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Abstract
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inequality, convex optimization and complementarity problems.
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1 Introduction

Consider the variational inequality problem, denoted by VIP(X,F ), which is to find
a vector x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0 for all x ∈ X,

where F : <n → <n is a given function and X is a nonempty closed subset of <n.
This problem has several important applications, e.g., in several equilibrium

models arising in economics, transportation and engineering sciences, see [5, 12] for
some examples. The variational inequality problem also covers some other well-
known mathematical problems. For example, consider the nonlinear complementar-
ity problem, NCP(F ) for short: Find a vector in <n satisfying the conditions

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.

It is not difficult to see that VIP(X,F ) reduces to NCP(F ) if X = <n
+. Another

instance of VIP(X,F ) is the constrained optimization problem

min f(x) s.t. x ∈ X,

where f : <n → <. If both the objective function f and the feasible setX are convex,
it follows immediately from the optimality conditions in convex programming that
this constrained optimization problem is equivalent to VIP(X,∇f).

There exist several solution methods for solving VIP(X,F ), the interested reader
is referred to the survey papers [10, 23]. Among the most successful methods are
the (globalized) linearization methods ([8, 17, 18, 29, 36]), the nonsmooth equation-
based methods ([21, 22, 34, 35]) and the continuation methods ([2, 16, 31]). The
method to be described in this paper belongs to the class of continuation methods.
It can be viewed as a method which lies between the method considered by Chen and
Harker [2] and the method introduced by the authors in [16]. Chen and Harker’s
method is able to handle monotone problems, but depends on four perturbation
parameters, whereas the method described in [16] is only able to handle strongly
monotone variational inequality problems, but, on the other hand, depends on just
one perturbation parameter. Note that these parameters play a crucial role in a
successful implementation of these algorithms, and that it is in general difficult to
find “optimal” updating rules for these parameters. For this reason it is usually
advisable to use as few parameters as possible.

The method considered here depends on two parameters, one is the barrier pa-
rameter known from interior-point methods, the other one is a regularization pa-
rameter which allows us to extend the approach given in [16] for strongly monotone
variational inequalities to monotone problems.

The paper is organized as follows: In Section 2, we give a short review of some
basic concepts which will be used in the subsequent sections. The continuation
method is described in Section 3, which also contains some convergence results for
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this method. In Section 4 we prove a local error bound result showing that the
solutions of our perturbed problems can be made arbitrarily close to the solution of
the original problem. In Section 5 we present some numerical results for our method
applied to several variational inequality, constrained optimization and complemen-
tarity problems taken from the literature. We conclude with some final remarks in
Section 6.

2 Background Material

In this section, we summarize some preliminary facts which will be useful subse-
quently.

2.1 Definition. Let F : X → <n be a function. F is said to be strongly monotone
on the set X with modulus α > 0 if

(x− y)T (F (x)− F (y)) ≥ α‖x− y‖2 ∀x, y ∈ X.

F is said to be monotone on X if the above inequality holds when α is replaced by 0.

It is well known [10] that, when F is continuously differentiable, F is strongly
monotone on X with modulus α if and only if

dT∇F (x)d ≥ α‖d‖2 for all x ∈ X, d ∈ <n,

and F is monotone on X if and only if

dT∇F (x)d ≥ 0 for all x ∈ X, d ∈ <n.

We also note that VIP(X,F ) has a unique solution if F is strongly monotone on X,
see [10].

In most applications, the set X has a simple structure and can be described as

X = {x ∈ <n| g(x) ≥ 0, h(x) = 0},

where g : <n → <m and h : <n → <p are twice continuously differentiable functions
such that the component functions gi : <n → < (i ∈ I := {1, . . . ,m}) are concave
and the component functions hj : <n → < (j ∈ J := {1, . . . , p}) are affine-linear.
Note that this implies that the feasible set X is convex.

Throughout this paper, we assume that X is defined in this way. More precisely,
we assume for simplicity that J = ∅ since our entire analysis goes through for this
more general case in a straightforward way.

Associated with the above structure of the constraint set X, there is a well known
constraint qualification which is defined as follows.
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2.2 Definition. A vector x ∈ X satisfies the linear independence constraint quali-
fication, LICQ for short, if the gradients ∇gi(x) (i ∈ I(x) := {i ∈ I| gi(x) = 0} of
the active inequality constraints are linearly independent.

Suppose x∗ is a solution of VIP(X,F ). If the LICQ holds at x∗, then there exist
vectors y∗ ∈ <m and z∗ ∈ <m such that the triple w∗ := (x∗, y∗, z∗) satisfies the
following KKT-conditions,

F (x∗)−∇g(x∗)Ty∗ = 0,

g(x∗)− z∗ = 0,

y∗ ≥ 0, z∗ ≥ 0, y∗i z
∗
i = 0 (i ∈ I).

