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1 Introduction

We consider the nonlinear complementarity problem which is to find a vector in IRn

satisfying the conditions

x ≥ 0, F (x) ≥ 0, xTF (x) = 0;

here all inequalities are taken componentwise and F : IRn → IRn is any given
function which we assume to be continuously differentiable throughout this paper.

There exist several methods for the solution of the complementarity problem
NCP(F ), see, e.g., the recent paper [11]. The particular class of methods to be
considered in this paper are the so-called regularization methods, which are designed
to handle ill-posed problems. In fact, regularization-type methods have recently been
used very successfully in order to improve the robustness of several complementarity
solvers on difficult test problems, see [1, 2]. For a detailed discussion of ill-posedness
in mathematical programming, we refer the reader to [8]. Very roughly speaking,
an ill-posed problem may be difficult to solve since small errors in the computations
can lead to a totally wrong solution.

Regularization methods try to circumvent this difficulty by substituting the solu-
tion of the original problem with the solution of a sequence of well-posed (i.e. nicely
behaved) problems whose solutions form a trajectory converging to the solution of
the original problem. In the context of complementarity problems, if we consider
the so called Tikhonov-regularization, this scheme consists in solving a sequence of
complementarity problems NCP(Fε)

x ≥ 0, Fε(x) ≥ 0, xTFε(x) = 0,

where Fε(x) := F (x) + εx and ε is a positive parameter converging to 0.
Regularization methods for complementarity problems have already been con-

sidered in the literature, see, e.g., [22] and [6, Theorem 5.6.2 (b)]. The basic results
that can be established in the monotone case, and that parallel the classical ones
for regularization methods for convex optimization problems, see [8] or [21], are:

(a) The regularized problem NCP(Fε) has a unique solution x(ε) for every ε > 0.

(b) The trajectory x(ε) is continuous for ε > 0.

(c) For ε → 0, the trajectory x(ε) converges to the least l2-norm solution of
NCP(F ) if NCP(F ) has a nonempty solution set, otherwise it diverges.

In this paper, we try to generalize as much as possible the above results to the
larger class of P0 nonlinear complementarity problems. Actually such a scheme has
already been considered in the case of P0 linear complementarity problems in [24]
(see also [6]). These results will be discussed in Section 2 where we also show, by
an example, the rather counterintuitive fact that if F is a nonlinear P0-function,
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then Fε is not necessarily a uniform P -function. This fact makes the extension of
some known results for linear problems to nonlinear ones considerably more difficult
than one would expect. In Section 3, we then extend point (a) to the class of P0-
function complementarity problems, whereas Section 4 is devoted to the (partial)
generalization of points (b) and (c). In Section 5 we investigate an algorithm which
requires only an approximate solution of the perturbed problems; as far as we are
aware of, this is the only implementable algorithm which guarantees that a solution
of a P0 complementarity problem can be computed under the mere assumption that
the solution set is nonempty and bounded. We conclude with some final remarks in
Section 6.

2 Preliminaries

We first restate some basic definitions.

Definition 2.1 A matrix M ∈ IRn×n is called a

(a) P0-matrix if, for every x ∈ IRn with x 6= 0, there is an index i0 = i0(x) with

xi0 6= 0 and xi0 [Mx]i0 ≥ 0;

(b) P -matrix if, for every x ∈ IRn with x 6= 0, it holds that

max
i

xi[Mx]i > 0;

(c) R0-matrix if x = 0 is the only solution of NCP(F ) for F (x) := Mx.

