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Abstract. The formulation and the semismooth Newton solution of Nash equilibria mul-
tiobjective elliptic optimal control problems are presented. Existence and uniqueness of a
Nash equilibrium is proved. The corresponding solution is characterized by an optimality
system that is approximated by second-order finite differences and solved with a semis-
mooth Newton scheme. It is demonstrated that the numerical solution is second-order
accurate and that the semismooth Newton iteration is globally and locally quadratically
convergent. Results of numerical experiments confirm the theoretical estimates and show
the effectiveness of the proposed computational framework.
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1 Introduction

Many application problems involve the simultaneous optimization of several competing
objectives and constraints that define the class of multiobjective or multicriteria optimiza-
tion problems. In this class of problems, we can distinguish between finite- and infinite-
dimensional optimization problems. The former are characterized by finite-dimensional
models and often refer to game theory problems. The latter can be associated to models
in function spaces and, in particular, to differential models. A well-known application for
infinite-dimensional multiobjective optimization occurs in aerodynamic shape optimization
for the design of airplanes where one focus is the lift maximization in the critical phase
of take-off and landing and the other one is drag minimization in the cruise regime since
it directly determines kerosene consumption [9, 15]. Another application is multi-loading
structural design [32]. Multiobjective PDE optimization would be also important in the
treatment of models and data uncertainties where it is required to compute a robust opti-
mal solution and minimize variance and other statistical moments [4].

We focus on multiobjective optimization problems governed by PDE models and in
this case much less is known on the characterization and the solution of these problems.
The starting point of our research are the works of Pareto, Nash, and Stackelberg; see
[5, 8, 10] and references therein for more details on their ground breaking contributions
and subsequent results.

These works usually consider finite-dimensional models, whereas part of our motivation
is to consider an infinite-dimensional setting where optimization problems with partial
differential equations (PDE) are involved. While the Pareto solution may be found in a
number of works dealing with infinite-dimensional optimization problems, cf. [23, 24], much
less is known regarding the Nash solution concept in multiobjective PDE-optimization
problems. An exception are two recent papers [29, 30] by Ramos et al. devoted to a
multiobjective optimization with a specific unconstrained control mechanism and solved
with a conjugate gradient scheme. One of our purposes is to generalize this setting by
considering a larger class of constrained controls and to solve the resulting problem with
semismooth Newton methods.

Although the Nash formulation is typically viewed as a stronger solution concept than
Pareto, the latter appears to be more popular in applications. On the other hand, it is
only recently that powerful methods for the solution of finite-dimensional Nash equilibrium
problems have been proposed. The purpose of this paper is to introduce the Nash equi-
librium as a solution concept to multiobjective PDE-optimization problems and to show
how to extend powerful finite-dimensional methods to solve the resulting discretized Nash
equilibrium problems (NEPs, for short).

From the PDE optimization point of view, the class of problems considered in this paper
are simple. Each of the two objectives are (strongly) convex as a function in the variable of
the corresponding player (control), and the PDE is of the elliptic type. However, we do not
consider two separate optimization problems, since we are looking for a Nash equilibrium,
and even in the finite-dimensional setting with strongly convex objective functions, neither
existence nor uniqueness of a Nash solution is guaranteed. This is very much in contrast
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to standard optimization theory, and points out the difficulty inherent in the solution of
NEPs, cf. [11, 14] for more details.

The paper is organized as follows. In Section 2, we formulate the class of multiobjective
PDE-optimization problems considered throughout this paper and formally introduce the
Nash solution concept. Section 3 gives an existence and uniqueness result for this class
of problems in the infinite-dimensional setting. A finite difference discretization together
with its approximation properties is then discussed in Section 4. In Section 5, we restate
a semismooth Newton method for the solution of general NEPs which may be viewed as a
standard solver and which is known to be both globally and locally quadratically convergent
under certain assumptions. The two subsequent Sections 6 and 7 focus on the particular
structure of the discretized multiobjective PDE-optimization problem and show that the
conditions for global and local fast convergence hold. Numerical results are presented in
Section 8, and we conclude with some final remarks in Section 9.

2 Multiobjective Elliptic Control Problems

This section defines the class of problems considered in this paper and contains the defi-
nition of the Nash solution concept. We consider multiobjective optimization problems
governed by a linear elliptic partial differential equation as follows. Find (u1, u2) ∈
Uad,1 × Uad,2 ⊂ L2(Ω)× L2(Ω) such that















miny,u1
J1(y, u1, u2)

s.t. −∆y = B1u1 + B2u2 + f in Ω
y = 0 on ∂Ω,
u1 ∈ Uad,1,

(1)

and














miny,u2
J2(y, u1, u2)

s.t. −∆y = B1u1 + B2u2 + f in Ω
y = 0 on ∂Ω,
u2 ∈ Uad,2,

(2)

where f ∈ L2(Ω) and Ω is a convex open bounded set in R
2.

The cost functionals Jj , j = 1, 2, are of the tracking type and are given by

Jj(y, u1, u2) :=
1

2
‖y − zj‖2L2(Ω) +

νj

2
‖Bjuj‖2L2(Ω), j = 1, 2, (3)

where z1, z2 ∈ L2(Ω) are given target functions and νj > 0, j = 1, 2, are the weights of the
costs of the controls.

The set of admissible controls Uad = Uad,1 × Uad,2 is the space product of two closed
convex subsets of L2(Ω) given by

Uad,j = {u ∈ L2(ωj) | lj(x) ≤ u(x) ≤ rj(x) a.e. in ωj ⊂ Ω}, (4)
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where lj and rj , j = 1, 2, are elements of L∞(ωj) and ωj are measurable subsets of Ω.
The linear operators Bj : L2(ωj) → L2(Ω), j = 1, 2, are chosen depending on the

particular application, and suitable assumptions on them will be given later. In the case
of different controls defined on different subsets of Ω, we have the extension operator given
by

Bjuj =

{

uj in ωj,
0 in Ω \ ωj.

(5)

With this setting, we have y ∈ H1
0 (Ω) ∩H2(Ω).

In order to define a suitable solution concept for the multiobjective PDE optimization
problems (1) and (2), first note that J1 depends on y and u1, but not explicitly on u2.
Similarly, J2 depends on y and u2, but not explicitly on u1. Since y is given by a solution
of a PDE which is controlled by u1 and u2, we are essentially in the situation that J1 is a
function of u1 and J2 is a function of u2, i.e. each of the objectives has its own variables.
This is the typical situation for which the solution concept by Nash can be used.

To make this more precise, let us introduce the reduced formulation of (1) and (2). We
denote with y(u1, u2) the unique solution of the PDE as a function of (u1, u2). With our
setting, the mapping (u1, u2) 7→ y(u1, u2) is affine and continuous. Then, we define the
reduced cost functionals

Ĵj(u1, u2) = Jj

(

y(u1, u2), u1, u2

)

, j = 1, 2.

We have that the mappings (u1, u2) 7→ Ĵj(u1, u2), j = 1, 2, are twice Fréchet differentiable
[19, 34].

Using these reduced cost functionals, we obtain the following reduced (equivalent) for-
mulation of (1) and (2). We have

min
u1

Ĵ1(u1, u2) s.t. u1 ∈ Uad,1 and (6)

min
u2

Ĵ2(u1, u2) s.t. u2 ∈ Uad,2. (7)

In this formulation, u1 is the variable in optimization problem (6) and u2 is the variable in
optimization problem (7). That is, we are in the situation where both objectives control
different sets of variables. Moreover, since we have multiple objectives that are in conflict
with one another and therefore a multiobjective optimization problem does not have a single
solution that could optimize all objectives simultaneously, the solution of multiobjective
optimization problems should consist of all optimization functions that can best attain
the prioritized objectives as good as possible. This leads to the following multiobjective
solution concept by Nash.

Definition 2.1 A feasible element ū = (ū1, ū2) ∈ Uad is called a Nash solution or a Nash
equilibrium of (6)–(7), if

Ĵ1(ū1, ū2) ≤ Ĵ1(u1, ū2) for all u1 ∈ Uad,1 and

Ĵ2(ū1, ū2) ≤ Ĵ2(ū1, u2) for all u2 ∈ Uad,2.
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Hence, we have a Nash equilibrium if no benefit is attained by changing one control uni-
laterally while the other control is kept fixed. Similarly, we call a triple (ȳ, ū1, ū2) a Nash
solution of the original multiobjective optimization problem from (1), (2) if (ū1, ū2) is a
Nash equilibrium of the reduced formulation (6), (7) and ȳ = y(ū1, ū2) holds.

3 Existence and Uniqueness of a Nash Equilibrium

In this section, we show that there is a unique Nash equilibrium of the problem (1)–(2).
The analysis is motivated by the one in [29]. To this end, we come back to the reduced
formulation (6)–(7). It is not difficult to see that the mappings u1 7→ Ĵ1(u1, ū2) and
u2 7→ Ĵ2(ū1, u2) are convex for fixed ū2 and ū1, respectively. Hence (ū1, ū2) is a Nash
equilibrium if and only if this pair satisfies the following

∂Ĵ1

∂u1
(ū1, ū2)(v1 − ū1) ≥ 0 ∀v1 ∈ Uad,1,

∂Ĵ2

∂u2
(ū1, ū2)(v2 − ū2) ≥ 0 ∀v2 ∈ Uad,2.