By the concavity of gi (i ∈ I), the converse is also true, namely, the x-part of any
KKT-triple must be a solution of VIP(X,F ), see [10]. Thus, under the LICQ as-
sumption, the KKT-conditions and problem VIP(X,F ) itself are completely equiv-
alent. The following second order condition will be used in Section 3.

2.3 Definition. Let L(x, y) = F (x) − ∇g(x)Ty and let w∗ = (x∗, y∗, z∗) be a
KKT-triple of VIP(X,F ). The strong second order sufficient condition, SSOSC for
short, is satisfied at w∗ if

dT∇xL(x∗, y∗)d > 0 for all d ∈ T (x∗), d 6= 0,

where
T (x∗) = {d ∈ <n|∇gi(x

∗) = 0, i ∈ I∗ := I(x∗)}.

Now let G : <n → <n be an arbitrary function which is locally Lipschitz–continuous
at a vector x ∈ <n. Then the generalized Jacobian of G at x is defined by

∂G(x) := conv{H ∈ <n×n| ∃{xk} ⊆ DG : xk → x,∇G(xk) → H},

where DG denotes the set of differentiable points of G and conv(A) is the convex
hull of a set A. It is known that ∂G(x) is a nonempty, convex and compact set,
see [4]. Based on the notion of the generalized Jacobian, we can define the class of
semismooth functions.

2.4 Definition. Let G : <n → <n be locally Lipschitzian at x ∈ <n. We say that
G is semismooth at x if

lim
H ∈ ∂G(x + tv′)

v′ → v, t ↓ 0

Hv′

exists for any v ∈ <n.

Semismooth functionals were introduced in [20] and extended to vector-valued map-
pings in [27]. It is known that a mapping G : <n → <n is semismooth if and only if
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all its component functions Gi : <n → < are semismooth. Smooth, piecewise smooth
and convex functionals are known to be semismooth. The composite of two semis-
mooth functions is again semismooth. The reader is referred to [20, 27, 26] for some
further properties and more comprehensive discussions of semismooth functions.

3 Continuation Method

The continuation method to be presented next is based on the following perturbation
of the KKT-conditions:

F (x) + εx−∇g(x)Ty = 0,

g(x)− z = 0,

y ≥ 0, z ≥ 0, yizi = µ (i ∈ I);

here, the real numbers ε ≥ 0 and µ ≥ 0 are the perturbation parameters. We call
this perturbed system the perturbed variational inequality problem and denote it
by PVIP(X,F, µ, ε).

Given any fixed parameter µ ≥ 0, let us define a functional ϕµ : <2 → < by

ϕµ(a, b) := a+ b−
√

(a− b)2 + 4µ. (1)

This function has recently been introduced in [15]. Its most interesting property is
the following characterization of its zeros, see [15].

3.1 Lemma. For every µ ≥ 0, we have

ϕµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ.

Let the operator Φ : <n ×<m ×<m → <n ×<m ×<m be defined by

Φ(w;µ, ε) := Φ(x, y, z;µ, ε) :=

 F (x) + εx−∇g(x)Ty
g(x)− z
ϕµ(y, z)

 ,

where
ϕµ(y, z) := (ϕµ(y1, z1), . . . , ϕµ(ym, zm))T ∈ <m.

Using Lemma 3.1, it is straightforward to verify the following result.

3.2 Theorem. A vector w(µ, ε) := (x(µ, ε), y(µ, ε), z(µ, ε)) ∈ <n × <m × <m is a
solution of the perturbed variational inequality problem PVIP(X,F, µ, ε) if and only
if w(µ, ε) solves the nonlinear system of equations Φ(w;µ, ε) = 0.
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Theorem 3.2 serves as motivation for the following continuation method.

3.3 Algorithm.

(S.0) Let {µk}, {εk} ⊆ < be two decreasing sequences with limk→∞ µk = 0 and
limk→∞ εk = 0. Choose w0 := (x0, y0, z0) ∈ <n ×<m ×<m, and set k := 0.

(S.1) If ‖Φ(wk; 0, 0)‖ = 0, stop: wk is a KKT-point of VIP(X,F ).

(S.2) Find a solution wk+1 := w(µk+1, εk+1) of the nonlinear system of equations

Φ(w;µk+1, εk+1) = 0

(or, equivalently, of the perturbed problem PVIP(X,F, µk+1, εk+1)).

(S.3) Set k := k + 1, and go to (S.1).

In the remaining part of this section, we investigate two different conditions for
ensuring the existence, boundedness and convergence of the sequence {w(µk, εk)} as
generated by Algorithm 3.3.

