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1 Introduction

In this paper, we consider the nonlinear complementarity problem. This problem
arises in many applications, e.g., in operations research, economic equilibrium mod-
els and in the engineering sciences (contact problems, obstacle problems, . . .), see
[11, 5] for a more detailed description. Several methods for the solution of com-
plementarity problems are known. Among them are reformulations of the comple-
mentarity problem as a fixed-point problem, as an optimization problem and as a
(smooth or nonsmooth) system of nonlinear equations. We refer the reader to the
papers [11, 9] for a survey of several of these methods.

In recent years, the interior-point approach has also been generalized from the
linear and quadratic programming problem to the (linear and) nonlinear complemen-
tarity problem. For example, Kojima et al. [16, 17, 14] prove some results which can
be viewed as a theoretical foundation of continuation methods for nonlinear com-
plementarity problems. In particular, they consider complementarity problems with
a uniform P−function, see [16]. This is exactly the problem also considered in this
paper. The approach given here, however, is completely different from the one in
[16]. Based on a tool recently introduced by the author in [13], a certain perturbed
complementarity problem is reformulated as a nonlinear system of equations. We
first use this tool in order to obtain a convergence result, and then show how this tool
can be used numerically, leading to a noninterior continuation method where the
iterates do not necessarily have to stay in the interior of the feasible region during
an entire iteration. This is an interesting difference to commonly used interior-point
methods, and some promising numerical results are reported in [13] for the linear
complementarity problem.

A similar algorithm has recently been proposed by Chen and Harker [1], but
only for the linear complementarity problem and under some different assumptions,
see also Chen and Harker [2, 3] for related methods in another context. As noted in
[13], the method by Chen and Harker [1] can be shown to be a special case of our
approach if the assumptions used in [1] are satisfied.

The paper is organized as follows: In Section 2, we present some background
material. The continuation method itself is introduced in Section 3. We note that
it is well–defined and prove that any sequence generated by this method converges
to the unique solution of the underlying complementarity problem. We also present
an inexact version of the algorithm and give a global and local convergence result
for it. We conclude this paper with some final remarks in Section 4.

Throughout this paper, the index set {1, . . . , n} is abbreviated by I. The n-di-
mensional real space is denoted by <n. If x, y ∈ <n are two vectors, then the vector
(xT , yT )T ∈ <2n is simply written as (x, y). Inequalities such as x ≥ 0 and x > 0
are defined componentwise. The nonnegative orthant of <n is denoted by <n

+. ‖z‖
always denotes the Euclidean norm of a given vector z of appropriate dimension.
For a matrix M ∈ <n×n, M = (mij), and an index set J ⊆ I, the submatrix MJJ

consists of the elements mij, i, j ∈ J.
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2 Background Material

The problem under investigation is the following.

Definition 2.1 The nonlinear complementarity problem, denoted by NCP(F ), is to
find a vector pair (x∗, y∗) ∈ <2n satisfying the conditions

x ≥ 0, y ≥ 0, xT y = 0, y = F (x). (1)

If F (x) = Mx+ q is an affine function, where M ∈ <n×n and q ∈ <n, then NCP(F )
is called a linear complementarity problem and is denoted by LCP(q, M).

We would like to solve the nonlinear complementarity problem by successive solution
of certain perturbed complementarity problems which were introduced by McLinden
[18] and which are defined in

Definition 2.2 Let µ ≥ 0 be any given parameter. The perturbed nonlinear com-
plementarity problem, PNCP(F, µ) for short, is to find a solution (x(µ), y(µ)) ∈ <2n

of the following system:

x ≥ 0, y ≥ 0, xiyi = µ (i ∈ I), y = F (x).

If µ = 0 then problem PNCP(F, µ) reduces to the nonlinear complementarity prob-
lem (1). – Some classes of functions F which are important in the investigation of
NCP(F ) are introduced in the next definition.

Definition 2.3 Let F : <n → <n. The mapping F is said to be a

(a) P0−function if for all x, y ∈ <n, x 6= y, there exists an index i ∈ I such that
xi 6= yi and

(xi − yi)(Fi(x)− Fi(y)) ≥ 0.

(b) uniform P−function (with modulus γ > 0) if

max
i∈I

(xi − yi)(Fi(x)− Fi(y)) ≥ γ‖x− y‖2 ∀x, y ∈ <n.