We refer the reader to the excellent book [6] by Cottle, Pang and Stone for a discus-
sion of several properties of these classes of matrices. Some nonlinear generalizations
of these classes are defined in

Definition 2.2 The function F : IRn → IRn is called a

(a) P0-function if, for all x, y ∈ IRn with x 6= y, there is an index i0 = i0(x, y) with

xi0 6= yi0 and (xi0 − yi0)[Fi0(x)− Fi0(y)] ≥ 0;

(b) P -function if, for all x, y ∈ IRn with x 6= y, it holds that

max
i

(xi − yi)[Fi(x)− Fi(y)] > 0;

(c) uniform P -function if there is a constant µ > 0 such that

max
i

(xi − yi)[Fi(x)− Fi(y)] ≥ µ‖x− y‖2

holds for all x, y ∈ IRn.
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Obviously, every uniform P -function is a P -function and every P -function is a P0-
function. Moreover, an affine mapping F (x) := Mx+q is a P0-function (P -function)
if and only if M is a P0-matrix (P -matrix). Moreover, the class of P0-functions
includes the class of monotone functions. For further discussions, we refer the reader
to Moré and Rheinboldt [19].

In the affine case, there are some known results for regularization methods which
partially generalize the properties (a) and (c) illustrated in the introduction from
monotone to P0 problems. We summarize these results in the following theorem.

Theorem 2.3 Assume that F (x) = Mx+ q with M ∈ IRn×n being a P0-matrix and
q ∈ IRn. Then

(a) The regularized problem NCP(Fε) has a unique solution x(ε) for every ε > 0.

(b) If M is also an R0-matrix, then the sequence x(ε) is bounded for ε → 0, and
every limit point is a solution of NCP(F ).

A proof of these results can be found in [6, Theorem 5.6.2 (a)]. Note also that,
in [24], point (b) is proved under an assumption which implies that the original
problem has a unique solution. In the linear case the proof of statement (a) is quite
simple because if M is a P0-matrix, then M + εI is a P -matrix by Theorem 3.4.2 in
[6], so that NCP(Fε) has a unique solution by Theorem 3.3.7 in [6].

Therefore, in an attempt to extend the previous results from the linear to the
nonlinear case, the following question seems very natural: Is Fε a uniform P -function
for every fixed ε > 0 if F itself is a P0-function? If the answer to this question
were in the affirmative, then point (a) above could readily be extended, since a
complementarity problem with a uniform P -function has a unique solution ([17,
Corollary 3.2]). Unfortunately, the following example shows that Fε is not necessarily
a uniform P -function over IRn

+ when F is nonlinear.

Example 2.4 Consider the function F : IR2 → IR2 defined by

F (x) := F (x1, x2) :=

(
0
−ex1

)
.

Since the Jacobian

F ′(x) =

(
0 0
−ex1 0

)
is obviously a P0-matrix for all x ∈ IR2, the function F itself is a P0-function by
Corollary 5.3 in [19]. Now let ε > 0 and define

Fε(x) = F (x) + εx =

(
εx1

εx2 − ex1

)
.

We want to show that Fε is not a uniform P -function on IRn
+. This means that

we want to show that, given a fixed value ε, we can find, for every fixed value µ,
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two points in IRn
+ (possibly depending on µ) for which the definition of uniform

P -function is not satisfied with that µ.
We will actually show that Fε is not a uniform P -function for every positive ε.

So suppose that ε > 0 is fixed. Choose a positive µ. Consider the following point
x = (x1, x2) :

x1 = 1, x2 =

√
ε

µ
(c− 1), (1)

where c is a constant such that

c ≥ 2 (2)

ε2

µ
(c− 1)2 −

√
ε

µ
(ec − e1) ≤ ε. (3)

Note that it is always possible to choose c large enough so that (3) is satisfied; in fact
the second term on the left hand side of (3) is negative and decreases exponentially
with c and hence dominates the first term. Multiplying (3) by (c − 1)2, we also
obtain

ε2

µ
(c− 1)4 −

√
ε

µ
(c− 1)2(ec − e1) ≤ ε(c− 1)2. (4)

We also have, by (1),

ε(c− 1)2 < µ + ε(c− 1)2 = µ(1 +
ε

µ
(c− 1)2) = µ(x2

1 + x2
2). (5)

Set y = cx. Then

max
i∈{1,2}

(xi − yi)[Fε,i(x)− Fε,i(y)]