In order to get a convenient expression for the gradient of Ĵj, we introduce the functions
pj ∈ H2(Ω) ∩H1

0 (Ω), j = 1, 2, as the unique solution to the adjoint equations

−∆pj = −(y − zj) in Ω, pj = 0 on ∂Ω, (8)

where y = y(ū). Then the gradient of Ĵj can be represented as follows

∂Ĵj

∂uj

(ū1, ū2)(vj − ūj) = −
(

pj, Bj(vj − ūj)
)

L2(Ω)
+ νj

(

Bjūj, Bj(vj − ūj)
)

L2(Ω)

for j = 1, 2. Using the adjoint operator B∗
j , the necessary and sufficient first-order opti-

mality conditions are given by
(

ν1B
∗
1B1ū1 − B∗

1p1, v1 − ū1

)

L2(ω1)
≥ 0 ∀v1 ∈ Uad,1,

(

ν2B
∗
2B2ū2 − B∗

2p2, v2 − ū2

)

L2(ω2)
≥ 0 ∀v2 ∈ Uad,2.

Altogether, it follows that the solution to (1)–(2) is characterized by the following opti-
mality system. We have

−∆y = B1u1 + B2u2 + f in Ω,
y = 0 on ∂Ω,

−∆p1 = −(y − z1) in Ω,
p1 = 0 on ∂Ω,

−∆p2 = −(y − z2) in Ω,
p2 = 0 on ∂Ω,

(ν1B
∗
1B1 u1 − B∗

1 p1, v1 − u1) ≥ 0 for all v1 ∈ Uad,1,
(ν2B

∗
2B2 u2 − B∗

2 p2, v2 − u2) ≥ 0 for all v2 ∈ Uad,2.

(9)
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Next, we define the Hilbert space H := L2(ω1) × L2(ω2) and the induced scalar product
(u, v)H := (u1, v1)L2(ω1) +(u2, v2)L2(ω2) for all u, v ∈ H , where u = (u1, u2) and v = (v1, v2).
Then, we can rewrite (9) as follows

(

Aū− b, v − ū
)

H
≥ 0 ∀v ∈ Uad,

where we put b := (b1, b2), ū := (ū1, ū2), v := (v1, v2), and the operator A : H → H is
defined by

A(u1, u2) :=
(

ν1B
∗
1B1u1 − B∗

1 p̃1, ν2B
∗
2B2u2 − B∗

2 p̃2

)

. (10)

Here, for the given (u1, u2), the p̃1 and p̃2 are obtained by first solving the following problem

−∆ỹ = B1u1 + B2u2 in Ω, ỹ = 0 on ∂Ω, (11)

and in the next step, we compute p̃1 and p̃2 solving the equations

∆p̃1 = ỹ and ∆p̃2 = ỹ, (12)

with homogeneous Dirichlet boundary conditions. Notice that p̃1 and p̃2 coincide in our
case. However, they would be different, in general, considering different tracking function-
als.

We have that A results to be the linear part of the optimality condition operator which
is an affine mapping. In fact, the inhomogeneous term b = (b1, b2) is defined in terms
of f and the target functions z1 and z2, and it is zero when these functions are zero.
Specifically, the construction of b1 and b2 proceeds as follows. Define ŷ as a solution of
−∆ŷ = f with homogeneous Dirichlet boundary conditions. Then, b1 and b2 are given
by bj = B∗

j p̂j (j = 1, 2), where p̂j (j = 1, 2) solve the equation −∆p̂j = −(ŷ − zj) with
homogeneous Dirichlet boundary conditions.

Now, we define the mapping a : H ×H → R by

a(u, v) :=
(

Au− b, v
)

H
∀u, v ∈ H. (13)

Then ū = (ū1, ū2) is a Nash equilibrium if and only if it satisfies the variational inequality

a(ū, v − ū) ≥ 0 ∀v ∈ Uad. (14)

The central properties of the mapping a are summarized in the following result.

Proposition 3.1 Suppose that the mappings B∗
j Bj (j = 1, 2) are coercive and the sets ωj

satisfy
λ(supp(Bjv) ∩ ωk) = 0 ∀v ∈ L2(ωj), j 6= k. (15)

where λ(·) denotes the Lebesgue-measure of a set. Then the mapping a : H ×H → R from
(10)–(13) is bilinear, continuous, and coercive.
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Proof. Clearly the operator A is linear, bounded, and continuous in H . Therefore, we
immediately obtain that a is bilinear and continuous. We show that a is coercive.

For this purpose, we consider the following
(

A(u1, u2), (u1, u2)
)

H
= ν1 (B∗

1B1u1, u1)L2(ω1) + ν2 (B∗
2B2u2, u2)L2(ω2)

−
∫

ω1

(B∗
1 p̃1) u1 dx−

∫

ω2

(B∗
2 p̃2) u2 dx. (16)

In view of the assumed coercivity of B∗
j Bj , the statement follows if we are able to show

that the last two terms in (16) are nonnegative. In fact, we have

−
∫

ω1

(B∗
1 p̃1) u1 dx = −

∫

ω1

p̃1 (B1u1) dx = −
∫

ω1

p̃1 (−∆ỹ −B2u2) dx

(15)
= −

∫

ω1

p̃1 (−∆ỹ) dx =

∫

ω1

(∆p̃1) ỹ dx =

∫

ω1

ỹ ỹ dx, (17)

where ỹ is the solution to (11) with u1 and u2 in the right-hand side. Similarly, we prove
that −

∫

ω2

(B∗
2 p̃2) u2 dx is nonnegative. �

The central result of this section is a direct consequence of Proposition 3.1.

Theorem 3.2 There exists a unique Nash equilibrium of the reduced problem (6)–(7) (and
therefore also a unique Nash solution to (1)–(2)).

Proof. Recall that ū = (ū1, ū2) is a Nash equilibrium of (6)–(7) if and only if this
pair satisfies the variational inequality (14). However, since a is bilinear, continuous and
coercive in view of Proposition 3.1, it follows from the Lions-Stampacchia-Theorem (see,
e.g., [1, 21]) that this variational inequality has a unique solution. �

4 Finite Difference Discretization

In this section, we discuss a finite difference discretization of the multiobjective linear
optimality system (9). To this end, we consider the simpler case without constraints on
the controls. Then we can use the resulting optimality conditions to eliminate the control
functions by expressing them in terms of the state and the adjoint variables.

Specifically, consider a sequence of grids {Ωh}h>0 given by

Ωh = {x ∈ R
2 | xi = si h, si ∈ Z} ∩ Ω.

We assume that Ω is a rectangular domain and that the values of the mesh size h are
chosen such that the boundaries of Ω coincide with grid lines. For grid functions vh and
wh defined on Ωh we introduce the discrete L2-scalar product

(vh, wh)L2

h

= h2
∑

x∈Ωh

vh(x) wh(x),
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with associated norm |vh|0 = (vh, vh)
1/2

L2

h

. We also use |vh|∞ = max
x∈Ωh

|vh(x)|.
First-order backward and forward partial derivatives of vh in the xi direction are denoted

by ∂−
i and ∂+

i , respectively, and given by

∂−
i vh(x) =

vh(x)− vh(x− î h)

h
and ∂+

i vh(x) =
vh(x + î h)− vh(x)

h
,

where î denotes the i coordinate direction vector and vh is extended by 0 on grid points
outside of Ω; see [16]. In this framework, the discrete H1-norm is given by

|vh|1 =

(

|vh|20 +

2
∑

i=1

|∂−
i vh|20

)1/2

.

The spaces L2
h and H1

h consist of the sets of grid functions vh endowed with |vh|0, respec-
tively |vh|1, as norm. For the definition of H2

h we refer to [16], as well.
Functions in L2(Ω) and H1(Ω) are approximated by grid functions defined through

their mean values with respect to elementary cells [x1 − h
2
, x1 + h

2
] × [x2 − h

2
, x2 + h

2
]; see

[16] for more details.
The restriction operator Rh : H2(Ω) ∩H1

0 (Ω)→ H2
h is defined by

(Rhv)(x, y) =
1

h2

∫ h/2

−h/2

∫ h/2

−h/2

v(x + ξ, y + η)dξdη.

In the following, this operator is also used as mapping Rh : H1 → H1
h. For L2 functions,

we have the restriction operator R̃h : L2(Ω)→ L2
h where

(R̃hv)(x, y) =
1

h2

∫ h/2

−h/2

∫ h/2

−h/2

∫ h/2

−h/2

∫ h/2

−h/2

v(x + ξ + ξ′, y + η + η′)dξdξ′dηdη′.