We first show that if LICQ and SSOSC are satisfied at a KKT-triple w∗ :=
(x∗, y∗, z∗) of VIP(X,F ), then w(µ, ε) exists uniquely for all µ > 0 and all sufficiently
small ε > 0, and that the whole sequence {w(µk, εk)} converges to w∗ as µk and εk

converge to 0 (in an arbitrary way).
In the second type of conditions, we suppose that LICQ holds at every feasible

point x ∈ X, and that µk → 0 and εk → 0 in such a way that the sequence {µk/εk}
remains bounded. Under these assumptions we prove that the perturbed problems
PVIP(X,F, µk, εk) have a unique solution w(µk, εk) for all µk > 0 and all εk > 0, that
every accumulation point of the sequence {w(µk, εk)} is a KKT-triple of VIP(X,F )
and that there exists at least one such accumulation point.

To begin, we first investigate the operator Φ(.; 0, 0). Note that the function ϕµ

is not everywhere differentiable in the limiting case µ = 0. Hence Φ(.; 0, 0) is also
not everywhere differentiable. However, the following result holds.

3.4 Lemma. The function Φ(.; 0, 0) is semismooth.

Proof. Recall that Φ(.; 0, 0) is semismooth if and only if all component functions
are semismooth. Since the first n+m component functions of Φ(.; 0, 0) are contin-
uously differentiable, it suffices to consider the last m components. Since

ϕ0(yi, zi) = yi + zi −
√

(yi − zi)2 = yi + zi − |yi − zi| = 2 min{yi, zi},

and since the min-function is piecewise smooth, all component functions of Φ(.; 0, 0)
are semismooth. This proves the statement. 2

3.5 Theorem. Let x∗ ∈ <n be a solution of VIP(X,F ) and assume that LICQ and
SSOSC are satisfied. Let w∗ := (x∗, y∗, z∗) ∈ <n × <m × <m be the corresponding
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(unique) KKT-point of VIP(X,F ). Then all G ∈ ∂Φ(w∗; 0, 0) are nonsingular.

Proof. The proof is a slight variation of the one of Lemma 3.11 in [16]. The details
are therefore omitted here. 2

3.6 Corollary. Let the assumptions of Theorem 3.5 be satisfied. Then w∗ is the
unique KKT-point of VIP(X,F ) and x∗ is the unique solution of VIP(X,F ).

Proof. By Lemma 3.4, Theorem 3.5 and Proposition 3 in [24], w∗ := (x∗, y∗, z∗)
is a locally unique solution of the nonlinear equation Φ(w; 0, 0) = 0 and therefore
a locally unique KKT-point of VIP(X,F ). Assume there exists a second solution
w̄ = (x̄, ȳ, z̄) of Φ(w; 0, 0) = 0. Since F is monotone, the solution set of VIP(X,F )
is convex. Hence we must have x̄ = x∗ by the local uniqueness of w∗. But then we
also have z̄ = g(x̄) = g(x∗) = z∗. Moreover, from

F (x∗)−∇g(x∗)Ty∗ = 0,

F (x∗)−∇g(x∗)T ȳ = F (x̄)−∇g(x̄)T ȳ = 0,

y∗i gi(x
∗) = 0, ȳigi(x

∗) = ȳigi(x̄) = 0

and the LICQ assumption, we also get ȳ = y∗. This proves the desired result. 2

3.7 Corollary. Let the assumptions of Theorem 3.5 be satisfied. Then there exists
an ε̄ > 0 such that PVIP(X,F, µ, ε) has a unique solution w(µ, ε) = (x(µ, ε), y(µ, ε), z(µ, ε)) ∈
<n ×<m ×<m for all 0 < ε ≤ ε̄ and all µ > 0.

Proof. In view of Theorem 3.5, it follows from Clarke’s Implicit Function Theo-
rem [4] that there exist ε̄ > 0 and µ̄ > 0 such that PVIP(X,F, µ, ε) has a unique
solution w(µ, ε) for all 0 < ε ≤ ε̄ and all 0 < µ ≤ µ̄. Since the set of active inequality
constraints at a point x sufficiently close to x∗ is a subset of the active inequality
constraints at x∗, the LICQ assumption is also satisfied in a small neighbourhood
of x∗. Hence, we get from Theorem 3.12 in [16] and the simple observation that
the function Fε : <n → <n defined by Fε(x) := F (x) + εx is uniformly monotone
that PVIP(X,F, µ, ε) has a unique solution w(µ, ε) for all 0 < ε ≤ ε̄ and all µ > 0. 2

3.8 Corollary. Let the assumptions of Theorem 3.5 be satisfied. Let {µ} and {ε}
be two sequences of positive numbers converging to 0, and let us denote the unique so-
lution of the corresponding perturbed problem PVIP(X,F, µ, ε) by w(µ, ε). Then the
entire sequence {w(µ, ε)} converges to the (unique) KKT-point w∗ of VIP(X,F ).