= max
{
ε(x1 − y1)

2, ε(x2 − y2)
2 + (x2 − y2)(e

y1 − ex1)
}

= max
{
ε(c− 1)2x2

1, ε(c− 1)2x2
2 − (c− 1)x2(e

cx1 − ex1)
}

(1)
= max

{
ε(c− 1)2,

ε2

µ
(c− 1)4 −

√
ε

µ
(c− 1)2(ec − e1)

}
(4)
= ε(c− 1)2

(5)
< µ(x2

1 + x2
2)

=
µ

(c− 1)2‖x− y‖22
(2)

≤ µ‖x− y‖22.

Hence Fε is not a uniform P -function.

In the next section we shall show that, in spite of the fact that Fε is not necessarily a
uniform P -function, the regularized problems NCP(Fε) have a unique solution x(ε)
for every ε > 0. However, due to Example 2.4, the analysis is more complicated than
one would expect.
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3 Existence of Regularized Solutions

In this section, we want to prove that the regularized problem NCP(Fε) has a unique
solution x(ε) for every ε > 0. The main tool for proving this result is the (nonsmooth)
function ϕ : IR2 → IR defined by

ϕ(a, b) :=
√

a2 + b2 − a− b.

This function was introduced by Fischer [12] and plays a central role in the design
of several nonsmooth Newton-type methods for the solution of NCP(F ), see, e.g.,
[10, 7]. Here, however, we use this function as a theoretical tool. To this end, let us
introduce the equation-operator Φ : IRn → IRn by

Φ(x) :=


ϕ(x1, F1(x))

...
ϕ(xn, Fn(x))


as well as the corresponding merit function Ψ : IRn → IR by

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2.

We summarize some of the elementary properties of these functions in the following
result.

Proposition 3.1 The following statements hold:

(a) x∗ ∈ IRn solves NCP(F ) if and only if x∗ solves the nonlinear system of equa-
tions Φ(x) = 0.

(b) The merit function Ψ is continuously differentiable on the whole space IRn.

(c) If F is a P0-function, then every stationary point of Ψ is a solution of NCP(F ).

Proof. See, e.g., [13, 10, 7]. 2

For the regularized problem, we define the corresponding equation-operator and the
corresponding merit function similarly by

Φε(x) :=


ϕ(x1, Fε,1(x))

...
ϕ(xn, Fε,n(x))


and

Ψε(x) :=
1

2
Φε(x)TΦε(x),

where Fε,i denotes the ith component function of Fε. The main result of this section
is based on the following three preliminary results.
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Lemma 3.2 Let ε > 0 be arbitrary. Then the Jacobian matrices F ′
ε(x) are P -

matrices for all x ∈ IRn. In particular, the function Fε : IRn → IRn is a P -function.

Proof. Since F is a P0-function, the Jacobian matrices F ′(x) are P0-matrices for
all x ∈ IRn by Theorem 5.8 in [19]. In view of Theorem 3.4.2 in [6], the Jacobian
matrices F ′

ε(x) = F ′(x) + εI are therefore P -matrices for all x ∈ IRn. Hence Fε is a
P -function by Theorem 5.2 in [19]. 2

A proof of the following simple result can be found in [15].

Lemma 3.3 Let {ak}, {bk} ⊆ IR be any two sequences such that ak, bk → +∞ or
ak → −∞ or bk → −∞. Then |ϕ(ak, bk)| → ∞.

The following Proposition contains the main step in order to prove the existence of
a solution of the regularized problems NCP(Fε).

Proposition 3.4 Suppose that F is a P0-function and ε > 0. Then the merit func-
tion Ψε is coercive, i.e.,

lim
‖x‖→∞

Ψε(x) = +∞

Proof. Suppose by contradiction that the theorem is false. Then we can find an
unbounded sequence {xk} such that {Ψε(x

k)} is bounded. Since the sequence {xk}
is unbounded, the index set J := {i ∈ {1, . . . , n}|{xk

i } is unbounded} is nonempty.
Subsequencing if necessary, we can assume without loss of generality that {|xk

j |} →
+∞ for all j ∈ J. Let {yk} denote the bounded sequence defined in the following
way:

yk
i :=

{
0 if i ∈ J
xk

i if i 6∈ J.