Alternatively, for sufficiently smooth functions v ∈ Ck(Ω̄) (resp. f ∈ Ck(Ω)), k = 0, 1, . . . ,
we use the restriction operators (Rhv)(x) = v(x) (resp. (R̃hf)(x) = f(x)) on Ω̄h (resp.
Ωh).

The second-order five-point approximation to the Laplacian with homogeneous Dirichlet
boundary conditions is defined by ∆h = ∂+

1 ∂−
1 + ∂+

2 ∂−
2 . We have the following consistency

result
|∆hRhv − R̃h∆v|∞ ≤ c h2‖v‖C4(Ω̄); (18)

see, e.g., [16].
Next, an a priori estimate of the accuracy of solutions to the optimality system (9)

without constraints on the control is discussed. The last equation in (9) then becomes
νjB

∗
j Bjuj−B∗

j pj = 0, which we can use in the first equation of the system to eliminate the
control variable u. After discretization, we have the following discrete optimality system:

−∆hy
h −Bh

1 uh
1 −Bh

2 uh
2 = fh in Ωh, (19)

9



−∆hp
h
1 + yh = zh

1 in Ωh, (20)

−∆hp
h
2 + yh = zh

2 in Ωh, (21)

ν1B
h,∗
1 Bh

1 uh
1 −Bh,∗

1 ph
1 = 0 in ωh,1, (22)

ν2B
h,∗
2 Bh

2 uh
2 −Bh,∗

2 ph
2 = 0 in ωh,2, (23)

where fh = R̃hf and zh
j = R̃hzj .

We assume from now on that the discrete linear operators Bh
j are injective, i.e. of full

column rank. This corresponds to the coercivity condition of B∗
j Bj used in Proposition

3.1. We then define
Qh

j := Bh
j (Bh,∗

j Bh
j )−1Bh,∗

j , j = 1, 2.

Notice that the Qh
j are projectors onto L2

h(ωh). It follows that the Ih − Qh
j , j = 1, 2 are

also projectors. We have

ν1B
h
1 uh

1 = Qh
1 ph

1 and ν2B
h
2 uh

2 = Qh
2 ph

2 .

Next, we use this fact to eliminate the control variables from the optimality system. For
simplicity, we take ν1 = ν2 = ν; we obtain

−ν ∆hy
h −Qh

1 ph
1 −Qh

2 ph
2 = ν fh in Ωh, (24)

−∆hp
h
1 + yh = zh

1 in Ωh, (25)

−∆hp
h
2 + yh = zh

2 in Ωh. (26)

For the purpose of our analysis, we add and subtract ph
1 and ph

2 in (24) and consider the
L2

h-inner product of this state equation with the state variable. Further, we consider the
L2

h-inner product of the first adjoint equation with ph
1 and of the second adjoint equation

with ph
2 . We then obtain

ν(−∆hy
h, yh)L2

h

− (ph
1 , y

h)L2

h

− (ph
2 , y

h)L2

h

+((Ih −Qh
1) ph

1 , y
h)L2

h

+ ((Ih −Qh
2) ph

2 , y
h)L2

h

= ν(fh, yh)L2

h

, (27)

(−∆hp
h
1 , p

h
1)L2

h

+ (yh, ph
1)L2

h

= (zh
1 , ph

1)L2

h

, (28)

(−∆hp
h
2 , p

h
2)L2

h

+ (yh, ph
2)L2

h

= (zh
2 , ph

2)L2

h

. (29)

Summing up the three equations (27), (28), (29), we get

ν(−∆hy
h, yh)L2

h

+ (−∆hp
h
1 , p

h
1)L2

h

+ (−∆hp
h
2 , p

h
2)L2

h

+ ((Ih −Qh
1) ph

1 , y
h)L2

h

+ ((Ih −Qh
2) ph

2 , y
h)L2

h

= ν(fh, yh)L2

h

+ (zh
1 , ph

1)L2

h

+ (zh
2 , ph

2)L2

h

.

Noting that (−∆hvh, vh)L2

h

= (∇hvh,∇hvh)L2

h

=
∑2

i=1 |∂−
i vh|20, recalling that Ih − Qh

j is a
projection operator, and using the Cauchy-Schwarz inequality yields

ν|∇hy
h|20 + |∇hp

h
1 |20 + |∇hp

h
2 |20 ≤ ν|fh|0 |yh|0 + |zh

1 |0 |ph
1 |0 + |zh

2 |0 |ph
2 |0 + |yh|0 |ph

1 |0 + |yh|0 |ph
2 |0,

where the operator ∇h is defined by ∇hf :=
(

∂−
1 f, ∂−

2 f
)

. Now, we need the following result
from [33].
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Lemma 4.1 (Poincaré–Friedrichs inequality for finite differences) For any grid func-
tion vh, there exists a constant c∗, independent of vh and h, such that

|vh|20 ≤ c∗

2
∑

i=1

|∂−
i vh|20. (30)

Lemma 4.1 immediately gives

1

c∗

{

ν|yh|20 + |ph
1 |20 + |ph

2 |20
}

≤ ν|fh|0 |yh|0 + |zh
1 |0 |ph

1 |0 + |zh
2 |0 |ph

2 |0 + |yh|0 |ph
1 |0 + |yh|0 |ph

2 |0

Applying the Cauchy inequality |ab| ≤ a2

2
+ b2

2
and assuming c∗ sufficiently small, we obtain

ν|yh|20 + |ph
1 |20 + |ph

2 |20 ≤ c
(

|fh|20 + |zh
1 |20 + |zh

2 |20
)

, (31)

where c is a positive constant depending on ν and c∗.
Using (31), we are now able to determine the degree of accuracy of the optimal solution.

For this purpose, notice that (24)–(26) hold true with yh, ph
1 , and ph

2 replaced by their
respective error functions, and with fh and zh

1 and zh
2 replaced by the truncation error for

∆h estimated by (18). These statements are summarized in the following theorem where
we explicitly consider possibly different ν1 and ν2.

Theorem 4.2 Let y ∈ C4(Ω̄), and p ∈ C4(Ω̄), be solutions of (9) without constraints
on the controls, assume Bh

j has full column rank, and let yh, ph
1 , and ph

2 be solutions to
(24)–(26). Then there exists a constant c, depending on Ω, and independent of h, such that

|yh−Rhy|20 +
1

ν1
|ph

1 −Rhp1|20 +
1

ν2
|ph

2 −Rhp2|20 ≤ c h4
(

‖y‖2C4(Ω̄) + ‖p1‖2C4(Ω̄) + ‖p2‖2C4(Ω̄)

)

.

Remark 4.3 The second-order accuracy estimate stated in Theorem 4.2 can also be
proved in the context of finite differences assuming y, p ∈ H1

0 (Ω) ∩ H3(Ω); see [3]. In
the context of finite elements, we could prove that the same order of accuracy holds with
y, p ∈ H1

0 (Ω) ∩H2(Ω).

Theorem 4.2 states second-order accuracy of the solution of the finite-difference approxi-
mation to (9) assuming no constraints on the control. On the other hand, in the presence
of active constraints, the analysis given above does not hold. In this case, in the context
of finite differences and using the analysis given in [2, 25] it is possible to prove only a
first-order accuracy estimate. In the context of finite elements it would be possible to
extend results given in [26, 31, 34], for the case of single-objective optimization, to prove
O(h2) convergence for the state and the adjoint variables and O(h3/2) for the constrained
control variables.
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5 The Semismooth Newton Method

In this section, we discuss the semismooth Newton method to solve our discrete multiob-
jective optimal control problem. Alternatively, it might be possible to develop an infinite-
dimensional semismooth Newton method like in [17, 19, 35] in other contexts. Here, how-
ever, we follow the first discretize then optimize approach [18]. We assume a square domain
with a uniform grid with mesh size h = 1/(N + 1) > 0 where N is the number of interior
grid points in one direction. For simplicity of notation, we write B1, B2, u1, u2, . . . instead
of Bh

1 , Bh
2 , uh

1 , u
h
2 , . . .. That is we omit the superscript h for the discretized matrices and

vectors. Notice that the finite-difference matrix A of the negative Laplacian is nonsingular,
and therefore we have the following

Ay = B1u1 + B2u2 + f ⇐⇒ y = A−1B1u1 + A−1B2u2 + A−1f.

Correspondingly, the discretized reduced objectives are given by

Ĵ1(u1, u2) =
1

2

∥

∥A−1B1u1 + A−1B2u2 + A−1f − z1‖22 +
ν1

2
‖B1u1‖22 and

Ĵ2(u1, u2) =
1

2

∥

∥A−1B1u1 + A−1B2u2 + A−1f − z2‖22 +
ν2

2
‖B2u2‖22,

respectively, whereas the (box) constraints of the controls u1 and u2 read as follows

g1(u1, u2) :=

(

l1 − u1

u1 − r1

)

≤ 0 and g2(u1, u2) :=

(

l2 − u2

u2 − r2

)

≤ 0.

Now, consider the following optimization problem

min
u1

Ĵ1(u1, u2) s.t. l1 − u1 ≤ 0, u1 − r1 ≤ 0.