Proof. We first note that the sequence {w(µ, ε)} exists for all µ > 0 and all
ε > 0 sufficiently small by Corollary 3.7. Next we note that it is an easy conse-
quence of Theorem 3.5 and Clarke’s Implicit Function Theorem [4] that the sequence
{w(µ, ε)} remains bounded. Hence this sequence has at least one accumulation point
w(0, 0). Using simple continuity arguments, one can easily deduce that w(0, 0) is a
KKT-point of VIP(X,F ). Hence we have shown that every accumulation point of



8 CHRISTIAN KANZOW AND HOUYUAN JIANG

the sequence {w(µ, ε)} is a KKT-point of VIP(X,F ). By Corollary 3.6, however,
VIP(X,F ) has a unique KKT-point w∗, so the entire sequence {w(µ, ε)} must con-
verge to w∗. 2

We now come to the second set of sufficient conditions for the existence and the
boundedness of the sequence {w(µk, εk)} and the convergence of the algorithm.

3.9 Lemma. Suppose the LICQ holds at any point of X. Then PVIP(X,F, µ, ε)
has a unique solution w(µ, ε) = (x(µ, ε), y(µ, ε), z(µ, ε)) ∈ <n × <m × <m for all
ε > 0 and all µ > 0.

Proof. For any fixed ε > 0, VIP(X,Fε) has a unique solution x(ε) by the strong
monotonicity of Fε and the convexity ofX, where Fε(x) := F (x)+εx. Since the LICQ
holds at x(ε) ∈ X, the perturbed variational inequality problems PVIP(X,F, µ, ε)
have a unique solution for all µ > 0 by Theorem 3.12 in [16]. Therefore, the desired
result follows by taking into account that ε > 0 is arbitrary. 2

The following is a technical lemma which will be used in the proof of the main con-
vergence theorem, Theorem 3.11 below.

3.10 Lemma. Suppose w∗ = (x∗, y∗, z∗) is a KKT-point of VIP(X,F ), and w(µ, ε)
is a solution of PVIP(X,F, µ, ε) for some µ > 0 and ε > 0. Then

ε‖x(µ, ε)− x∗

2
‖2 ≤ ε

4
‖x∗‖2 +mµ,

where w(µ, ε) = (x(µ, ε), y(µ, ε), z(µ, ε)).

Proof. First note that w(µ, ε) is uniquely defined by Lemma 3.9. For simplicity, let
w denote w(µ, ε). Since w is a solution of PVIP(X,F, µ, ε) and w∗ is a KKT-point
of VIP(X,F ), it follows that

(F (x) + εx)T (x− x∗)− (∇g(x)(x− x∗))Ty = 0,
g(x)− z = 0,

y > 0, z > 0, yizi = µ (i ∈ I)

and
F (x∗)T (x∗ − x)− (∇g(x∗)(x∗ − x))Ty∗ = 0,

g(x∗)− z∗ = 0,
y∗ ≥ 0, z∗ ≥ 0, y∗i z

∗
i = 0 (i ∈ I).

The addition of the first and fourth equations yields

εxT (x−x∗)+(F (x)−F (x∗))T (x−x∗) = (∇g(x)(x−x∗))Ty+(∇g(x∗)(x∗−x))Ty∗. (2)

In view of the monotonicity of F , the concavity of gi (i ∈ I) and the nonnegativeness
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of y and y∗, we have

(F (x)− F (x∗))T (x− x∗) ≥ 0,
(∇g(x)(x− x∗))Ty ≤ (g(x)− g(x∗))Ty,

(∇g(x∗)(x∗ − x))Ty∗ ≤ (g(x∗)− g(x))Ty∗.

It follows from (2) and the above three inequalities that

εxT (x− x∗) ≤ (g(x)− g(x∗))Ty + (g(x∗)− g(x))Ty∗,

which is equivalent to

ε||x− x∗

2
||2 ≤ ε

4
||x∗||2 + (z − z∗)T (y − y∗).

Since y, y∗, z and z∗ are nonnegative, and y∗i z
∗
i = 0 and yizi = µ (i ∈ I), the

assertion follows from the above inequality. 2

3.11 Theorem. Suppose VIP(X,F ) has a solution x∗. Suppose the LICQ holds
at any point of X. Let {µk} and {εk} be two sequences converging to 0. Then the
algorithm is well-defined and PVIP(X,F, µk, εk) has a unique solution w(µk, εk) for
any µk > 0 and εk > 0. Furthermore, if there exists a positive constant α such that
µk ≤ αεk, then any accumulation point of the sequence {w(µk, εk)} is a KKT-point
of VIP(X,F ), and there exists at least one accumulation point.

