (y)) ≥ µ‖x− y‖2 ∀ x, y ∈ IRn. (9)

It is well–known that for F ∈ C1(IRn), condition (9) is equivalent to

dT F ′(x)d ≥ µ‖d‖2 ∀x ∈ IRn ∀d ∈ IRn, (10)

see Ortega and Rheinboldt [17], p. 142. It turns out that the following result is of
great help.

3.1 Lemma. Let {(ak, bk)}k∈IN ⊆ IR2 be any sequence such that |ak|, |bk| →
+∞ (k ∈ IN). Then ϕ(ak, bk) →∞ (k ∈ IN).

Proof. This follows immediately from Lemma 2.8 in [9]. 2

We are now ready to state the main result of this section.

3.2 Theorem. Suppose that F is continuous and strongly monotone. Let
x0 ∈ IRn be any given vector, and let L(x0) := {x ∈ IRn|Ψ(x) ≤ Ψ(x0)} be the
corresponding level set. Then L(x0) is compact.

Proof. Assume that there is a sequence {xk}k∈IN ⊆ L(x0) such that limk→∞ ‖xk‖ =
∞. Define the index set

J := {i ∈ I|{xk
i }k∈IN is unbounded}.

By our assumption J 6= ∅. Let {yk}k∈IN denote the sequence defined by

yk
i :=

{
0 if i ∈ J,
xk

i if i 6∈ J.

From the definition of {yk}k∈IN and the strong monotonicity of F, we get

µ
∑

i∈J(xk
i )

2 = µ‖xk − yk‖2

≤ ∑n
i=1(x

k
i − yk

i )(Fi(x
k)− Fi(y

k))
=

∑
i∈J xk

i (Fi(x
k)− Fi(y

k))

≤
√∑

i∈J(xk
i )

2
∑

i∈J |Fi(x
k)− Fi(y

k)|.

 (11)

Since
∑

i∈J(xk
i )

2 6= 0 for all k ∈ K1, K1 being an infinite subset of IN, we obtain from
(11):

µ
√∑

i∈J

(xk
i )

2 ≤
∑
i∈J

|Fi(x
k)− Fi(y

k)| (k ∈ K1). (12)
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Due to the boundedness of the sequence {yk}k∈K1 and the continuity of the functions
Fi (i ∈ J), the sequences {Fi(y

k)}k∈K1 (i ∈ J) remain also bounded. Because of
(12), we therefore have

|Fi0(x
k)| → ∞

for an index i0 ∈ J. From the definition of the index set J, it follows that

|xk
i0
| → ∞ (k ∈ K2 ⊆ K1).

Consequently, Lemma 3.1 yields

ϕ(xk
i0
, Fi0(x

k)) →∞ (k ∈ K2).

This, however, contradicts the fact that

ϕ(xk
i0
, Fi0(x

k)) ≤ Ψ(xk) ≤ Ψ(x0) ∀ k ∈ IN.

2

We emphasize that Theorem 3.2 is true for any function ϕ satisfying the con-
dition of Lemma 3.1. Furthermore, note that this result is independent of any
differentiability assumptions.

Theorem 3.2 implies that if we apply a line search descent method to minimize the
objective function Ψ such that the search directions satisfy, e.g., an angle condition
and the steplength procedure is, say, efficient in the sense defined by Warth and
Werner [19] and Werner [20], then any accumulation point of this sequence is a
stationary point of Ψ and thus a solution of NCP(F) because of Corollary 2.6.
Moreover, since NCP(F) has a unique solution for strongly monotone F, the entire
sequence converges to this solution.

The following result shows that the Hessian matrix of Ψ(x) is positive definite
at a solution x∗ under certain assumptions. This result is a special case of a more
general theorem proved in [8].

3.3 Theorem. Let x∗ ∈ IRn be a nondegenerate solution of NCP(F), i.e.,
x∗i + Fi(x

∗) > 0 (i ∈ I). Let F be twice continuously differentiable. Assume that the
gradients ∇Fi(x

∗) (i 6∈ I∗ := {i ∈ I|x∗i = 0}) and ei (i ∈ I∗) are linearly indepen-
dent. Then the Hessian matrix ∇2Ψ(x∗) exists and is positive definite.

As a consequence of Theorem 3.3, any descent method for solving problem (4)
finally achieves its known local rate of convergence.