The Lagrangian of this problem is given by

1

2

∥

∥A−1B1u1 + A−1B2u2 + A−1f − z1‖22 +
ν1

2
‖B1u1‖22 +

(

λl1
λr1

)T (
l1 − u1

u1 − r1

)

,

with suitable Lagrange multipliers λl1, λr1. Hence, the KKT conditions are as follows

BT
1 A−1

[

A−1B1u1 + A−1B2u2 + A−1f − z1

]

+ ν1B
T
1 B1u1 − λl1 + λr1 = 0,

l1,i − u1,i ≤ 0, λl1,i ≥ 0, λl1,i[l1,i − u1,i] = 0 ∀ i,

u1,i − r1,i ≤ 0, λr1,i ≥ 0, λr1,i[l1,i − u1,i] = 0 ∀ i.

Similarly, for the control u2 we obtain the corresponding KKT conditions

BT
2 A−1[A−1B1u1 + A−1B2u2 + A−1f − z2] + ν2B

T
2 B2u2 − λl2 + λr2 = 0,

l2,i − u2,i ≤ 0, λl2,i ≥ 0, λl2,i[l2,i − u2,i] = 0 ∀ i,

u2,i − r2,i ≤ 0, λr2,i ≥ 0, λr2,i[u2,i − r2,i] = 0 ∀ i

12



with suitable multipliers λl2, λr2. Introducing slack variables wl1, wr1 for control 1 and
wl2, wr2 for control 2, we obtain from the definition of y the combined KKT conditions

BT
1 A−1[y − z1] + ν1B

T
1 B1u1 − λl1 + λr1 = 0,

BT
2 A−1[y − z2] + ν2B

T
2 B2u2 − λl2 + λr2 = 0,

Ay − B1u1 −B2u2 − f = 0,

l1 − u1 + wl1 = 0,

u1 − r1 + wr1 = 0,

l2 − u2 + wl2 = 0,

u2 − r2 + wr2 = 0,

wl1 ◦ λl1 = 0,

wr1 ◦ λr1 = 0,

wl2 ◦ λl2 = 0,

wr2 ◦ λr2 = 0,

wl1, wr1, wl2, wr2, λl1, λr1, λl2, λr2 ≥ 0

where ◦ denotes the Hadamard (componentwise) product of two vectors. Similar to (8),
we next define the adjoint variables

p1 := −A−1[y − z1] and p2 := −A−1[y − z2],

respectively. Then we can write the combined KKT–conditions as follows:

ν1B
T
1 B1u1 − BT

1 p1 − λl1 + λr1 = 0,

ν2B
T
2 B2u2 − BT

2 p2 − λl2 + λr2 = 0,

Ay − B1u1 − B2u2 − f = 0,

Ap1 + y − z1 = 0,

Ap2 + y − z2 = 0,

l1 − u1 + wl1 = 0,

u1 − r1 + wr1 = 0,

l2 − u2 + wl2 = 0,

u2 − r2 + wr2 = 0,

wl1 ◦ λl1 = 0,

wr1 ◦ λr1 = 0,

wl2 ◦ λl2 = 0,

wr2 ◦ λr2 = 0,

wl1, wr1, wl2, wr2, λl1, λr1, λl2, λr2 ≥ 0.

Here, the dimensions of the corresponding data and the variables are (with n = N2):

A ∈ R
n×n, B1 ∈ R

n×n1, B2 ∈ R
n×n2,

13



f, p1, p2 ∈ R
n, u1, wl1, wr1, λl1, λr1 ∈ R

n1, u2, wl2, wr2, λl2, λr2 ∈ R
n2 .

The vector of variables is

z := (y, u1, u2, p1, p2, λl1, λr1, λl2, λr2, wl1, wr1, wl2, wr2).

Now, let
ϕ : R

2 −→ R, ϕ(a, b) :=
√

a2 + b2 − a− b

denote the Fischer-Burmeister-function introduced in [13]. It has the important property
that

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Hence the combined KKT–condition can be rewritten as an unconstrained system of non-
linear equations

H(z) = 0,

where H : R
d −→ R

d is defined by

H(y, u1, u2, p1, p2, λl1, λr1, λl2, λr2, wl1, wr1, wl2, wr2) :=













































ν1B
T
1 B1u1 −BT

1 p1 − λl1 + λr1

ν2B
T
2 B2u2 −BT

2 p2 − λl2 + λr2

Ay − B1u1 −B2u2 − f
Ap1 + y − z1

Ap2 + y − z2

l1 − u1 + wl1
u1 − r1 + wr1

l2 − u2 + wl2
u2 − r2 + wr2

φ(λl1, wl1)
φ(λr1, wr1)
φ(λl2, wl2)
φ(λr2, wr2)













































with
φ(a, b) :=

(

ϕ(a1, b1), . . . , ϕ(am, bm)
)

for m ∈ {n1, n2}.
Since ϕ is nonsmooth, the mapping H is also nonsmooth in general. However, we have the
following result that can be derived in a standard way.

Theorem 5.1 The mapping H is strongly semismooth.

The semismooth Newton method from [27, 28] can therefore be applied to the system of
equations H(z) = 0. In order to present a globalized version of the locally convergent
semismooth Newton method, we will also exploit the corresponding merit function

Ψ(z) :=
1

2
‖H(z)‖22.
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Despite the nonsmoothness of H , it turns out that this merit function is continuously
differentiable. We formulate this in the following result whose proof is again standard and
therefore omitted here.

Theorem 5.2 The merit function Ψ : R
d → R is continuously differentiable.

Exploiting the smoothness of Ψ, we are now able to restate the globalized semismooth
Newton method from [7], adapted to our context. (In this and the next two sections ∆
denotes differences and not the Laplacian operator.)

Algorithm 5.3 (Globalized Semismooth Newton Method)

(S.1) Choose a starting point z0 = (y0, u0
1, u

0
2, . . . , wr0

2), parameters ρ > 0, p > 2, β ∈
(0, 1), σ ∈ (0, 1/2), ε > 0, and set k := 0.

(S.2) If ‖∇Ψ(zk)‖ ≤ ε: STOP.

(S.3) Choose an element Vk ∈ ∂H(zk).

(S.4) Compute a solution ∆zk of the linear system of equations Vk∆z = −H(zk). If this
system is not solvable or the solution does not satisfy the sufficient decrease condition
∇Ψ(zk)T ∆zk ≤ −ρ‖∆zk‖p, then set ∆zk := −∇Ψ(zk).

(S.5) Compute a stepsize tk = max{βℓ | ℓ = 0, 1, 2, . . .} satisfying the Armijo condition

Ψ(zk + tk∆zk) ≤ Ψ(zk) + σtk∇Ψ(zk)T ∆zk.

(S.6) Set zk+1 := zk + tk∆zk, k ← k + 1, and go to (S.1).

The corresponding local and global convergence result from [7], once again slightly adapted
to our case, then reads as follows.

Theorem 5.4 The following statements hold:

(a) Algorithm 5.3 is well-defined.

(b) Every accumulation point of a sequence {zk} generated by Algorithm 5.3 is a station-
ary point of Ψ.

(c) If an accumulation point z̄ of the sequence {zk} is such that all matrices V ∈ ∂H(z̄)
are nonsingular, then z̄ is a solution of H(z) = 0, and the sequence {zk} convergence
locally quadratically to z̄.

The previous result raises the following important questions: 1) Is a stationary point of
Ψ already a global minimum, hence a solution of H(z) = 0 and, therefore, also a solution
of our (discretized) Nash equilibrium problem? 2) Are all matrices V ∈ ∂H(z̄) at a
solution z̄ automatically nonsingular? These two questions will be discussed in detail in
the subsequent two sections.
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6 A Stationary Point Result

The aim of this section is to show that a stationary point z∗ of the merit function Ψ
is already a global minimum of this function, hence a solution of the nonlinear system of
equations H(z) = 0 and, consequently, also a solution of the (discretized) Nash equilibrium
problem. In view of Theorem 5.4, it then follows that every accumulation point of a
sequence {zk} generated by Algorithm 5.3 is a solution of the Nash equilibrium problem.

In order to prove the main result of this section, we need the generalized Jacobian of the
mapping H . To this end, we first recall that the convex subdifferential (which is identical
to the generalized gradient in this case) of the Fischer-Burmeister-function at an arbitrary
point (a, b) ∈ R

2 is given by

∂ϕ(a, b) =







(

a
‖(a,b)‖2

− 1, b
‖(a,b)‖2

− 1

)

, if (a, b) 6= (0, 0),
{(

ξ − 1, ζ − 1
) ∣

∣ ‖(ξ, ζ)‖2 ≤ 1
}

, if (a, b) = (0, 0).
(32)

Then we write Dl1
a , Dl1

b for the diagonal matrices

Dl1
a = diag

(

al1
1 , . . . , al1

n1

)

, Dl1
b = diag

(

bl1
1 , . . . , bl1

n1

)

with diagonal elements (al1
i , bl1

i ) ∈ ∂ϕ(λl1,i, wl1,i) for all i = 1, . . . , n1. In a similar way, we
define the corresponding diagonal matrices

Dr1

a , Dr1

b , Dl2
a , Dl2

b , Dr2

a , Dr2

b .