Proof. The existence and uniqueness of w(µk, εk) follows from Lemma 3.9. The
second part of the theorem follows from the continuity of PVIP(X,F, µ, ε) with re-
spect to w, µ and ε. Hence we only have to prove the existence of at least one accu-
mulation point. We prove that the sequence {wk} := {w(µk, εk)} remains bounded.
The boundedness of the x-part follows immediately from Lemma 3.10 and the fact
that µk = O(εk) by assumption. The boundedness of the z-part is therefore a conse-
quence of the continuity of g and the equation g(xk) = zk. Assume that the y-part is
unbounded. Without loss of generality, we can assume, subsequencing if necessary,
that yk/‖yk‖ → y∗∗ for some y∗∗ such that ‖y∗∗‖ = 1 and xk → x∗∗, zk → z∗∗. Let
I∗∗ denote the active index set at x∗∗, i.e., I∗∗ = {i ∈ I| gi(x

∗∗) = 0}. Clearly, for all
i 6∈ I∗∗, the sequences {yk

i } are bounded since zk
i = gi(x

k) and yk
i z

k
i = µk. Therefore

we have y∗∗i = 0 for all i 6∈ I∗∗. Hence, dividing F (xk) + εxk − ∇g(xk)Tyk = 0 by
‖yk‖ and taking the limit, it follows∑

i∈I∗∗
y∗∗i ∇gi(x

∗∗) = 0.

By the LICQ assumption, we therefore obtain y∗∗i = 0 for all i ∈ I∗∗. Thus we have
y∗∗ = 0 which contradicts the fact that ‖y∗∗‖ = 1. This shows that the sequence
{yk} is also bounded. 2
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The proof of the following result is very similar to the one of Theorem 3.5 in [16].
The proof is therefore omitted here.

3.12 Theorem. If F : <n → <n is monotone on X, then the operator Φ(.;µ, ε) is
continuously differentiable and the Jacobian matrices ∇Φ(w;µ, ε) are nonsingular
for all µ > 0, ε > 0 and all w = (x, y, z) ∈ <n ×<m

+ ×<m. If, in addition, the func-
tions gi (i ∈ I) are affine–linear, then the Jacobians ∇Φ(w;µ, ε) are nonsingular
for all µ > 0, ε > 0 and all w = (x, y, z) ∈ <n ×<m ×<m.

3.13 Corollary. Under the assumptions of Theorem 3.12, the solution operator
(µ, ε) → w(µ, ε) is continuously differentiable for all µ > 0 and all ε > 0.

Proof. This follows from Theorem 3.12 and the Implicit Function Theorem, taking
into account the fact that y(µ, ε) ≥ 0 for any solution w(µ, ε) = (x(µ, ε), y(µ, ε), z(µ, ε))
of PVIP(X,F, µ, ε). 2

4 A Local Error Bound Result

In this section, we want to give a more precise measure of how close a solution w(µ, ε)
of PVIP(X,F, µ, ε) is to a KKT-point w∗ of the original problem VIP(X,F ). To
this end we need the following simple result.

4.1 Lemma. For all a, b ≥ 0, we have

√
a+ b ≤

√
a+

√
b.

Proof. For all a, b ≥ 0, we have

a+ b ≤ a+ 2
√
a
√
b+ b = (

√
a+

√
b)2,

from which the assertion follows by taking the square root of both sides. 2

In the following results, ‖w‖1 denotes the l1 norm of a vector w of appropriate di-
mension. Moreover, we recall that w∗ := (x∗, y∗, z∗) ∈ <n×<m×<m is a KKT-point
of VIP(X,F ) if and only if w∗ satisfies the system of equations Φ(w; 0, 0) = 0. We
are now in a position to prove the following result.