4 A Descent Method

We present a descent method for minimizing our unconstrained objective function Ψ
which does not need any explicit derivatives of the function F involved in the non-
linear complementarity problem. Moreover, we prove a global convergence result for
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this descent method. Given an iterate xk ∈ IRn, let ∂ϕ
∂a

(xk, F (xk)) and ∂ϕ
∂b

(xk, F (xk))

denote the n-vectors having as ith components ∂ϕ
∂a

(xk
i , Fi(x

k)) and ∂ϕ
∂b

(xk
i , Fi(x

k)),
respectively. Let

dk := −∂ϕ

∂b
(xk, F (xk)) (13)

be a search direction. By the following lemma, dk is a descent direction of Ψ at xk

under monotonicity assumptions.

4.1 Lemma. Let xk ∈ IRn and let F ∈ C1(IRn) be a monotone function. Then
the search direction dk defined in (13) satisfies the descent condition ∇Ψ(xk)T dk < 0
as long as xk is not a solution of NCP(F). Moreover, if F is strongly monotone with
modulus µ > 0, then

∇Ψ(xk)T dk ≤ −µ‖dk‖2.

Proof. Using the representations (6)/(7) of the gradient ∇Ψ(xk) and the defi-
nition (13) of dk, we obtain

∇Ψ(xk)T dk = −
n∑

i=1

∂ϕ

∂a
(xk

i , Fi(x
k))

∂ϕ

∂b
(xk

i , Fi(x
k))− (dk)T F ′(xk)T dk. (14)

By our assumptions, the Jacobian matrix F ′(xk) is positive semidefinite. Conse-
quently, we obtain from (14) and Lemma 2.1 (iv):

∇Ψ(xk)T dk ≤ 0.

Assume that ∇Ψ(xk)T dk = 0. Then ∂ϕ
∂a

(xk
i , Fi(x

k))∂ϕ
∂b

(xk
i , Fi(x

k)) = 0 for all i ∈ I.
Lemma 2.1 (v) therefore yields ϕ(xk

i , Fi(x
k)) = 0 (i ∈ I), i.e., xk ∈ IRn solves

NCP(F) in contrast to our assumption.
If F is strongly monotone with modulus µ > 0, we obtain from (14), Lemma 2.1

(iv) and (10)
∇Ψ(xk)T dk ≤ −(dk)T F ′(xk)T dk ≤ −µ‖dk‖2.

2Lemma 4.1 motivates the following algorithm:

4.2 Algorithm.

(S.0): Let F : IRn → IRn be a strongly monotone function. Define Ψ : IRn → IR
as in (5). Let x0 ∈ IRn, ε > 0, σ ∈ (0, 1) and β ∈ (0, 1). Set k := 0.

(S.1): If Ψ(xk) < ε, stop: xk is an approximate solution of NCP(F).

(S.2): Let dk := −∂ϕ
∂b

(xk, F (xk)).

(S.3): Compute a steplength tk = βmk , where mk is the smallest nonnegative
integer m satisfying the Armijo–type condition

Ψ(xk + βmdk) ≤ Ψ(xk)− βmσ‖dk‖2.
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(S.4): Set xk+1 := xk + tkd
k, k := k + 1 and go to (S.1).

The next theorem is a global convergence result for Algorithm 4.2.

4.3 Theorem. Let F ∈ C1(IRn) be a strongly monotone function with modulus
µ > 0. Let x0 ∈ IRn be any given starting point, and let L(x0) denote its level set.
Assume that the Jacobian F ′ is Lipschitz–continuous in L(x0). If σ < µ then the
sequence {xk}k∈IN generated by Algorithm 4.2 is well–defined and converges to the
unique solution x∗ of NCP(F).

Proof. It follows from the assumptions that ∇Ψ is a Lipschitz–continuous func-
tion in L(x0), i.e.

‖∇Ψ(x)−∇Ψ(y)‖ ≤ L‖x− y‖ for all x, y ∈ L(x0)

and some constant L > 0. Therefore, using Lemma 4.1 and the Mean Value Theorem,
we obtain for xk+1 = xk + tdk, 0 ≤ t ≤ 1, and θk = xk + ϑk(x

k+1 − xk), ϑk ∈ (0, 1) :

Ψ(xk+1)−Ψ(xk) = ∇Ψ(θk)T (xk+1 − xk)

= t∇Ψ(xk)T dk + t
(
∇Ψ(θk)−∇Ψ(xk)

)T
dk

≤ −tµ‖dk‖2 + tL‖θk − xk‖ ‖dk‖
=

(
−tµ + t2L

)
‖dk‖2.