In view of the previous representation of the subdifferential of ϕ, it follows immediately
that all diagonal matrices are negative semidefinite, and that the sum of each pair like
(

Dl1
a , Dl1

b

)

is a negative definite diagonal matrix since the diagonal elements at the same
position cannot be equal to zero at the same time. This simple observation will play some
role in our subsequent analysis.

Using standard calculus rules for nonsmooth mappings from [6], it is now easy to see
that each element V ∈ ∂H(z) has the following structure:












































0 ν1B
T
1 B1 0 −BT

1 0 −I +I 0 0 0 0 0 0
0 0 ν2B

T
2 B2 0 −BT

2 0 0 −I +I 0 0 0 0
A −B1 −B2 0 0 0 0 0 0 0 0 0 0
I 0 0 A 0 0 0 0 0 0 0 0 0
I 0 0 0 A 0 0 0 0 0 0 0 0
0 −I 0 0 0 0 0 0 0 +I 0 0 0
0 +I 0 0 0 0 0 0 0 0 +I 0 0
0 0 −I 0 0 0 0 0 0 0 0 +I 0
0 0 +I 0 0 0 0 0 0 0 0 0 +I

0 0 0 0 0 Dl1
a 0 0 0 Dl1

b 0 0 0
0 0 0 0 0 0 Dr1

a 0 0 0 Dr1

b 0 0

0 0 0 0 0 0 0 Dl2
a 0 0 0 Dl2

b 0
0 0 0 0 0 0 0 0 Dr2

a 0 0 0 Dr2

b













































.
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We know from the previous discussion that all the diagonal matrices Dl1
a , Dl1

b etc. occur-
ing inside this matrix V are negative semidefinite. For the moment, we now assume, in
addition, that

Dl1
a , Dl1

b , Dr1

a , Dr1

b , Dl2
a , Dl2

b , Dr2

a , Dr2

b are negative definite, (33)

hence nonsingular. In general, this assumption does not hold, but we will see later how to
exploit this condition in the main result of this section.

Proposition 6.1 Given an arbitrary point

z = (y, u1, u2, p1, p2, λl1, λr1, λl2, λr2, wl1, wr1, wl2, wr2)

satisfying (33), each element V ∈ ∂H(z) of the generalized Jacobian of H at this point is
nonsingular.

Proof. We consider the homogeneous linear system of equations V ·∆z = 0 with

∆z =:
(

∆y, ∆u1, ∆u2, ∆p1, ∆p2, ∆λl1, ∆λr1, ∆λl2, ∆λr2, ∆wl1, ∆wr1, ∆wl2, ∆wr2

)

(34)

being appropriately partitioned. Taking into account the special structure of an arbitrary
element V ∈ ∂H(z), this can be rewritten as

ν1B
T
1 B1∆u1 − BT

1 ∆p1 −∆λl1 + ∆λr1 = 0, (35)

ν2B
T
2 B2∆u2 − BT

2 ∆p2 −∆λl2 + ∆λr2 = 0, (36)

A∆y − B1∆u1 −B2∆u2 = 0, (37)

∆y + A∆p1 = 0, (38)

∆y + A∆p2 = 0, (39)

−∆u1 + ∆wl1 = 0, (40)

∆u1 + ∆wr1 = 0, (41)

−∆u2 + ∆wl2 = 0, (42)

∆u2 + ∆wr2 = 0, (43)

Dl1
a ∆λl1 + Dl1

b ∆wl1 = 0, (44)

Dr1

a ∆λr1 + Dr1

b ∆wr1 = 0, (45)

Dl2
a ∆λl2 + Dl2

b ∆wl2 = 0, (46)

Dr2

a ∆λr2 + Dr2

b ∆wr2 = 0. (47)

Using (40)–(43), we obain

∆wl1 = ∆u1, ∆wr1 = −∆u1, ∆wl2 = ∆u2, ∆wr2 = −∆u2.

Substituting these expressions into the remaining equations yields

ν1B
T
1 B1∆u1 − BT

1 ∆p1 −∆λl1 + ∆λr1 = 0, (48)
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ν2B
T
2 B2∆u2 − BT

2 ∆p2 −∆λl2 + ∆λr2 = 0, (49)

A∆y − B1∆u1 −B2∆u2 = 0, (50)

∆y + A∆p1 = 0, (51)

∆y + A∆p2 = 0, (52)

Dl1
a ∆λl1 + Dl1

b ∆u1 = 0, (53)

Dr1

a ∆λr1 −Dr1

b ∆u1 = 0, (54)

Dl2
a ∆λl2 + Dl2

b ∆u2 = 0, (55)

Dr2

a ∆λr2 −Dr2

b ∆u2 = 0. (56)

Exploiting assumption (33), we may further solve equations (53)–(56) with respect to
∆λl1, ∆λr1, ∆λl2, ∆λr2 and obtain

∆λl1 = −(Dl1
a )−1Dl1

b ∆u1,

∆λr1 = (Dr1

a )−1Dr1

b ∆u1,

∆λl2 = −(Dl2
a )−1Dl2

b ∆u2,

∆λr2 = (Dr2

a )−1Dr2

b ∆u2.

Replacing these terms in (48)–(52), we get

ν1B
T
1 B1∆u1 − BT

1 ∆p1 + (Dl1
a )−1Dl1

b ∆u1 + (Dr1

a )−1Dr1

b ∆u1 = 0, (57)

ν2B
T
2 B2∆u2 − BT

2 ∆p2 + (Dl2
a )−1Dl2

b ∆u2 + (Dr2

a )−1Dr2

b ∆u2 = 0, (58)

A∆y − B1∆u1 − B2∆u2 = 0, (59)

∆y + A∆p1 = 0, (60)

∆y + A∆p2 = 0. (61)

Note that (57) and (58) can be reformulated as

(ν1B
T
1 B1 + D1)∆u1 −BT

1 ∆p1 = 0, (62)

(ν2B
T
2 B2 + D2)∆u2 −BT

2 ∆p2 = 0 (63)

with suitable positive definite diagonal matrices D1, D2. Since A is nonsingular, it follows
from (60) and (61) that

∆p1 = −A−1∆y, ∆p2 = −A−1∆y.

Inserting this into (62) and (63), we get

(ν1B
T
1 B1 + D1)∆u1 + BT

1 A−1∆y = 0, (64)

(ν2B
T
2 B2 + D2)∆u2 + BT

2 A−1∆y = 0. (65)

Furthermore, we obtain
∆y = A−1B1∆u1 + A−1B2∆u2
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from (59). Substituting this expression into (64) and (65) yields

(ν1B
T
1 B1 + D1 + BT

1 A−1A−1B1)∆u1 + BT
1 A−1A−1B2∆u2 = 0,

(ν2B
T
1 B2 + D2 + BT

2 A−1A−1B2)∆u2 + BT
2 A−1A−1B1∆u1 = 0.

In matrix–vector notation, the previous two equations are equivalent to
(

ν1B
T
1 B1 + D1 + BT

1 A−2B1 BT
1 A−2B2

BT
2 A−2B1 ν2B

T
2 B2 + D2 + BT

2 A−2B2

)(

∆u1

∆u2

)

=

(

0
0

)

,

which, in turn, can be rewritten as
[

(

ν1B
T
1 B1 + D1 0

0 ν2B
T
2 B2 + D2

)

+

(

BT
1 0
0 BT

2

)(

A−2 A−2

A−2 A−2

)(

B1 0
0 B2

)

]

(

∆u1

∆u2

)

=

(

0
0

)

.

Now the first matrix is obviously positive definite. We claim that the second matrix is
positive semidefinite. To this end, it remains to show that

(

A−2 A−2

A−2 A−2

)

is positive semidefinite. To see this, first recall that A is symmetric positive definite. Hence
the inverse A−1 is also symmetric positive definite. Therefore, letting d = (d1, d2) ∈ R

2n

arbitrary and writing p = (p1, p2) := (A−1d1, A
−1d2), it follows that

(dT
1 , dT

2 )

(

A−2 A−2

A−2 A−2

)(

d1

d2

)

= dT
1 A−2d1 + 2dT

1 A−2d2 + dT
2 A−2d2

= pT
1 p1 + 2pT

1 p2 + pT
2 p2

= (p1 + p2)
T (p1 + p2)

= ‖p1 + p2‖22
≥ 0.

Hence we obtain (∆u1, ∆u2) = (0, 0). This, in turn, successively implies ∆z = 0 so that
the generalized Jacobian is indeed nonsingular. �

The previous result allows us to apply a standard trick from [12] in order to show that
every stationary point of Ψ is already a global minimum of this function and, therefore, a
solution of the Nash equilibrium problem.

Theorem 6.2 Every stationary point z̄ of the merit function Ψ(z) := 1
2

∥

∥H(z)
∥

∥

2
is a

solution of the Nash equilibrium problem.