From the definition of {yk} and the assumption that F is a P0-function we get

0 ≤ max1≤i≤n(xk
i − yk

i )[Fi(x
k)− Fi(y

k)]
= maxi∈J xk

i [Fi(x
k)− Fi(y

k)]
= xk

j [Fj(x
k)− Fj(y

k)],
(6)

where j is one of the indices for which the max is attained which we have, without
loss of generality, assumed to be independent of k. Since j ∈ J, we have that

{|xk
j |} → ∞. (7)

We now consider two cases.
Case 1: xk

j → +∞.
In this case, since Fj(y

k) is bounded by the continuity of Fj, (6) implies that Fj(x
k)

does not tend to −∞. This in turn implies{√
(xk

j )
2 + (Fj(xk) + ε(xk

j ))
2 − xk

j − (Fj(x
k) + εxk

j )
}
→ +∞
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by Lemma 3.3 since Fj(x
k) + εxk

j tends to +∞.
Case 2: xk

j → −∞.
In this case it follows immediately from Lemma 3.3 that{√

(xk
j )

2 + (Fj(xk) + ε(xk
j ))

2 − xk
j − (Fj(x

k) + εxk
j )
}
→ +∞

(both if Fj(x
k) + εxk

j is unbounded or not).
In either case we get Ψε(x

k)→ +∞, thus contradicting the boundedness of the
sequence {Ψε(x

k)}. 2

Note that Proposition 3.4 can also be stated in an equivalent way by saying that
the level sets Lε(c) := {x ∈ IRn|Ψε(x) ≤ c} are compact for every c ∈ IRn. We are
now in a position to prove the following existence and uniqueness result.

Theorem 3.5 Assume that F is a P0-function. Then the regularized complemen-
tarity problem NCP(Fε) has a unique solution x(ε) for every ε > 0.

Proof. Let ε > 0. Then Fε is a P -function by Lemma 3.2. Therefore NCP(Fε) has
at most one solution by Theorem 2.3 in [18].

In order to prove the existence of a solution, let x0 ∈ IRn be arbitrary and de-
fine c := Ψε(x

0). Because of Proposition 3.4, the corresponding level set Lε(c) is
nonempty and compact. Hence the continuous function Ψε attains a global mini-
mum xε on L(c) which, in view of the definition of the level set, is also a global
minimum of Ψε on IRn. Therefore xε is a stationary point of Ψε. But Fε is a P -
function, in particular, Fε itself is a P0-function, so that xε must be a solution of
NCP(Fε) because of Proposition 3.1 (c). 2

4 Behaviour of the Solution Path

The aim of this section is to study the properties of the solution path P := {x(ε)| ε >
0} and, in particular, conditions under which x(ε) remains bounded when ε → 0.
The reason why we are interested in the boundedness of x(ε) is because the following
easily verifiable result holds.

Theorem 4.1 Let {εk} be a sequence of positive values converging to 0. If {x(εk)}
converges to a point x̄, then x̄ solves NCP(F).

The first noteworthy property we can establish is the continuity of x(ε).

Lemma 4.2 Assume that F is a P0-function. Then the mapping ε 7→ x(ε) is con-
tinuous at any ε > 0.
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Proof. By Lemma 3.2, the Jacobian matrix F ′
ε(x) is a P -matrix for every ε > 0

and every x ∈ IRn; in particular, M := F ′
ε(x(ε)) is a P -matrix. This immediately

implies that every principal submatrix of M is again a P -matrix. Moreover, us-
ing the same technique of proof as for Lemma 2.3 in [3], it is easy to see that any
Schur-complement of a P -matrix is also a P -matrix. Hence the assertion follows
from Theorem 3.1 in Kyparisis [16]. 2

Note that Lemma 4.2 does not say anything about the continuity of the mapping
ε 7→ x(ε) at ε = 0. Continuity at 0 is equivalent to convergence of the solution
path x(ε) when ε goes to 0. As discussed in the introduction, this result holds if
F is monotone and the complementarity problem admits a solution. In the more
general setting we are considering, we are no longer able to prove such a strong
result. However, we can state the following result.