4.2 Lemma. Let w(µ, ε) = (x(µ, ε), y(µ, ε), z(µ, ε)) be a KKT-point of PVIP(X,F, µ, ε).
Then

‖Φ(w(µ, ε); 0, 0)‖1 ≤ 2m
√
µ+ ε‖x(µ, ε)‖1.
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Proof. Since w(µ, ε) is a KKT-point of PVIP(X,F, µ, ε), we have Φ(w(µ, ε);µ, ε) =
0. From the very definition of Φ(.;µ, ε) and Φ(.; 0, 0) we therefore obtain

‖Φ(w(µ, ε); 0, 0)‖1 = ‖Φ(w(µ, ε); 0, 0)− Φ(w(µ, ε);µ, ε)‖1

=
m∑

i=1

ε|xi(µ, ε)|+

m∑
i=1

∣∣∣∣√(yi(µ, ε)− zi(µ, ε))2 + 4µ−
√

(yi(µ, ε)− zi(µ, ε))2

∣∣∣∣
≤ ε

m∑
i=1

|xi(µ, ε)|+ 2
m∑

i=1

√
µ

= 2m
√
µ+ ε‖x(µ, ε)‖1,

where the inequality follows from Lemma 4.1. 2

4.3 Lemma. Let the assumptions of Theorem 3.5 be satisfied, in particular, let
w∗ denote the unique KKT-point of VIP(X,F ). Then, for all µ > 0 and ε > 0
sufficiently small, there exists a constant c1 > 0, independent of µ and ε, such that

c1‖w(µ, ε)− w∗‖1 ≤ 2m
√
µ+ ε‖x(µ, ε)‖1.

Proof. By Lemma 3.4, Theorem 3.5 and Proposition 3 in [24], there exists a
constant c1 > 0 such that

c1‖w − w∗‖1 ≤ ‖Φ(w; 0, 0)‖1

for all w sufficiently close to w∗. Hence we obtain the desired inequality from Lemma
4.2 and the fact that w(µ, ε) converges to w∗ for µ, ε→ 0 because of Corollary 3.8. 2

4.4 Theorem. Let the assumptions of Theorem 3.5 be satisfied. Then there exists
a constant c2 > 0 such that

‖w(µ, ε)− w∗‖1 ≤ c2(
√
µ+ ε)

for all µ > 0 and ε > 0 sufficiently small.

Proof. The assertion is an immediate consequence of Lemma 4.3 and the fact that
x(µ, ε) remains bounded in view of Corollary 3.8. 2

Theorem 4.4 states that if we solve the neighbouring problem PVIP(X,F, µ, ε),
the solution can be made arbitrarily close to the solution of the original problem
VIP(X,F ) by taking µ and ε sufficiently small. Note that there are a number of
recently proposed “smoothing methods” where a nonsmooth formulation of certain
problems (minmax problem, convex optimization problem, complementarity prob-
lem) is replaced by a neighbouring smooth problem which is solved instead of the
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original one. Numerical results presented, e.g., by Chen and Mangasarian [3] and
Pinar and Zenios [25] are quite promising. According to Theorem 4.4, we can view
our method also as a smoothing method by fixing the perturbation parameters µ and
ε and applying, e.g., Newton’s method to the system of equations Φ(w;µ, ε) = 0. In
this paper, however, we interprete our method as a continuation method.

5 Numerical Results

5.1 Algorithm

In this section, we present an implementable version of Algorithm 3.3 and its numer-
ical results for problems arising in variational inequalities, nonlinear programming
and complementarity problems. In step (S.2) of Algorithm 3.3, a system of non-
linear equations Φ(w;µ, ε) = 0 has to be solved. Instead of solving this system
exactly, we use a damped Newton method in order to find an approximate solution
of Φ(w;µ, ε) = 0. Note that the Jacobian matrices of Φ(.;µ, ε) are nonsingular under
the assumptions of Theorem 3.12.

The following algorithm is an implementable version of Algorithm 3.3.

5.1 Algorithm.

(S.0) Choose w0 := (x0, y0, z0) ∈ <n×<m×<m, θ ≥ 0, µ0 > 0, ε0 > 0, β, σ ∈ (0, 1),
and set k := 0.

(S.1) If ‖Φ(wk; 0, 0)‖ ≤ θ, stop: wk is an approximate solution of VIP(X,F ).

(S.2) Compute ∆wk = (∆xk,∆yk,∆zk) ∈ <n × <m × <m as the solution of the
linear system

∇Φ(w(µk, εk);µk, εk)∆w
k = −Φ(w(µk, εk);µk, εk).

(S.3) Let tk = βmk , where mk is the smallest nonnegative integer m satisfying the
following inequality

‖Φ(wk + βm∆wk;µk, εk)‖2 ≤ (1− σβm)‖Φ(w(µk, εk);µk, εk)‖2.

Let wk+1 = wk + tk∆wk.

(S.4) Compute µk+1 and εk+1. Set k := k + 1, and go to (S.1).

We next describe the computation of the perturbation parameters µk+1 and εk+1

We begin with the updating rule for µk+1 which is very similar to the one proposed
by Chen and Harker [1], see also [15].

Updating Rule for µk:
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(a) Let uk+1 := ‖|Φ(wk;µk, εk)‖/(n + 2m). If uk+1 ≥ 1, then µk+1 :=
√
uk+1, else

µk+1 := uk+1.