If F is an affine function, i.e., F (x) = Mx + q for some matrix M ∈ <n×n and
some vector q ∈ <n, then M is called a P−matrix if F is a uniform P−function.
Similarly, M is called a P0−matrix if F is a P0−function.

The following result is due to Moré [19, Theorem 2.3].

Lemma 2.4 Let F : <n → <n be a continuous and uniform P−function. Then
problem NCP(F ) has a unique solution.

The proof of the next result can be found in Moré and Rheinboldt [20, Corollary
5.3 and Theorem 5.8].

Lemma 2.5 Let F : <n → <n be continuously differentiable. Then F ′(x) is a
P0−matrix for all x ∈ <n if and only if F is a P0−function.
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3 Continuation Method

Let µ ≥ 0 be given. The main tool used in this paper is the function ϕµ : <2 → <
defined by

ϕµ(a, b) := a + b−
√

(a− b)2 + 4µ. (2)

This function has recently been introduced by the author in [13], where the following
lemma is proved.

Lemma 3.1 The function ϕµ has the property

ϕµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ.

In the special case µ = 0, we note that ϕµ = ϕ0 reduces to

ϕ0(a, b) = a + b−
√

(a− b)2 = a + b− |a− b| = 2 min{a, b}. (3)

The function min{a, b} has been used, e.g., by Pang [21] in order to characterize
problem NCP(F ). Here, the function ϕµ is used to characterize problem PNCP(F, µ).
To this end, let us define the nonlinear operator Fϕµ : <2n → <2n by

Fϕµ(z) := Fϕµ(x, y) :=

(
F (x)− y
ϕµ(x, y)

)
, (4)

where
ϕµ(x, y) := (ϕµ(x1, y1), . . . , ϕµ(xn, yn))T ∈ <n.

Using Lemma 3.1, we directly obtain the following

Theorem 3.2 A vector z(µ) := (x(µ), y(µ)) ∈ <2n solves the perturbed nonlinear
complementarity problem PNCP(F, µ) if and only if z(µ) solves the nonlinear system
of equations Fϕµ(z) = 0.

This result motivates the following algorithm.

Algorithm 3.3 (Continuation method)

(S.0): Let {µk} be any sequence such that µk > 0 and limk→∞ µk = 0. Set k = 0.

(S.1): Find a solution zk := z(µk) of the nonlinear system of equations

Fϕµk
(z) = 0.

(S.2): If ‖Fϕ0(z
k)‖ = 0, stop: zk solves NCP(F ).

(S.3): Set k := k + 1 and go to (S.1).
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Before giving a convergence result, we first restate a lemma due to Kojima et al.
[15, Lemma 4.1].

Lemma 3.4 The matrix (
M −In

Da Db

)

is nonsingular for any positive definite diagonal matrices Da, Db ∈ <n×n if and only
if M ∈ <n×n is a P0−matrix.

Based on this lemma, we are able to establish the following theorem.

Theorem 3.5 Let µ > 0, F : <n → <n be continuously differentiable and define Fϕµ

as in (4). Then the Jacobian matrix F ′
ϕµ

(z) is nonsingular for all z := (x, y) ∈ <2n

if F is a P0−function.

Proof. We first note that the function ϕµ is continuously differentiable for all µ > 0.
Therefore the Jacobian F ′

ϕµ
(z) exists and is given by

F ′
ϕµ

(z) =

(
F ′(x) −In

Da Db

)
,

where

Da := Da(z) := diag

(
∂ϕµ

∂a
(x1, y1), . . . ,

∂ϕµ

∂a
(xn, yn)

)
,

Db := Db(z) := diag

(
∂ϕµ

∂b
(x1, y1), . . . ,

∂ϕµ

∂b
(xn, yn)

)
.

Since ∂ϕµ

∂a
(a, b) ∈ (0, 2) and ∂ϕµ

∂b
(a, b) ∈ (0, 2) for all µ > 0 and all (a, b) ∈ <2, the

diagonal matrices Da and Db are positive definite for all z ∈ <2n. We therefore ob-
tain from Lemma 3.4 that F ′

ϕµ
(z) is nonsingular for all z = (x, y) ∈ <2n if F ′(x) is a

P0−matrix for all x ∈ <n. Because of Lemma 2.5 the latter condition is equivalent
to F being a P0−function. This proves the desired result. 2

Lemma 3.4 raises the interesting question whether or not the P0−function property
in Theorem 3.5 is also necessary for the Jacobian matrices F ′

ϕµ
(z) to be nonsingular.