Proof. Using Clarke’s generalized chain rule, it follows that 0 = ∇Ψ(z̄) = V T H(z̄) for
some matrix V ∈ ∂H(z̄). Now, we can assume without loss of generality that assumption
(33) holds since zero entries in one of the diagonal matrices from (33) can only occur if the
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corresponding entry of the vector H(z) is zero, hence these entries of the diagonal matrices
can be modified without changing the gradient. Hence, Proposition 6.1 implies that V is
nonsingular. However, the nonsingularity of V together with 0 = V T H(z̄) immediately
gives H(z̄) = 0. This, in turn, implies that the corresponding components of z are a solu-
tion of the underlying Nash equilibrium problem. �

7 A Nonsingularity Result

Here we want to show that all matrices V ∈ ∂H(z̄) are nonsingular at a solution z̄. In view
of Theorem 5.4, this implies that the semismooth Newton method is locally quadratically
convergent.

To this end, we state the following assumption.

Assumption 7.1 The matrices B1 and B2 have orthonormal columns, i.e. it holds that
BT

1 B1 = In1
and BT

2 B2 = In2
.

This assumption holds, for example, for

B1 :=

(

In1

0

)

, B2 :=

(

0
In2

)

. (66)

This is precisely the situation that we will consider in our numerical experiments, and it is
the only case discussed in [29] (where, however, the controls u1 and u2 are unconstrained).

Now, let z̄ = (y, u1, u2, p1, p2, λl1, λr1, λl2, λr2, wl1, wr1, wl2, wr2) be a solution of H(z) =
0, and let V ∈ ∂H(z̄) an arbitrary element from the generalized Jacobian of H at z̄. Then
V has precisely the structure as indicated before Proposition 6.1 except that, in addition,
we have BT

1 B1 = In1
and BT

2 B2 = In2
in our particular situation, cf. Assumption 7.1.

We need to show that this matrix V is nonsingular, and we want to verify this statement
without the additional condition from (33). Unfortunately, the proof is quite involved and
needs some technical notation.

To this end, we first recall that z̄ being a solution of H(z) = 0, we, in particular,
have that u1 is feasible, hence, for any index i ∈ {1, . . . , n1}, we either have u1,i = l1,i

(the variable is equal to the lower bound) or u1,i ∈ (l1,i, r1,i) (the variable is inactive) or
u1,i = r1,i (the variable is equal to the upper bound).

In the first case, where u1,i = l1,i, we automatically have wl1,i = 0 and wr1,i > 0, which
in turn implies λr1,i = 0. Since λl1 ≥ 0, we therefore have the two subcases λl1,i > 0 and
λl1,i = 0. On the other hand, the second case u1,i ∈ (l1,i, r1,i) automatically gives wl1,i > 0
and wr1,i > 0 which, in turn, yields λl1,i = 0 and λr1,i = 0. Finally, in the third case
u1,i = r1,i, we have wr1,i = 0 and wl1,i > 0, which then gives λl1,i = 0. Using λr1 ≥ 0,
there are the two remaining subcases λr1,i > 0 and λr1,i = 0. Summarizing this discussion,
we see that the following five index sets form a partition of the set {1, . . . , n1}:

α1 :=
{

i | λl1,i > 0, wl1,i = 0 and λr1,i = 0, wr1,i > 0
}

,

20



β1 :=
{

i | λl1,i = 0, wl1,i = 0 and λr1,i = 0, wr1,i > 0
}

,

γ1 :=
{

i | λl1,i = 0, wl1,i > 0 and λr1,i = 0, wr1,i > 0
}

δ1 :=
{

i | λl1,i = 0, wl1,i > 0 and λr1,i > 0, wr1,i = 0
}

,

ε1 :=
{

i | λl1,i = 0, wl1,i > 0 and λr1,i = 0, wr1,i = 0
}

.

A similar reasoning applied to the control u2 shows that the subsequent index sets form a
partitioning of the set {1, . . . , n2}:

α2 :=
{

i | λl2,i > 0, wl2,i = 0 and λr2,i = 0, wr2,i > 0
}

,

β2 :=
{

i | λl2,i = 0, wl2,i = 0 and λr2,i = 0, wr2,i > 0
}

,

γ2 :=
{

i | λl2,i = 0, wl2,i > 0 and λr2,i = 0, wr2,i > 0
}

δ2 :=
{

i | λl2,i = 0, wl2,i > 0 and λr2,i > 0, wr2,i = 0
}

,

ε2 :=
{

i | λl2,i = 0, wl2,i > 0 and λr2,i = 0, wr2,i = 0
}

.

Next, we recall that the generalized gradient ∂ϕ(a, b) of the Fischer-Burmeister-function
is given by (32), and that the diagonal matrices Dl1

a , . . . , Dr2

b are defined by

Dl1
a = diag

(

al1
1 , . . . , al1

n1

)

, Dl1
b = diag

(

bl1
1 , . . . , bl1

n1

)

with
(

al1
i , bl1

i

)

∈ ∂ϕ(λl1,i, wl1,i),

Dr1

a = diag
(

ar1

1 , . . . , ar1

n1

)

, Dr1

b = diag
(

br1

1 , . . . , br1

n1

)

with
(

ar1

i , br1

i

)

∈ ∂ϕ(λr1,i, wr1,i),

Dl2
a = diag

(

al2
1 , . . . , al2

n2

)

, Dl2
b = diag

(

bl2
1 , . . . , bl2

n2

)

with
(

al2
i , bl2

i

)

∈ ∂ϕ(λl2,i, wl2,i),

Dr2

a = diag
(

ar2

1 , . . . , ar2

n2

)

, Dr2

b = diag
(

br2

1 , . . . , br2

n2

)

with
(

ar2

i , br2

i

)

∈ ∂ϕ(λr2,i, wr2,i).

Taking into account the definition of these index sets as well as the particular structure
of the subdifferential ∂ϕ, we immediately obtain the following representation of the above
diagonal matrices.

Lemma 7.2 The diagonal matrices Dl1
a , Dl1

b , Dr1

a , Dr1

b have the following diagonal entries:

α1 β1 γ1 δ1 ε1

Dl1
a 0α1α1

∗ −Iγ1γ1
−Iδ1δ1 −Iε1ε1

Dl1
b −Iα1α1

∗ 0γ1γ1
0δ1δ1 0ε1ε1

Dr1

a −Iα1α1
−Iβ1β1

−Iγ1γ1
0δ1δ1 ∗

Dr1

b 0α1α1
0β1β1

0γ1γ1
−Iδ1δ1 ∗

Similarly, the diagonal matrices Dl2
a , Dl2

b , Dr2

a , Dr2

b consist of the following entries:

α2 β2 γ2 δ2 ε2

Dl2
a 0α2α2

∗ −Iγ2γ2
−Iδ2δ2 −Iε2ε2

Dl2
b −Iα2α2

∗ 0γ2γ2
0δ2δ2 0ε2ε2

Dr2

a −Iα2α2
−Iβ2β2

−Iγ2γ2
0δ2δ2 ∗

Dr2

b 0α2α2
0β2β2

0γ2γ2
−Iδ2δ2 ∗

Here, ∗ stands for a negative semidefinite matrix whose precise entries do not matter.
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In order to understand the meaning of the two tables from Lemma 7.2, let us take a closer
look at the diagonal matrix Dl1

a , for example: Then the first line of the first table means
that the subblocks of this diagonal matrix are given by

[

Dl1
a

]

α1α1

= 0α1α1
,
[

Dl1
a

]

γ1γ1

= −Iγ1γ1
,
[

Dl1
a

]

δ1δ1
= −Iδ1δ1 ,

[

Dl1
a

]

ε1ε1

= −Iε1ε1
,

whereas the block entry
[

Dl1
a

]

β1β1

has no special structure (it is negative semidefinite, but

nothing else can be said). The other lines in the two tables have to be interpreted in a
corresponding way. This particular structure of the diagonal matrices will play a central
role in our subsequent analysis.

We now consider the homogeneous linear system of equations V ·∆z = 0 and partition
the vector ∆z in exactly the same way as in (34). Following the proof of Proposition 6.1,
we arrive at (48)–(56). From that point on, we have to change the proof since condition
(33) does not hold any longer. To this end, we first observe that (51) and (52) immediately
give

∆p1 = ∆p2 =: ∆p and, therefore, ∆y = −A∆p. (67)

Substituting this into (50) yields

−A2∆p−B1∆u1 − B2∆u2 = 0.