Theorem 4.3 Let F be a P0-function and assume that the solution set S of NCP(F )
is nonempty and bounded. Then the path Pε̄ = {x(ε)| ε ∈ (0, ε̄]} is bounded for any
positive ε̄ and

lim
ε↓0

dist(x(ε)|S) = 0.

We postpone the proof of this theorem until the next section, where it will follow
from a more general result.

We next state two immediate consequences of Theorem 4.3.

Corollary 4.4 Let F be a P0-function and assume that NCP(F ) has a unique so-
lution x̄. Then limε↓0 x(ε) = x̄.

Due to a recent result in [9], the uniqueness of a solution of NCP(F ) is, for P0 comple-
mentarity problems, equivalent to the existence of an isolated solution of NCP(F ).
Hence, alternatively, we could have stated Corollary 4.4 under the assumption that
NCP(F ) has a locally isolated solution.

Corollary 4.5 Let F (x) = Mx + q be an affine mapping with M ∈ IRn×n being a
P0- and R0-matrix. Then the path Pε̄ is bounded for any positive ε̄ and

lim
ε↓0

dist(x(ε)|S) = 0.

Proof. Since the solution set of NCP(F ) is known to be nonempty and bounded
under the stated assumptions (see [6]), the result follows immediately from Theorem
4.3. 2

Note that Corollary 4.5 is already known (see Theorem 5.6.2 (a) in [6], restated in
Theorem 2.3 of this paper), however, our proof is completely different from the one
given in [6]. Moreover, it is easy to see that Corollary 4.5 can easily be extended to
nonlinear functions F if we assume that F is a P0-function and an R0-function. The
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definition of the latter class of functions as well as some of its properties are given
in the recent paper [4], see also [23].

The following counterexample shows that it is not possible to remove the bound-
edness assumption of the solution set S in Theorem 4.3 without destroying the
boundedness of the path P . This contrasts sharply with what happens in the case
of monotone complementarity problems, where we always have the boundedness of
the trajectory if the solution set is nonempty.

Example 4.6 Let F : IR2 → IR2 be defined by F (x) := Mx + q, where

M :=

(
0 1
0 0

)
and q :=

(
−1
0

)
.

Obviously, F is a P0-function. The solution set S is given by

S := {(x1, x2)| (x1, 1), x1 ≥ 0} ∪ {(x1, x2)| (0, x2), x2 ≥ 1},

i.e., the solution set is unbounded. It is easy to see that x(ε) := (1/ε, 0) is the
unique solution of the corresponding regularized problem NCP(Fε). Obviously, x(ε)
is neither convergent nor bounded for ε → 0. Even worse, the distance of x(ε) to
the solution set S does not go to zero since dist(x(ε)|S) = 1 for every ε > 0.

5 Inexact Regularization Methods

In the previous section we have illustrated several properties of the trajectory P
which suggest that the original problem NCP(F ) can be solved by calculating the
exact solutions of a sequence of regularized problems NCP(Fε) for a sequence of
parameters ε converging to 0. From a practical point of view, however, it is usually
not possible to solve the regularized problems NCP(Fε) exactly for each ε > 0. In the
following, we therefore present an algorithm which only requires inexact solutions of
these subproblems and which nevertheless preserves all the convergence properties
of its exact counterpart.

Algorithm 5.1 (Inexact Regularization Method)

(S.0) Choose ε0 > 0, α0 ≥ 0, and set k := 0.

(S.1) Compute an approximate solution xk ∈ IRn of NCP(Fεk
) such that

Ψεk
(xk) ≤ αk.

