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Abstract. Mathematical programs with equilibrium constraints (MPECs) are difficult
optimization problems whose feasible sets do not satisfy most of the standard constraint
qualifications. Hence MPECs cause difficulties both from a theoretical and a numerical
point of view. As a consequence, a number of MPEC-tailored solution methods have been
suggested during the last decade which are known to converge under suitable assumptions.
Among these MPEC-tailored solution schemes, the relaxation methods are certainly one
of the most prominent class of solution methods. Several different relaxation schemes are
available in the meantime, and the aim of this paper is to provide a theoretical and numer-
ical comparison of these schemes. More precisely, in the theoretical part, we improve the
convergence theorems of several existing relaxation methods. There, we also take a closer
look at the properties of the feasible sets of the relaxed problems and show which standard
constraint qualifications are satisfied for these relaxed problems. Finally, the numerical
comparison is based on the MacMPEC test problem collection.
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1 Introduction

We consider a nonlinear optimization problem of the form

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) = 0 ∀i = 1, . . . , l,

where f, gi, hi, Gi, Hi : R
n → R are assumed to be at least continuously differentiable func-

tions. It is known under the label mathematical program with complementarity constraints,
MPCC for short, but we prefer the more pronounceable moniker MPEC, which stands for
mathematical program with equilibrium constraints. Its feasible set will be denoted by X.

The MPEC and the closely related class of bilevel programs has a number of important
applications arising from different areas like Stackelberg games, robotics, or several optimal
design problems. The reader is referred to the corresponding monographs [8, 26, 28] for
more details and several properties of MPECs.

From a theoretical point of view, an MPEC is a highly difficult nonlinear program
(NLP) since the standard Mangasarian-Fromovitz constraint qualification (and, therefore,
also the stronger linear independence constraint qualification) is violated at any feasible
point of an MPEC, cf. [36]. This, in turn, implies that standard algorithms for NLPs
typically have severe difficulties in solving MPECs.

This observation was and still is the main motivation for the introduction of more
specialized algorithms for the solution of MPECs that take into account the particular
structure of an MPEC. Several different ideas are known in the literature, like smoothing,
penalization, lifting, relaxation (or regularization), and suitable modifications of standard
NLP solvers. We refer the interested reader to [1, 2, 7, 10, 14, 18, 19, 21, 24, 25, 30, 31,
33, 35, 34, 22] for more details.

The aim of this paper is to provide a theoretical and numerical comparison of one class
of solutions methods, namely the class of relaxation methods. To this end, we take a closer
look at the following relaxation schemes:

• the global relaxation method by Scholtes [33]

• the smooth relaxation method by Lin and Fukushima [25]

• the nonsmooth relaxation method by Kadrani et al. [21]

• the local relaxation method by Steffensen and Ulbrich [34]

• the relaxation method by Kanzow and Schwartz [22].

In addition to these five relaxation schemes, the authors are also aware of the two-sided
relaxation method by Demiguel et al. [7] whose motivation, however, is slightly different:
In all five relaxation schemes above, there is a single parameter t that is driven down to

1



zero, whereas in the two-sided approach from [7], there are different parameters, and some
of them should eventually stay fixed. Hence, although it would, in principle, be possible to
include the two-sided relaxation within our comparison by simply taking a single parameter
t that is driven to zero also in that approach, we believe that this is not consistent with the
original idea from [7], hence we discard that method from our theoretical and numerical
comparison.

Several convergence properties are known for the above-mentioned five relaxation meth-
ods that can be found in the corresponding references [33, 25, 21, 34, 22] as well as in some
subsequent works [31, 16, 17]. However, at least for some of these relaxation schemes, it
turns out that the existing convergence results can still be improved significantly. Moreover,
a numerical comparison among these methods is still missing.

The main motivation and contribution of this paper is therefore to

• improve the convergence theorems of several existing relaxation methods for MPECs

• show which (standard) constraint qualifications are satisfied by the relaxed prob-
lems (this, in particular, guarantees the existence of Lagrange multipliers at a local
minimum of the relaxed problem), and to

• present a numerical comparison of all relaxation schemes based on the MacMPEC
test problem collection from Leyffer [23].