The author is currently not certain whether it is always possible to find a vector
z = (x, y) ∈ <2n in such a way that F ′

ϕµ
(z) becomes singular for functions F which

are not P0−functions. (Note that the diagonal matrices Da and Db as defined in the
proof of Theorem 3.5 cannot be chosen independently.) In the following analysis,
however, only the sufficiency part given in Theorem 3.5 is needed.

We next restate a result which follows from the results by Kojima, Mizuno and
Noma [16].
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Theorem 3.6 Let F : <n → <n be a continuous and uniform P−function. Then
the perturbed problem PNCP(F, µ) has a unique solution z(µ) for each µ > 0.

In view of Theorem 3.6, the sequence {zk} as generated by Algorithm 3.3 is well-
defined. We next want to show that this sequence converges to the unique solution z∗

of the original problem NCP(F ). To this end, we first prove some simple properties
of the function ϕµ.

Lemma 3.7 Let µ, µ1, µ2 ≥ 0 be arbitrarily given. Then the following hold:

(a) |ϕµ1(a, b)− ϕµ2(a, b)| ≤ 2|√µ1 −
√

µ2| for all (a, b) ∈ <2.

(b) If {ak}, {bk} ⊆ < are two sequences with |ak| → ∞ and |bk| → ∞, then
|ϕµ(ak, bk)| → ∞.

Proof. Consider part (a). If µ1 = µ2 = 0, there is nothing to prove. Hence assume
that at least one of the perturbation parameters is positive. Then we get, for any
(a, b) ∈ <2:

|ϕµ1(a, b)− ϕµ2(a, b)| =
∣∣∣∣√(a− b)2 + 4µ1 −

√
(a− b)2 + 4µ2

∣∣∣∣
=

4|µ1 − µ2|∣∣∣√(a− b)2 + 4µ1 +
√

(a− b)2 + 4µ2

∣∣∣
≤ 2|µ1 − µ2|

|√µ1 +
√

µ2|
= 2|√µ1 −

√
µ2|.

Assertion (b) can easily be verified, see also [12]. 2

The following important boundedness result is the main step in the proof of our
convergence result (see Theorem 3.9 below).

Theorem 3.8 Let F : <n → <n be a continuous and uniform P−function. Then
the level sets

L(µ, α) := {(x, y) ∈ <2n| ‖Fϕµ(x, y)‖ ≤ α} (5)

are uniformly bounded for all 0 ≤ α ≤ ᾱ < ∞ and 0 ≤ µ ≤ µ̄ < ∞.

Proof. The proof is an extension of the one given in [10, Theorem 3.2]. Suppose
there exists an unbounded sequence {zk} := {(xk, yk)}. Let zk ∈ L(µk, αk) for
some 0 ≤ µk ≤ µ̄, 0 ≤ αk ≤ ᾱ. Without loss of generality we can assume that
µk → µ∗ and αk → α∗ for certain 0 ≤ µ∗ ≤ µ̄ and 0 ≤ α∗ ≤ ᾱ. Since the sequence
{zk} = {(xk, yk)} is unbounded and

|Fi(x
k)− yk

i | ≤ ‖F (xk)− yk‖ ≤ ‖Fϕµk
(zk)‖ ≤ αk ≤ ᾱ, (6)
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we obtain that the sequence {xk} must be unbounded. Consequently, the index set

J := {i ∈ I| {xk
i } is unbounded}

is nonempty. Let us define a second sequence {x̃k} ⊆ <n by

x̃k
i :=

{
0 if i ∈ J,
xk

i if i 6∈ J.

By construction, the sequence {x̃k} is bounded. Furthermore, using the definition
of x̃k and the uniform P−function property of F, we obtain with some constant
γ > 0 :

γ
∑
i∈J

(xk
i )

2 = γ‖xk − x̃k‖2

≤ max
i∈I

(xk
i − x̃k

i )(Fi(x
k)− Fi(x̃

k))

= max
i∈J

xk
i (Fi(x

k)− Fi(x̃
k))

≤
√∑

i∈J

(xk
i )

2
∑
i∈J

|Fi(x
k)− Fi(x̃

k)|.

Since
∑

i∈J(xk
i )

2 6= 0 at least on a subsequence {xk}k∈K1 , we therefore have

γ
√∑

i∈J

(xk
i )

2 ≤
∑
i∈J

|Fi(x
k)− Fi(x̃

k)|.