Therefore, the inequality

Ψ(xk + tdk) ≤ Ψ(xk)− σt‖dk‖2

holds for all 0 ≤ t ≤ min{1, (µ− σ)/L}. Consequently, the steplength tk computed
in step (S.3) of Algorithm 4.2 is bounded from below by

tk ≥ min{β, β(µ− σ)/L}. (15)

In particular, a steplength tk > 0 satisfying the Armijo–type condition in step
(S.3) can always be found, i.e., Algorithm 4.2 is well–defined. Since the sequence
{Ψ(xk)}k∈IN is monotonically decreasing and nonnegative, it follows from

Ψ(xk+1) ≤ Ψ(xk)− tkσ‖dk‖2

and (15) that
lim
k→∞

‖dk‖2 = 0.

This implies that

lim
k→∞

∂ϕ

∂b
(xk, F (xk)) = 0.

Therefore and because of Lemma 2.1 (v), any accumulation point of the sequence
{xk}k∈IN is a solution of problem NCP(F). Since the sequence {xk}k∈IN remains in
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L(x0) and since L(x0) is compact by Theorem 3.2, there exists at least one accumu-
lation point x∗. Due to the strong monotonicity of F, problem NCP(F) has a unique
solution, so the entire sequence {xk}k∈IN must converge to x∗. 2

Note that the proof of Theorem 4.3 in particular guarantees the existence of a so-
lution of the nonlinear complementarity problem associated with strongly monotone
functions F.

5 The Approach of Mangasarian and Solodov

We give a short review of the method recently proposed by Mangasarian and Solodov
[13] and further analysed in Yamashita and Fukushima [21], which is closely related
to our approach. We note, however, that the presentation of their method given
here differs from the one in [13] and [21].

Mangasarian and Solodov introduce the function

ϕMS(a, b; α) := ab +
1

2α

(
max2{0, a− αb} − a2 + max2{0, b− αa} − b2

)
(16)

and prove the following result:

5.1 Lemma. For any parameter α > 1, the following holds:
(i) ϕMS(a, b; α) ≥ 0 ∀ (a, b)T ∈ IR2.
(ii) ϕMS(a, b; α) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Based on the function (16), the unconstrained optimization problem

min
x∈IRn

M(x; α) :=
n∑

i=1

ϕMS(xi, Fi(x); α) (17)

is considered in [13]. Due to Lemma 5.1, there is a one–to–one correspondence
between global minimizers of problem (17) and solutions of the complementarity
problem NCP(F). Yamashita and Fukushima [21] prove that stationary points of
M(x; α) are already solutions of NCP(F) if F is differentiable and has a positive
definite Jacobian F ′(x) for all x ∈ IRn (see also [8]). This is a stronger assumption
than the one used in our Theorem 2.5, in particular, since Yamashita and Fukushima
were able to show by a counterexample that their result is incorrect even for strictly
monotone functions F. Moreover, Yamashita and Fukushima [21] prove a result
analogous to our Lemma 4.1, but once again they need the positive definiteness of
F ′(x) to prove the descent condition ∇M(x; α)T d < 0, where the search direction d
is given by

d := −α
∂ϕMS

∂b
(x, F (x); α).
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6 Numerical Results

In this section, we compare Mangasarian and Solodov’s reformulation (17) of the
nonlinear complementarity problem with our approach (4). We first present some
results for Algorithm 4.2 using ε = 10−5, σ = 10−4, β = 0.5 and the starting vector
x0 = (0, . . . , 0)T ∈ IRn. The algorithm has been applied to two linear complementar-
ity problems, i.e., F (x) = Mx + q is an affine–linear function, M ∈ IRn×n, q ∈ IRn.
The first example is given by

M =



4 −1 0 . . . 0
−1 4 −1 . . . 0

0 −1 4
. . .

...
...

. . . . . . . . . −1
0 0 0 −1 4

 , q = (−1, . . . ,−1)T , (18)

the second example has the data

M = diag(1/n, 2/n, . . . , 1), q = (−1, . . . ,−1)T . (19)

The numerical results are given in Tables 1 and 2 for different dimensions n. The
rows denoted by Ψ and M contain the number of iterations needed by our approach
(4) and by Mangasarian and Solodov’s reformulation (17), respectively. The first
example has been solved without any problems, and the number of iterations remains
almost constant. On the other hand, both methods have substantial difficulties in
solving the second example, and the number of iterations increases linearly with the
dimension n.