Taking into account Assumption 7.1, system (48)–(56) thus reduces to

ν1∆u1 − BT
1 ∆p−∆λl1 + ∆λr1 = 0, (68)

ν2∆u2 − BT
2 ∆p−∆λl2 + ∆λr2 = 0, (69)

A2∆p + B1∆u1 + B2∆u2 = 0, (70)

Dl1
a ∆λl1 + Dl1

b ∆u1 = 0, (71)

Dr1

a ∆λr1 −Dr1

b ∆u1 = 0, (72)

Dl2
a ∆λl2 + Dl2

b ∆u2 = 0, (73)

Dr2

a ∆λr2 −Dr2

b ∆u2 = 0. (74)

Solving (68), (69) for ∆u1 and ∆u2, respectively, we obtain

∆u1 =
1

ν1

(

BT
1 ∆p + ∆λl1 −∆λr1

)

, (75)

∆u2 =
1

ν2

(

BT
2 ∆p + ∆λl2 −∆λr2

)

. (76)

Inserting these expressions into (70) and rearranging terms gives

M∆p +
1

ν1

B1

(

∆λl1 −∆λr1

)

+
1

ν2

B2

(

∆λl2 −∆λr2

)

= 0, (77)

where, for simplicity of notation, we put

M := A2 +
1

ν1

B1B
T
1 +

1

ν2

B2B
T
2 . (78)

22



We next replace ∆u1, ∆u2 from (75), (76) also in equations (71)–(74) to obtain

Dl1
a ∆λl1 +

1

ν1
Dl1

b

(

BT
1 ∆p + ∆λl1 −∆λr1

)

= 0,

Dr1

a ∆λr1 −
1

ν1
Dr1

b

(

BT
1 ∆p + ∆λl1 −∆λr1

)

= 0,

Dl2
a ∆λl2 +

1

ν2
Dl2

b

(

BT
2 ∆p + ∆λl2 −∆λr2

)

= 0,

Dr2

a ∆λr2 −
1

ν2
Dr2

b

(

BT
2 ∆p + ∆λl2 −∆λr2

)

= 0.

Reordering terms, system (68)–(74) therefore reduces to

M∆p +
1

ν1
B1

(

∆λl1 −∆λr1

)

+
1

ν2
B2

(

∆λl2 −∆λr2

)

= 0,

1

ν1
Dl1

b BT
1 ∆p +

(

Dl1
a +

1

ν1
Dl1

b

)

∆λl1 −
1

ν1
Dl1

b ∆λr1 = 0,

− 1

ν1
Dr1

b BT
1 ∆p +

(

Dr1

a +
1

ν1
Dr1

b

)

∆λr1 −
1

ν1
Dr1

b ∆λl1 = 0,

1

ν2
Dl2

b BT
2 ∆p +

(

Dl2
a +

1

ν2
Dl2

b

)

∆λl2 −
1

ν2
Dl2

b ∆λr2 = 0,

− 1

ν2
Dr2

b BT
2 ∆p +

(

Dr2

a +
1

ν2
Dr2

b

)

∆λr2 −
1

ν2
Dr2

b ∆λl2 = 0.

Let us define
∆q1 := BT

1 ∆p, ∆q2 := BT
2 ∆p (79)

as well as

Dl1 := Dl1
a +

1

ν1

Dl1
b , Dr1 := Dr1

a +
1

ν1

Dr1

b , Dl2 := Dl2
a +

1

ν2

Dl2
b , Dr2 := Dr2

a +
1

ν2

Dr2

b .

Noting that these diagonal matrices are nonsingular (in fact, negative definite) and denoting
by

D−l1, D−r1, D−l2, D−r2 the inverses of Dl1 , Dr1, Dl2, Dr2,

respectively, our linear system can be rewritten as

0 = M∆p +
1

ν1
B1

(

∆λl1 −∆λr1

)

+
1

ν2
B2

(

∆λl2 −∆λr2

)

, (80)

∆λl1 =
1

ν1

D−l1Dl1
b

(

∆λr1 −∆q1

)

, (81)

∆λr1 =
1

ν1

D−r1Dr1

b

(

∆λl1 + ∆q1

)

, (82)

∆λl2 =
1

ν2

D−l2Dl2
b

(

∆λr2 −∆q2

)

, (83)
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∆λr2 =
1

ν2
D−r2Dr2

b

(

∆λl2 + ∆q2

)

. (84)

We now exploit the fact that the vector z̄ under consideration is a solution of H(z) = 0.
Hence, the index sets αi, βi, γi, δi, εi form a partition of the set {1, . . . , ni} for i = 1, 2.
Therefore, considering equations (81), (82) for each of the blocks α1, β1, γ1, δ1, ε1 as well
as equations (83), (84) for each of the block components α2, β2, γ2, δ2, ε2 separately and
exploiting the special structure of the diagonal matrices from Lemma 7.2, we obtain

[

∆λl1
]

α1

= − 1

ν1

[

D−l1
]

α1α1

([

∆λr1

]

α1

−
[

∆q1

]

α1

)

,

[

∆λl1
]

β1

=
1

ν1

[

D−l1
]

β1β1

[

Dl1
b

]

β1β1

([

∆λr1

]

β1

−
[

∆q1

]

β1

)

,
[

∆λl1
]

γ1

=
[

∆λl1
]

δ1
=
[

∆λl1
]

ε1

= 0,

[

∆λr1

]

α1

=
[

∆λr1

]

β1

=
[

∆λr1

]

γ1

= 0,

[

∆λr1

]

δ1
= − 1

ν1

[

D−r1

]

δ1δ1

([

∆λl1
]

δ1
+
[

∆q1

]

δ1

)

,

[

∆λr1

]

ε1

=
1

ν1

[

D−r1

]

ε1ε1

[

Dr1

b

]

ε1ε1

([

∆λl1
]

ε1

+
[

∆q1

]

ε1

)

,

[

∆λl2
]

α2

= − 1

ν2

[

D−l2
]

α2α2

([

∆λr2

]

α2

−
[

∆q2

]

α2

)

,

[

∆λl2
]

β2

=
1

ν2

[

D−l2
]

β2β2

[

Dl2
b

]

β2β2

([

∆λr2

]

β2

−
[

∆q2

]

β2

)

,
[

∆λl2
]

γ2

=
[

∆λl2
]

δ2
=
[

∆λl2
]

ε2

= 0,

[

∆λr2

]

α2

=
[

∆λr2

]

β2

=
[

∆λr2

]

γ2

= 0,

[

∆λr2

]

δ2
= − 1

ν2

[

D−r2

]

δ2δ2

([

∆λl2
]

δ2
+
[

∆q2

]

δ2

)

,

[

∆λr2

]

ε2

=
1

ν2

[

D−r2

]

ε2ε2

[

Dr2

b

]

ε2ε2

([

∆λl2
]

ε2

+
[

∆q2

]

ε2

)

.

Taking into account that several block components of ∆λl1, ∆λr1, ∆λl2, ∆λr2 are equal to
zero, we may further reduce the nontrivial terms to

[

∆λl1
]

α1

=
1

ν1

[

D−l1
]

α1α1

[

∆q1

]

α1

,

[

∆λl1
]

β1

= − 1

ν1

[

D−l1
]

β1β1

[

Dl1
b

]

β1β1

[

∆q1

]

β1

,
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[

∆λr1

]

δ1
= − 1

ν1

[

D−r1

]

δ1δ1

[

∆q1

]

δ1
,

[

∆λr1

]

ε1

=
1

ν1

[

D−r1

]

ε1ε1

[

Dr1

b

]

ε1ε1

[

∆q1

]

ε1

,

[

∆λl2
]

α2

=
1

ν2

[

D−l2
]

α2α2

[

∆q2

]

α2

,

[

∆λl2
]

β2

= − 1

ν2

[

D−l2
]

β2β2

[

Dl2
b

]

β2β2

[

∆q2

]

β2

,

[

∆λr2

]

δ2
= − 1

ν2

[

D−r2

]

δ2δ2

[

∆q2

]

δ2
,

[

∆λr2

]

ε2

=
1

ν2

[

D−r2

]

ε2ε2

[

Dr2

b

]

ε2ε2

[

∆q2

]

ε2

.

Hence we obtain

∆λl1 −∆λr1 = Λ1∆q1 and ∆λl2 −∆λr2 = Λ2∆q2 (85)

with diagonal matrices Λ1 and Λ2 given by

Λ1 :=
1

ν1
diag

(

[

D−l1
]

α1α1

,−
[

D−l1
]

β1β1

[

Dl1
b

]

β1β1

, 0γ1γ1
,
[

D−r1

]

δ1δ1
,−
[

D−r1

]

ε1ε1

[

Dr1

b

]

ε1ε1

)

,

Λ2 :=
1

ν2
diag

(

[

D−l2
]

α2α2

,−
[

D−l2
]

β2β2

[

Dl2
b

]

β2β2

, 0γ2γ2
,
[

D−r2

]

δ2δ2
,−
[

D−r2

]

ε2ε2

[

Dr2

b

]

ε2ε2

)

.

The central property of these two diagonal matrices are summarized in the following result.

Lemma 7.3 The matrices I + Λ1 and I + Λ2 are both positive semidefinite.

Proof. We verify the statement only for the matrix I + Λ1 since the proof is similar for
the second matrix I + Λ2. To this end, we take a closer look at the block components of
the matrix Λ1 corresponding to the blocks defined by the index sets α1, β1, γ1, δ1, and ε1,
respectively. We have to show that all entries of the diagonal matrix Λ1 are greater or
equal to −1.