Due to the boundedness of {x̃k} and the continuity of Fi (i ∈ J), we thus obtain
|Fi0(x

k)| → ∞ (k ∈ K1) for at least one index i0 ∈ J. Because of (6), this implies
|yk

i0
| → ∞ (k ∈ K1). However, since i0 ∈ J, we also have |xk

i0
| → ∞ on a subsequence

{xk
i0
}K2 , K2 ⊆ K1. From Lemma 3.7 (b) we therefore get

|ϕµ∗(x
k
i0
, yk

i0
)| → ∞ (k ∈ K2). (7)

We now consider the behaviour of the sequence {ϕµk
(xk

i0
, yk

i0
)}K2 . First note that

this sequence is bounded since

|ϕµk
(xk

i0
, yk

i0
)| ≤ ‖Fϕµk

(xk, yk)‖ ≤ αk ≤ ᾱ. (8)

On the other hand, we have

|ϕµk
(xk

i0
, yk

i0
)| = |ϕµk

(xk
i0
, yk

i0
)− ϕµ∗(x

k
i0
, yk

i0
) + ϕµ∗(x

k
i0
, yk

i0
)|

≥
∣∣∣|ϕµk

(xk
i0
, yk

i0
)− ϕµ∗(x

k
i0
, yk

i0
)| − |ϕµ∗(x

k
i0
, yk

i0
)|
∣∣∣

≥ |ϕµ∗(x
k
i0
, yk

i0
)| − |ϕµk

(xk
i0
, yk

i0
)− ϕµ∗(x

k
i0
, yk

i0
)|.

(9)

Since µk → µ∗, we obtain from Lemma 3.7 (a) that |ϕµk
(xk

i0
, yk

i0
)−ϕµ∗(x

k
i0
, yk

i0
)| → 0.

Using (7), this yields |ϕµk
(xk

i0
, yk

i0
)| → ∞, a contradiction to (8). Therefore the se-

quence {zk} is bounded. 2

We now state our main convergence result for Algorithm 3.3.
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Theorem 3.9 Let F : <n → <n be a continuously differentiable and uniform
P−function. Then the sequence {z(µk)} generated by Algorithm 3.3 converges to
the unique solution of NCP(F ).

Proof. Because of Theorem 3.6, the sequence {z(µk)} is well–defined. Since
zk = z(µk) is a solution of Fϕµk

(z) = 0, we have ‖Fϕµk
(zk)‖ = 0 for all k. Therefore

and because the sequence {µk} remains bounded in view of µk ∈ [0, µ0] for all k,
it follows immediately from Theorem 3.8 that the sequence {zk} is also bounded.
Consequently there exists at least one accumulation point z∗. From the continuity
of F we directly obtain that z∗ is a solution of NCP(F ). This shows that every ac-
cumulation point of {z(µk)} is a solution of NCP(F ). However, as noted in Lemma
2.4, problem NCP(F ) has a unique solution under the stated assumptions. There-
fore the entire sequence {z(µk)} converges to this solution. 2

In our next theorem we show that zk−1 is a good starting vector for, e.g., Newton’s
method when solving the nonlinear system of equations Fϕµk

(z) = 0 in step (S.1) of
Algorithm 3.3. We first restate a technical lemma which is due to Kojima, Mizuno
and Noma [16, Lemma 1].

Lemma 3.10 For any nonnegative numbers α1, α2, β1 and β2, the following inequal-
ity holds:

(α1 − α2)(β1 − β2) ≤ |α1β1 − α2β2|.

Theorem 3.11 If F : <n → <n is Lipschitz–continuous and a uniform P−function
and if {zk} denotes the sequence generated by Algorithm 3.3, then there exists a
constant c > 0 (independent of k) such that

‖zk+1 − zk‖2 ≤ c|µk+1 − µk|

for all k.

Proof. Let L > 0 denote the Lipschitz–constant of F. Then, we have

‖zk+1 − zk‖2 = ‖xk+1 − xk‖2 + ‖yk+1 − yk‖2

= ‖xk+1 − xk‖2 + ‖F (xk+1)− F (xk)‖2

≤ (1 + L2)‖xk+1 − xk‖2.
(10)

Since F is a uniform P−function and zk+1 and zk are solutions of PNCP(F, µk+1)
and PNCP(F, µk), respectively, we obtain with some γ > 0 from Lemma 3.10:

γ‖xk+1 − xk‖2 ≤ maxi∈I(x
k+1
i − xk

i )(Fi(x
k+1)− Fi(x

k))
= maxi∈I(x

k+1
i − xk

i )(y
k+1
i − yk

i )
≤ maxi∈I |xk+1

i yk+1
i − xk

i y
k
i |

= |µk+1 − µk|.