(S.2) Terminate the iteration if a suitable stopping criterion is satisfied.

(S.3) Choose εk+1 > 0, αk+1 ≥ 0, set k ← k + 1, and go to (S.1).
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Obviously, if we take αk = 0 at each iteration, we have xk = x(εk). Note that
a point xk satisfying Ψεk

(xk) ≤ αk can easily be obtained by, e.g., applying any
unconstrained minimization technique to Ψεk

. In fact, the level sets of Ψεk
are

compact and every stationary point x̄ of Ψεk
is such that Ψεk

(x̄) = 0. Therefore,
every suitable minimization algorithm will produce a minimizing sequence and the
point xk can be surely determined in a finite number of steps. This situation reflects
the fact that the perturbed problems are well-posed and this, in turn, is one of the
main motivations for using regularization methods.

To establish a result generalizing Theorem 4.3 to Algorithm 5.1 we need some
further technical results.

Lemma 5.2 Let C ⊂ IRn be a compact set. Then, for every δ > 0, there exists a
ε̄ > 0 such that

|Ψε(x)−Ψ(x)| ≤ δ

for all x ∈ C and all ε ∈ [0, ε̄].

Proof. The function Ψε(x) viewed as a function of both x and ε is continuous on
the compact set C× [0, ε̄]. The lemma is then an immediate consequence of the fact
that every continuous function on a compact set is uniformly continuous there. 2

Finally, we also restate a version of the famous Mountain Pass Theorem which is
suitable for our purposes and which can easily be derived from standard statements
of this theorem, see, e.g., Theorem 9.2.7 in [20].

Theorem 5.3 Let f : IRn → IR be continuously differentiable and coercive. Let
C ⊂ IRn be a nonempty and compact set and define m to be the least value of f on
the (compact) boundary of C:

m := min
x∈∂C

f(x).

Assume further that there are two points a ∈ C and b 6∈ C such that f(a) < m and
f(b) < m. Then there exists a point c ∈ IRn such that ∇f(c) = 0 and f(c) ≥ m.

In the convergence analysis of Algorithm 5.1, we will implicitly assume that Algo-
rithm 5.1 generates an infinite sequence so that the termination criterion in Step
(S.2) is never active. The following result is our main convergence theorem for Al-
gorithm 5.1. As known to the authors, this convergence theorem is new even for
monotone complementarity problems.

Theorem 5.4 Let F be a P0-function and assume that the solution set S of NCP(F )
is nonempty and bounded. Suppose that a sequence {xk} is generated according to
Algorithm 5.1. If εk → 0 and αk → 0, then {xk} remains bounded, and every
accumulation point of {xk} is a solution of NCP(F ).
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Proof. We first note that it follows from a simple continuity argument that every
accumulation point of the sequence {xk} is a solution of NCP(F ). Hence it remains
to be shown that {xk} is a bounded sequence. Assume the sequence {xk} is not
bounded. Then, subsequencing if necessary, we have {‖xk‖} → ∞. Hence there
exists a compact set C ⊂ IRn with S ⊂ intC and

xk 6∈ C (8)

for all k sufficiently large. Let a ∈ S be an arbitrary solution of NCP(F ). Then we
have

Ψ(a) = 0.

Since
m̄ := min

x∈∂C
Ψ(x) > 0,

we can apply Lemma 5.2 with δ := m̄/4 and conclude that

Ψεk
(a) ≤ 1

4
m̄ (9)

and

m := min
x∈∂C

Ψεk
(x) ≥ 3

4
m̄ (10)

for all k sufficiently large. Since Ψεk
(xk) ≤ αk by Step (S.1) of Algorithm 5.1, we

have

Ψεk
(xk) ≤ 1

4
m̄ (11)

for all k large enough since αk → 0 by our assumption. Now let us fix an index k
such that (8)–(11) hold. Applying the Mountain Pass Theorem 5.3 with b := xk, we
obtain the existence of a vector c ∈ IRn such that

∇Ψεk
(c) = 0 and Ψεk

(c) ≥ 3

4
m̄ > 0.