Table 1: Number of iterations for example (18) using Algorithm 4.2

n 8 16 32 64 128 256

Ψ 35 42 43 43 43 43
M 10 11 12 13 13 14

Table 2: Number of iterations for example (19) using Algorithm 4.2

n 8 16 32 64 128 256

Ψ 36 79 165 337 682 1374
M 173 347 696 1395 2791 5584

Algorithm 4.2 is in general only well–defined for strongly monotone functions.
However, due to Corollary 2.6, we are also interested in monotone functions. We
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therefore present a standard line search method. Since the objective functions of
both minimization problems ((4) and (17)) are only once continuously differentiable,
it is in general not advisable to use a second order method. We have therefore de-
cided to use a limited memory BFGS method (see Nocedal [15]), which is only based
on gradient information and which has recently been shown to be one of the most
successful methods for (large–scale) unconstrained optimization, see Gilbert and
Lemarchal [6], Liu and Nocedal [11], Nocedal [16], Nash and Nocedal [14] and Zou
et al. [23]. Below we give a formal description of the limited memory BFGS method.
It makes use of the abbreviations gk := ∇Ψ(xk), sk := xk+1−xk and yk := gk+1−gk.

6.1 Limited memory BFGS method.

(S.0) (Initial data):
Choose x0 ∈ IRn, m ∈ IN, ε > 0, σ ∈ (0, 1

2
), ρ ∈ (σ, 1) and a symmetric and

positive definite starting matrix H0 ∈ IRn×n. Set k := 0.

(S.1) (Stopping criterion):
If Ψ(xk) < ε, stop: xk is an approximate solution of problem (1).

(S.2) (Computation of a search direction):
Compute dk := −Hkg

k.

(S.3) (Computation of a steplength):
Compute a steplength tk > 0 satisfying the strong Wolfe conditions

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk(g

k)T dk,

|∇Ψ(xk + tkd
k)T dk| ≤ −ρ(gk)T dk.

(S.4) (Update):
Set xk+1 := xk + tkd

k. Define ρk := 1/(yk)T sk and Vk := In − ρky
k(sk)T . Let

m̂ := min{k, m−1}. Update H0 m̂+1 times using the pairs {(sj, yj)}k
j=k−m̂,

i.e., let

Hk+1 =
(
V T

k . . . V T
k−m̂

)
H0(Vk−m̂ . . . Vk)

+ρk−m̂

(
V T

k . . . V T
k−m̂+1

)
sk−m̂(sk−m̂)T (Vk−m̂+1 . . . Vk)

+ρk−m̂+1

(
V T

k . . . V T
k−m̂+2

)
sk−m̂+1(sk−m̂+1)T (Vk−m̂+2 . . . Vk)

...

+ρks
k(sk)T .

(S.5) (Loop):
Set k := k + 1 and go to (S.1).
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6.2 Remark. a.) In our numerical experiments, we have chosen the following
values for the parameters in step (S0): ε = 10−5, σ = 10−4, ρ = 0.9 and H0 = I.

b.) The steplength tk > 0 satisfying the strong Wolfe conditions has been com-
puted via the algorithm described in Fletcher [3].

c.) It is computationally advantageous to replace the matrix H0 in step (S4) by

a matrix H
(0)
k , where H

(0)
k = γkH0 and γk is a scaling parameter. Here, we follow

Liu and Nocedal [11], who recommend the choice γk = (yk)T sk/‖yk‖2.
d.) The matrices Hk do not have to be formed explicitly. Instead, the last m̂+1

vectors sj and yj are stored, and the search direction can be computed with this
data using the two–loop recursion described in Nocedal [15].

As test problems, we have chosen some convex constrained optimization prob-
lems, namely problems 34, 35, 66 and 76 from the book of Hock and Schittkowski [7]:
Their Karush–Kuhn–Tucker (KKT) optimality conditions lead to complementarity
problems of dimensions 8, 4, 8 and 7, respectively. It is important to note that these
complementarity problems are monotone, but not strictly monotone. Consequently,
it is not guaranteed for these problems that any stationary point of Mangasarian
and Solodov’s objective function (17) is already a solution of the complementarity
problem. Furthermore, we note that problems 35 and 76 are quadratic program-
ming problems, so the corresponding complementarity problems are linear, whereas
problems 34 and 66 lead to nonlinear complementarity problems.