(b) If µk+1 < 10−10, then µk+1 = 10−10.

(c) If µk+1 > µk, set µk+1 = µk

(d) If ‖|Φ(wk+1;µk, εk)‖ < 10−4, then µk+1 = 10−2µk+1.

For the update of εk+1, we use the simple rule εk+1 = αµk+1, where α is a positive
constant (note that this updating rule is motivated by Theorem 3.11).

Algorithm 5.1 has been implemented in Fortran and run on a DEC 5000 worksta-
tion. Throughout the computational experiments, the parameters used were set as
β = 0.5, σ = 10−4, θ = 10−6, α = 1, ε0 = 10−4, and µ0 = min{10−2, ‖Φ(w0; 0, 0)‖}.
In the numerical results to be reported, we give for each problem the dimension
of the system Φ(w;µ, ε) by DIM, the starting point by SP, the number of itera-
tions by IT, the number of evaluations of F by NF (which is equal to the number
of evaluations of g, and for the nonlinear programming problems, it is the num-
ber of evaluations of the gradient of the objective function), and the final residual
‖Φ(w; 0, 0)‖ by ERROR with w representing the final approximate solution of the
problem.

5.2 Variational inequality problems

The numerical experiments conducted consist of three parts, namely, variational in-
equality, nonlinear programming and complementarity problems. The test problems
were chosen from the literature without giving full details but some relevant com-
ments. The source for each problem is not necessarily the original one. We begin
with variational inequality problems.

VI1 problem: See [29]. F is a strongly monotone and nonlinear mapping and X is
polyhedral. The problem has a parameter ρ which reflects the degree of asymmetry
and nonlinearity. The optimal solution is (2, 2, 2, 2, 2).

VI2 problem: See [29]. This problem is similar to the last problem with the fea-
tures that F is a strongly monotone and nonlinear mapping and X is polyhedral.
We tested one case in which the original dimension of the variational inequality
problem is 5. An approximate solution is (9.08, 4.84, 0, 0, 5).

VI3 problem: See [7]. Again, F is a strongly monotone and nonlinear mapping,
but X is not polyhedral. An approximate solution found by our algorithm is (1, 0, 0).
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PROBLEM DIM SP IT NF ERROR

VI1 (ρ = 10) 12 (1, · · · , 1) 5 6 0.59 ×10−6

VI1 (ρ = 103) 12 (1, · · · , 1) 8 9 0.22 ×10−6

VI1 (ρ = 105) 12 (1, · · · , 1) 8 9 0.29 ×10−6

VI2 18 (1, · · · , 1) 10 13 0.45 ×10−6

VI3 5 (1, · · · , 1) 7 8 0.42 ×10−6

VI4 12 (1, · · · , 1) 6 7 0.18 ×10−6

Table 1: Results for varitional inequality problems using Algorithm 5.1

VI4 problem: See [7]. F is an affine and strongly monotone mapping, and X is
polyhedral. The solution of this problem is known to be x∗ = (120, 90, 0, 70, 50).

The numerical results for the above four variational inequality problems are given
in Table 1.

5.3 Nonlinear programming problems

In this subsection, we present the numerical experiments of Algorithm 5.1 being
applied to the convex constrained programming problems 3, 10, 11, 12, 14, 21, 22,
28, 34, 35, 43, 48, 49, 50, 51, 52, 53, 55, 65, 66, 73, 76 and 100 from the book of Hock
and Schittkowski [11]. The KKT-conditions for each of these problems is a mixed
complementarity problem which is a special case of a variational inequality problem.
Note that, since we only consider convex optimization problems, the corresponding
variational inequality problem VIP(X,∇f) (f being the objective function of the
optimization problem) is monotone.

Table 2 contains the numerical results for the above nonlinear programming
problems. A failure of the algorithm is indicated by the letter “F”.

5.4 Complementarity problems

Finally, we tested some complementarity problems.

Kojima-Josephy problem: See [5]. This is a nonmonotone nonlinear comple-
mentarity problem, which has a unique solution.

Watson second problem: See [32]. This is a nonmonotone linear complemen-
tarity problem.