(11)
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Thus, the assertion follows from (10) and (11) with c := (1 + L2)/γ. 2

The main disadvantage of Algorithm 3.3 is the fact that we have to solve the sub-
problems PNCP(F, µ) exactly at each iteration. The following is an inexact version
of this algorithm, where we call a vector z(ε) an ε-approximate solution of the system
Fϕµ(z) = 0 if ‖Fϕµ(z(ε))‖ ≤ ε.

Algorithm 3.12 (Inexact continuation method)

(S.0): Choose µ0 > 0, ε0 > 0 and set k = 0.

(S.1): Find an εk-approximate solution z(εk) of the system Fϕµk
(z) = 0.

(S.2): Terminate the iteration if a suitable stopping criterion is satisfied.

(S.3): Choose µk+1 < µk, εk+1 < εk, set k := k + 1 and go to (S.1).

In the following convergence analysis of Algorithm 3.12, we assume that an infinite
sequence {z(εk)} is generated. The first result is a global convergence theorem for
Algorithm 3.12.

Theorem 3.13 Let F : <n → <n be a continuously differentiable and uniform P -
function. Assume that the sequences {εk} and {µk} converge to 0. Then the sequence
{z(εk)} generated by Algorithm 3.12 converges to the unique solution of NCP(F ).

Proof. The proof is similar to the one of Theorem 3.9: Since both sequences
{µk} and {εk} remain bounded, the sequence {z(εk)} is also bounded by Theorem
3.8. Hence there is at least one accumulation point, say z∗. Let {z(εk)}K denote a
subsequence converging to z∗. Since z(εk) is an εk-approximate solution of Fϕµk

(z) =
0, we have

‖Fϕµk
(z(εk))‖ ≤ εk. (12)

Since µk → 0 and εk → 0, we obtain from (12) for k →∞, k ∈ K :

‖Fϕ0(z
∗)‖ = 0,

i.e., z∗ solves NCP(F ). Since NCP(F ) has a unique solution, the bounded sequence
{z(εk)} cannot have more than one accumulation point, therefore the whole sequence
{z(εk)} converges to z∗. 2

In order to establish a local rate of convergence result for Algorithm 3.12, we first
note that the operator Fϕµ is nonsmooth for µ = 0 but nevertheless locally Lipschitz-
continuous. Hence its generalized Jacobian ∂Fϕ0(z) exists at any point z = (x, y) ∈
<2n. The interested reader is referred to Clarke [4] for the definition and some basic
properties of the generalized Jacobian. Here we just note that ∂Fϕ0(z) is a set of
matrices of dimension 2n. We can prove the following result which is crucial in order
to prove a fast local rate of convergence.



10 CHRISTIAN KANZOW

Lemma 3.14 Assume that F : <n → <n is continuously differentiable and a uni-
form P−function. Let z = (x, y) ∈ <2n be an arbitrary vector. Then all matrices in
the generalized Jacobian ∂Fϕ0(z) are nonsingular.

Proof. Since F is a uniform P−function, its Jacobian matrices F ′(x) are P−matrices
for all x ∈ <n. Hence the desired result follows from Theorem 3.3 in [8] by noting
that ϕµ reduces to a multiple of the minimum-function for µ = 0, cf. (3). 2

In the following result, we deal with the local rate of convergence of Algorithm 3.12.
The proof is based on a result for so-called semismooth functions, see [23, 22] for the
definition and some elementary properties of semismooth functions. Here we only
note that a piecewise smooth function is semismooth. Hence, since the operator Fϕ0

is piecewise smooth in view of (3), it is also semismooth.

Theorem 3.15 Let F : <n → <n be a continuously differentiable and uniform
P−function. Let {z(εk)} be a sequence generated by Algorithm 3.12. Assume that
{z(εk)} converges to the unique solution z∗ of NCP(F ). Suppose further that µk =
O(ε2

k). Then the following statements hold:

(a) If εk+1 = o(‖Fϕµ0
(z(εk))‖), then z(εk) → z∗ Q-superlinearly.