In view of Proposition 3.1 (c), however, the stationary point c of Ψεk
must be a

global minimizer of Ψεk
which gives us the desired contradiction. 2

Obviously Theorem 4.3 follows from Theorem 5.4 by taking αk = 0 for all k and
using Lemma 4.1. Also Corollaries 4.4 and 4.5 can easily be extended to the inexact
framework.

Corollary 5.5 Assume that F is a P0-function and suppose that a sequence {xk}
is generated according to Algorithm 5.1. Suppose that εk → 0 and αk → 0. Then, if
NCP(F ) has a unique solution x̄, we have

lim
εk→0

xk = x̄.
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Corollary 5.6 Let F (x) = Mx + q be an affine mapping with M ∈ IRn×n being
a P0- and R0-matrix. Assume that {xk} is any sequence generated by Algorithm
5.1 such that εk → 0 and αk → 0. Then the sequence {xk} is bounded, and every
accumulation point of the sequence {xk} is a solution of NCP(F ).

If F is a monotone function such that NCP(F ) is strictly feasible (i.e., there exists
a vector x̂ ∈ IRn such that x̂ > 0 and F (x̂) > 0), then it is known ([14, Theorem
3.4]) that NCP(F ) has a nonempty and bounded solution set. Hence we also obtain
the following corollary from our main result 5.4 of this section.

Corollary 5.7 Assume that F is a monotone function such that NCP(F ) is strictly
feasible. Suppose that εk → 0 and αk → 0. Then any sequence {xk} generated by
Algorithm 5.1 remains bounded, and every accumulation point of {xk} is a solution
of NCP(F ).

We finally stress that, as far as we know, the inexact regularization method 5.1
investigated in this Section is currently the only (implementable!) algorithm which
guarantees that a solution of a P0-function complementarity problem with a bounded
and nonempty solution set can actually be computed.

6 Final Remarks

In this paper we have shown that, under appropriate assumptions, regularization
methods can be successfully applied to P0-complementarity problems. However,
some properties which hold in the monotone case are lost. In particular, when
the solution set of the problem is unbounded we can no longer guarantee that the
trajectory generated by the regularization method is bounded. There is an open
question which we think could be interesting to further investigate. When the
solution trajectory x(ε) is bounded, does it converge and, if it does converge, to
which element? In the monotone case x(ε) always converges to the least l2-norm
solution of NCP(F ). In the P0 case the least l2-norm solution can even be not
unique, since the solution set is not necessarily convex. Nevertheless, it would be
interesting to characterize in some way the limit point(s) of x(ε), when ε converges
to 0.
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Roma, Italy, April 1997.

[10] F. Facchinei and J. Soares: A new merit function for nonlinear comple-
mentarity problems and a related algorithm. SIAM Journal on Optimization 7,
1997, pp. 225–247.

[11] M.C. Ferris and C. Kanzow: Recent developments in the solution of non-
linear complementarity problems. Preprint, Institute of Applied Mathematics,
University of Hamburg, Hamburg, Germany, forthcoming.

[12] A. Fischer: A special Newton-type optimization method. Optimization 24,
1992, pp. 269–284.

[13] C. Geiger and C. Kanzow: On the resolution of monotone complementarity
problems. Computational Optimization and Applications 5, 1996, pp. 155–173.

[14] P.T. Harker and J.-S. Pang: Finite-dimensional variational inequality and
nonlinear complementarity problems: a survey of theory, algorithms and appli-
cations. Mathematical Programming 48, 1990, pp. 161–220.

[15] C. Kanzow: Global convergence properties of some iterative methods for linear
complementarity problems. SIAM Journal on Optimization 6, 1996, pp. 326–
341.

[16] J. Kyparisis: Uniqueness and differentiability of parametric nonlinear com-
plementarity problems. Mathematical Programming 36, 1986, pp. 105–113.

14
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