First, consider the elements from the index set α1. The definition of the matrix Dl1

together with Lemma 7.2 then shows that 1
ν1

[

D−l1
]

α1α1

= −Iα1α1
. Next, for the index set

β1, we can argue as for the index set ε1, see below. The diagonal elements of Λ1 belonging
to the index set γ1 are equal to zero by definition. Using Lemma 7.2 once again, we
immediately see that the δ1-block is given by 1

ν1

[

D−r1

]

δ1δ1
= −Iδ1δ1 .

Finally, let us consider the block corresponding to the index set ε1, and take an arbitrary
element i ∈ ε1. The definition of the matrix Λ1 shows that the diagonal element di

belonging to this index is given by

di =
1

ν1

(

ζi − 1
) 1

(1− ξi) + 1
ν1

(1− ζi)
=

ζi − 1

ν1(1− ξi) + (1− ζi)

25



for some vector (ξi, ζi) satisfying ‖(ξi, ζi)‖ ≤ 1. An elementary calculation then shows that
di ≥ −1 holds. Altogether, this completes the proof. �

We are now in a position to verify the nonsingularity of the given matrix V ∈ ∂H(z̄). To
this end, let us come back to equation (77). Exploiting (85), we obtain

M∆p +
1

ν1
B1Λ1∆q1 +

1

ν2
B2Λ2∆q2 = 0.

In view of the definition (79) of the two vectors ∆q1 and ∆q2, this may be rewritten as

(

M +
1

ν1
B1Λ1B

T
1 +

1

ν2
B2Λ2B

T
2

)

∆p = 0.

Recalling the definition (78) of M , this is equivalent to

(

A2 +
1

ν1
B1(I + Λ1)B

T
1 +

1

ν2
B2(I + Λ2)B

T
2

)

∆p = 0.

Since A and, therefore, also A2 is positive definite, it now follows from Lemma 7.3 that
∆p = 0. By definition, this means that ∆p1 = 0 and ∆p2 = 0, which in turn also gives
∆y = 0, cf. (67). Furthermore, it also follows from (79) that ∆q1 = 0 and ∆q2 = 0. This
immediately gives ∆λl1 = 0, ∆λr1 = 0, ∆λl2 = 0, and ∆λr2 = 0. Hence (75), (76) yield
∆u1 = 0 and ∆u2 = 0. Finally, this also gives ∆wl1 = 0, ∆wr1 = 0, ∆wl2 = 0, and
∆wr2 = 0. We have thus proven the following result.

Theorem 7.4 Let z̄ be a solution of H(z) = 0 such that Assumption 7.1 holds. Then all
elements V ∈ ∂H(z̄) are nonsingular.

Recall that Theorem 7.4 is highly important since it guarantees the local quadratic con-
vergence of the semismooth Newton method applied to H(z) = 0. Hence, together with
Theorem 6.2, it follows that Algorithm 5.3 has very nice global and local convergence
properties.

8 Numerical Results

We validate our globalized semismooth Newton scheme (Algorithm 5.3 in MATLAB) using
the stepsize parameters σ = 10−4 and β = 0.5 as well as the termination parameter
ε = 10−8. Since we never observed singularity problems, we always took the Newton-
type direction and remove the switching to the antigradient direction from Algorithm 5.3
in our implementation. We use Ω = (0, 1) × (0, 1), the matrices B1 and B2 from (66),
and the starting point z0 = 0. We tested several examples with different choices of the
stepsize h = 1/(N + 1), the lower and upper bounds l1, r1, l2, r2, the weights ν1, ν2, the
target values z1, z2, and the right-hand side f . Our method was able to solve all cases
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with typical Newton efficiency and showing robustness with respect to the optimization
parameters.

For the purpose of validating the accuracy of the computed optimal solution, we define
the following test case with known analytical solution. We have

y(x) := sin(πx1) sin(πx2),

p1(x) := sin(2πx1) sin(2πx2),

p2(x) := sin(3πx1) sin(3πx2).

Then set
z1(x) := y(x)−∆p1(x) and z2(x) := y(x)−∆p2(x).

Now, using

u1(x) := max

{

l1, min
{

r1,
1

ν1

B∗
1p1

}

}

, (86)

u2(x) := max

{

l2, min
{

r2,
1

ν2
B∗

2p2

}

}

(87)

and, finally,
f(x) := −∆y(x)− B1u1(x)−B2u2(x),

it is not difficult to see that u1, u2 satisfy the optimality conditions from (9), hence u1, u2

are the optimal controls and y the optimal state, i.e., the example is constructed in such a
way that we know, a priori, the solution of the underlying Nash equilibrium problem.

We illustrate different properties of our semismooth Newton method by looking at this
test case from different perspectives. For all test runs, we take the lower bounds lj equal to
−0.5 and the upper bounds rj equal to +0.5. As can be seen from the corresponding figures,
this choice guarantees that the constraints on the controls are active in certain regions.
Furthermore, we use ν1 = ν2 = 1 for our first set of test runs where we want to investigate
the behaviour of the semismooth Newton method when the dimension increases. Table
1 summarizes the results that we obtained using different step sizes h = 1/(N + 1), N ∈
N. More precisely, we report the function values Ψ(zk) at each iteration for different
discretizations. The resulting optimal controls u1 and u2 are shown in Figure 1 for the
case N = 64. As can be seen from Table 1, the number of iterations remains essentially
constant and therefore mesh-size independent.

Next, we take the same data and investigate the behaviour of the errors

|u∗
1 − uf

1 |0, |u∗
2 − uf

2 |0, |y∗ − yf |0,

where u∗
j , y

∗ denote the (known) continuous optimal solution, evaluated at the discrete

points, and uf
j , y

f are the approximate solutions at the final iterate. Table 2 presents
these errors for different discretizations. The results show that, doubling the dimension N ,
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k N = 16 N = 32 N = 64 N = 128
0 1379566.3890632149 5198447.9808923909 20168480.847509615 79437620.7950397581
1 144.6654260953 573.1040391275 2283.3415965325 9117.1902512238
2 6.1186669271 22.4315506473 87.0916543274 344.1033825083
3 1.1705448216 3.0182299762 15.3555186035 62.5034453387
4 0.0494094196 0.1134067727 0.6388759404 2.6232961841
5 0.0010851899 0.0019904354 0.0137002072 0.0571646369
6 0.0000026786 0.0000025625 0.0000207808 0.0000826226
7 0.0000000018 0.0000000003 0.0000000060 0.0000000199
8 0.0000000000

Table 1: Function values Ψ(zk) for different discretizations
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Figure 1: Computed optimal controls B1u1, B2u2 for N = 64

i.e. halving the stepsize h, results in an accuracy that is about four times better. This is
consistent with the second-order error estimate given in Theorem 4.2, although the controls
are active and a lower degree of convergence of the controls could be expected.

Finally, we take a look at the behaviour of our method for decreasing values of the
regularization parameters ν1, ν2. To this end, we take the same test problem data as
before, using the fixed discretization N = 64, and let ν1 = ν2 =: ν go down from ν = 1
to ν = 10−8. The number of iterations needed by our semismooth Newton method are
reported in Table 3. The number of iterations increases slightly, but eventually stays
constant, using nine iterations for all sufficiently small values of νj .

In fact, the method is able to solve the resulting problem also in the limiting case
ν1 = ν2 = 0 in nine iterations, though this case is not covered by our theory. More precisely,
in this case we cannot use (86), (87) to construct the functions u1, u2. Therefore, we take
small positive values ν1 = ν2 := 10−16 to define these functions, just to get a suitable test
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error N = 16 N = 32 N = 64 N = 128

|u∗
1 − uf

1 |0 0.0015673656 0.0004297785 0.0001122424 0.0000285216

|u∗
2 − uf

2 |0 0.0035529235 0.0010132386 0.0002515317 0.0000649400
|y∗ − yf |0 0.0014315618 0.0003772036 0.0000971426 0.0000246742

Table 2: Behaviour of the errors |u∗
1 − uf

1 |0, |u∗
2 − uf

2 |0 and |y∗ − yf |0

ν 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

iterations 7 8 9 10 9 9 9 9 9

Table 3: Number of iterations for different values of ν := ν1 = ν2

problem, and afterwards we do all the calculations with the semismooth Newton method
using ν1 = ν2 = 0, i.e. without a regularization term. This means that the functions u1, u2

generated via (86), (87) are no longer the analytical solutions of this example. However,
the algorithm still works very well, and the (bang-bang) solution is depicted in Figure 2.

9 Conclusion

The formulation and the semismooth Newton solution of Nash equilibria multiobjective el-
liptic optimal control problems was presented. The convergence of the semismooth Newton
method resulted to be quadratic as predicted by the theoretical investigation. Second-order
accuracy of the finite difference approximation to the unique Nash equilibrium solution was
demonstrated. Future research will focus on the analysis of the case of more than two ob-
jectives and of different control mechanisms.
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