(b) If εk+1 = O(‖Fϕµ0
(z(εk))‖2), then z(εk) → z∗ Q-quadratically.

Proof. Recall that z(εk) is an εk-approximate solution of PNCP(F, µk), so that
(12) holds. From the definition of Fϕµ and Lemma 3.7 (a), we have

‖Fϕ0(z)− Fϕµ(z)‖ ≤ c1
∑

i∈I |ϕ0(xi, yi)− ϕµ(xi, yi)|
≤ 2nc1

√
µ

(13)

for a suitable constant c1 > 0 and all z = (x, y) ∈ <2n. Since Fϕ0 is locally Lipschitz-
continuous, there is a Lipschitz-constant L > 0 such that

‖Fϕ0(z(εk))‖ = ‖Fϕ0(z(εk))− Fϕ0(z
∗)‖ ≤ L‖z(εk)− z∗‖ (14)

for all k sufficiently large since z(εk) → z∗. By Lemma 3.14, all elements in Clarke’s
generalized Jacobian ∂Fϕ0(z

∗) are nonsingular. Moreover, as noted above, Fϕ0 is
semismooth, so we obtain from Proposition 3 in [22] that there exists a constant
c2 > 0 such that

c2‖z(εk+1)− z∗‖ ≤ ‖Fϕ0(z(εk+1))‖ (15)

for all k large enough. Now assume that the assumptions of statement (a) are
satisfied. Then we obtain from (12), (13), (14) and (15):

c2‖z(εk+1)− z∗‖
(15)

≤ ‖Fϕ0(z(εk+1))‖
≤ ‖Fϕ0(z(εk+1))− Fϕµk+1

(z(εk+1))‖+ ‖Fϕµk+1
(z(εk+1))‖
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(12),(13)

≤ 2nc1
√

µk+1 + εk+1

≤ o(‖Fϕ0(z(εk))‖)
(14)

≤ o(‖z(εk)− z∗‖),

i.e., z(εk) → z∗ Q-superlinearly. Statement (b) can be shown in a similar way. 2

Note that Algorithm 3.12 is an implementable algorithm and that it is always possi-
ble to choose the parameters εk and µk in a way specified in Theorem 3.15. Actually,
Theorem 3.15 can be viewed as a theoretical justification of the heuristic updating
rules used in [1, 13]. We close this section by noting that some very promising nu-
merical results for a similar algorithm applied to linear complementarity problems
are reported in [13].

4 Final Remarks

The function defined in (2) is not the only one having the property mentioned in
Lemma 3.1. In fact, the author introduced in [13] three other functions which share
the same property, namely:

ϕµ(a, b) := a + b−
√

a2 + b2 + 2µ, (16)

ϕµ(a, b) :=
1

2
min2{0, a + b} − ab + µ, (17)

ϕµ(a, b) := (a− b)2 − a|a| − b|b|+ 2µ. (18)

It is not difficult to see that all these functions also have the properties stated in
Lemma 3.7 (b). Even Lemma 3.7 (a) remains true in a slightly modified version. In
particular, if ϕµ denotes the function defined in (16) and µ1, µ2 ≥ 0 are arbitrarily
given, the following inequality can be verified using similar techniques as used in the
proof of Lemma 3.7:

|ϕµ1(a, b)− ϕµ2(a, b)| ≤
√

2|√µ1 −
√

µ2| ∀(a, b) ∈ <2.

Unfortunately, Theorem 3.5 becomes false for the functions defined in (17) and (18)
since the diagonal matrices Da and Db introduced in the proof of Theorem 3.5 are
in general not positive definite. On the other hand these diagonal matrices are
positive definite for all µ > 0 and all (a, b) ∈ <2 for the function defined in (16). So
all results in Section 3 remain true if the function (2) is replaced by the function (16)
everywhere. Numerically, however, these two functions have a similar behaviour, see
the results reported in [13].

While the function (2) reduces to the well–known min–function for µ = 0 (cf.
(3)), the function ϕµ defined in (16) coincides for µ = 0 with a function introduced
by Fischer and used in some recent papers [6, 7]. Fischer uses his function in order
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to characterize the linear complementarity problem as well as the Karush–Kuhn–
Tucker optimality conditions of a nonlinear program, whereas here (for arbitrary
µ ≥ 0) it can be used to characterize problem PNCP(F, µ). For µ = 0, the other
two functions defined in (17) and (18) also reduce to some known functions, see, e.g,
[12].
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