The results obtained with algorithm 6.1 being applied to the four test problems
are summarized in Tables 3–6. We report the number of iterations for m = 5 and
m = 7 (recall that m denotes the number of vector pairs (sj, yj) stored in the limited
memory BFGS method). The stopping criterion of algorithm 6.1 has been changed
as follows:

If ‖∇Ψ(xk)‖ < ε, then terminate the iteration.

The parameter α of Mangasarian and Solodov’s function has been taken as α =
1.1. We stress that Mangasarian and Solodov’s function is the zero function in the
limiting case α = 1. This can easily be verified, see also Lemma 2.1 in Luo et al.
[12]. Therefore, since this function is continuous in α > 0, it is an “almost” linear
function for α ≈ 1, and good numerical performance of the corresponding method
is expected in this case.

TABLE 3: Number of iterations for example HS 34

m=5 m=7
starting vector Ψ M Ψ M

(1,1,1,1,1,1,1,1) 114 101 112 99
(2,2,2,2,2,2,2,2) 107 106 105 94
(1,1,1,0,0,0,0,0) 101 100 102 99
(-1,-1,-1,1,1,1,1,1) 110 98 104 89
(1,1,1,-10,-10,-10,-10,-10) 114 112 113 95
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TABLE 4: Number of iterations for example HS 35

m=5 m=7
starting vector Ψ M Ψ M

(0.5,0.5,0.5,1) 30 30 27 29
(10,10,10,10) 43 9∗ 34 9∗

(100,100,100,100) 44 10∗ 42 10∗

(100,10,1,0) 43 14∗ 40 14∗

(-1,-10,-100,-1000) 53 17∗ 48 19∗

TABLE 5: Number of iterations for example HS 66

m=5 m=7
starting vector Ψ M Ψ M

(0,1.05,2.9,0,0,0,0,0) 39 35 29 32
(0,0,0,1,1,1,1,1) 64 44 45 29
(-1,-1,-1,1,1,1,1,1) 43 45 46 32
(1,1,1,-1,-1,-1,-1,-1) 61 62 45 41
(-1,-1,-1,0,1,2,3,4) 62 41 52 37

TABLE 6: Number of iterations for example HS 76

m=5 m=7
starting vector Ψ M Ψ M

(0.5,0.5,0.5,0.5,0,0,0) 47 42 33 33
(0,0,0,0,0,0,0) 48 33 36 32
(10,10,10,10,10,10,10) 102 27∗ 73 36
(0,1,0,1,0,1,0) 41 40 34 31
(1,2,3,4,3,2,1) 50 42 39 30

The results in Tables 3–6 indicate the following: If both methods converge to
a solution of the underlying problem, then Mangasarian and Solodov’s method is
usually slightly superior to our method. However, in several instances, their method
converge to a stationary point which is not a solution of the corresponding com-
plementarity problem (this is indicated by an asterisk in the tables), whereas our
method solves these problems as guaranteed by our theory, see Corollary 2.6. To
us, it is surprising how often Mangasarian and Solodov’s method converge only to a
stationary point for example HS 35. We have therefore tested with some randomly
generated starting values, and again, in most cases convergence was observed to
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stationary points only. However, this behaviour of their method has been observed
for the linear complementarity problems only (mostly for example HS 35), whereas
the nonlinear complementarity problems have been solved by both methods without
any difficulties. We have not an explanation for this yet.

Nevertheless, we can summarize the results as follows: Mangasarian and Solodov’s
reformulation behaves slightly better than ours, but their method should only be
used for complementarity problems whose associated function F has a positive def-
inite Jacobian everywhere. If the Jacobian is only positive semidefinite, i.e., if F is
a monotone function, their approach is not a reliable technique, and our method is
preferable.

7 Final Remarks

In this paper, we have presented a reformulation of the nonlinear complementarity
problem as an unconstrained optimization problem. It has been shown that this
reformulation is equivalent to the complementarity problem for monotone functions
F. Since several complementarity problems are just monotone and in general have
not a positive definite Jacobian, we feel that our approach is an important extension
of Mangasarian and Solodov’s method.

In a very recent paper, Yamashita and Fukushima [22] have extended Mangasar-
ian and Solodov’s approach to the generalized complementarity problem. We believe
that a similar extension is possible for our method. Again, however, it should be
possible to prove similar results as in [22] under weaker assumptions.
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