Watson fourth problem: See [32]. This is a nonlinear complementarity prob-
lem, which represents the KKT conditions for a convex programming problem.
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PROBLEM DIM SP IT NF ERROR

HS3 3 (1, · · · , 1) 5 6 0.26 ×10−6

HS10 4 (1, · · · , 1) 10 12 0.18 ×10−7

HS11 4 (1, · · · , 1) 7 8 0.21 ×10−7

HS12 4 (1, · · · , 1) 8 14 0.54 ×10−7

HS14 5 (1, · · · , 1) 6 7 0.57 ×10−6

HS21 12 (1, · · · , 1) 9 16 0.17 ×10−7

HS22 6 (1, · · · , 1) 7 8 0.10 ×10−6

HS28 4 (1, · · · , 1) 3 4 0.87 ×10−12

HS34 16 (1, · · · , 1) 19 34 0.35 ×10−6

HS35 8 (1, · · · , 1) 6 7 0.19 ×10−7

HS43 10 (1, · · · , 1) F F F
HS48 7 (1, · · · , 1) 3 4 0.22 ×10−11

HS49 7 (1, · · · , 1) 52 136 0.95 ×10−6

HS50 8 (1, · · · , 1) 23 24 0.96 ×10−6

HS51 8 (1, · · · , 1) 3 5 0.22 ×10−11

HS52 8 (1, · · · , 1) 3 4 0.69 ×10−12

HS53 28 (1, · · · , 1) 5 8 0.29 ×10−7

HS55 22 (1, · · · , 1) F F F
HS65 17 (1, · · · , 1) 13 36 0.32 ×10−6

HS66 16 (1, · · · , 1) 15 24 0.30 ×10−6

HS73 13 (1, · · · , 1) 13 15 0.31 ×10−7

HS76 14 (1, · · · , 1) 7 8 0.16 ×10−7

HS100 15 (1, · · · , 1) 14 22 0.10 ×10−7

Table 2: Results for convex programming problems using Algorithm 5.1

Mathiesen problem: See [19]. This is a Walrasian equilibrium problem. It
depends on three parameters α, b2 and b3. We report numerical results for the fol-
lowing two choices of these parameters: (a) α = 0.75, b2 = 1, b3 = 0.5 and (b)
α = 0.75, b2 = 1, b3 = 2. In both cases, the problem has infinitely many solutions.

Modified Mathiesen problem: See [14]. This is a nonmonotone nonlinear com-
plementarity problem reformulated from Mathiesen’s Walrasian equilibrium prob-
lem. It has the infinitely many solutions (λ, 0, 0, 0), where λ ∈ [0, 3].

Nash equilibrium problem: See [9]. This is a nonlinear complementarity prob-
lem, in which the associated function is not twice differentiable, but it is a P -
function. We tested two cases with the dimensions 5 and 10 of the original problem.
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PROBLEM DIM SP IT NF ERROR

Kojima-Josephy 8 (1, · · · , 1) 8 16 0.73 ×10−6

Watson 2 10 (1, · · · , 1) 6 7 0.24 ×10−6

Watson 4 10 (1, · · · , 1) 23 24 0.93 ×10−6

Mathiesen (a) 8 (1, · · · , 1) 10 11 0.28 ×10−7

Mathiesen (b) 8 (1, · · · , 1) 8 10 0.30 ×10−7

mod. Mathiesen 8 (1, · · · , 1) 6 9 0.47 ×10−6

Nash equilibrium 10 (1, · · · , 1) 10 11 0.26 ×10−6

20 (1, · · · , 1) 9 10 0.22 ×10−6

Spatial equilibrium 84 (1, · · · , 1) 27 39 0.43 ×10−6

Table 3: Results for complementarity problems using Algorithm 5.1

Spatial price equilibrium problem: See [30]. This is a problem arising in a
spatial equilibrium model. The dimension of the original problem is 42.

The numerical results for the above complementarity problems are listed in Table 3.

The numerical results given in Tables 1 – 3 are quite promising, and most problems
were solved using just a small number of iterations although the test problems came
up from different mathematical areas. We note that we have two failures, namely
for the problems HS 43 and HS 55 in Table 2, but that we used the same parameter
settings for all test runs without optimizing them for specific problems.

6 Final Remarks

In this paper, we presented a new continuation method for the solution of monotone
variational inequality problems VIP(X,F ). The central idea was to reformulate the
optimality conditions of VIP(X,F ) into an equivalent system of nonlinear equations.
This reformulation is based on the function ϕµ defined in (1) and introduced by
one of the authors in [15]. Actually, in [15] some other but related functions were
introduced, e.g.

ψµ(a, b) := a+ b−
√
a2 + b2 + 2µ.

For µ = 0, this function reduces to a function introduced by Fischer [6]. It is
not difficult to see that all results of this paper remain true if the function ϕµ is
replaced by the function ψµ everywhere. The only nontrivial part is the result which
corresponds to Theorem 3.5, see, however, Jiang [13].

We also made some numerical experiments using the function ψµ. But, although
the results were still good, the results were slightly inferior to those obtained with
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the function ϕµ. For this reason, we decided to consider only the function ϕµ in this
paper.
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