To this end, we organize the paper in the following way: Section 2 states some background
material on constraint qualifications and stationarity concepts. Section 3 then contains the
main theoretical contribution of this paper, with each of the five relaxation schemes being
discussed in a separate subsection. The numerical comparison is given in Section 4, and
we close with some final remarks in Section 5.

The notation used within this paper is standard. The gradient of a differentiable map-
ping f : R

n → R will be denoted by ∇f(x) and is always viewed as a column vec-
tor. Given an index set I, its cardinality is indicated by |I|. Finally, we use the symbol
supp(z) := {i | zi 6= 0} for the support of a vector z ∈ R

n.

2 Preliminaries

2.1 Constraint Qualifications for Standard Problems

Let us consider the standard nonlinear program

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p
(2)

with continuously differentiable functions f, gi, hi : R
n → R. Furthermore, let X denote

the feasible set of (2), and let x∗ ∈ X be an arbitrary feasible point. Recall that the
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(Bouligand) tangent cone of X at x∗ is defined by

TX (x∗) :=
{

d ∈ R
n | ∃{xk} ⊆ X , ∃{tk} ↓ 0 such that xk → x∗ and

xk − x∗

tk
→ d

}

,

whereas the linearized cone of X at x∗ is given by

LX (x∗) :=
{

d ∈ R
n | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig), ∇hi(x
∗)T d = 0 (i = 1, . . . , p)

}

,

where
Ig :=

{

i | gi(x
∗) = 0

}

denotes the set of active inequality constraints. Moreover, for an arbitrary nonempty set
C ⊆ R

n, the set
C◦ := {v ∈ R

n | vT d ≤ 0 ∀d ∈ C}

is called the polar cone of C.
We are now in a position to define the standard constraint qualifications needed. We

say that x∗ ∈ X satisfies the

• linear independence constraint qualification (LICQ) if the gradients

∇gi(x
∗) (i ∈ Ig), ∇hi(x

∗) (i = 1, . . . , p)

are linearly independent;

• Mangasarian-Fromovitz constraint qualification (MFCQ) if the gradients∇hi(x
∗) (i =

1, . . . , p) are linearly independent, and there exists a vector d ∈ R
n such that

∇gi(x
∗)T d < 0 (i ∈ Ig), ∇hi(x

∗)T d = 0 (i = 1, . . . , p);

• constant rank constraint qualification (CRCQ) if there is a neighborhood N(x∗) of x∗

such that for all subsets I1 ⊆ Ig and I2 ⊆ {1, . . . , p}, the gradient vectors

{

∇gi(x) | i ∈ I1

}

∪
{

∇hi(x) | i ∈ I2

}

have the same rank (which depends on I1, I2) for all x ∈ N(x∗);

• Abadie constraint qualification (ACQ) if TX (x∗) = LX (x∗);

• Guignard constraint qualification (GCQ) if TX (x∗)◦ = LX (x∗)◦.

The reader might be less familiar with the CRCQ condition that was introduced in [20].
Moreover, also GCQ, which goes back to [15], maybe less known, but it has turned out to
be the only standard constraint qualification which is still useful in an MPEC context, see,
e.g., [11].
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In order to formulate another, much more recent constraint qualification that will play
a fundamental role in our analysis, we have to introduce the notion of positive-linearly
dependent vectors.

Definition 2.1 Let x∗ be feasible for (2) and I1 ⊆ Ig, I2 ⊆ {1, . . . , p} be arbitrarily given.
Then the set of gradients

{

∇gi(x
∗) | i ∈ I1

}

∪
{

∇hi(x
∗) | i ∈ I2

}

is called positive-linearly dependent if there exist scalars {αi}i∈I1 and {βi}i∈I2 with αi ≥ 0
for all i ∈ I1, not all of them being zero, such that

∑

i∈I1

αi∇gi(x
∗) +

∑

i∈I2

βi∇hi(x
∗) = 0.

Otherwise, we say that this set of gradient vectors is positive-linearly independent.

Remark 2.2 A point x∗ feasible for (2) satisfies MFCQ if and only if the set of vectors

{

∇gi(x
∗) | i ∈ Ig

}

∪
{

∇hi(x
∗) | i = 1, . . . , p

}

is positive-linearly independent.

Note that positive-linearly dependent vectors are, in particular, linearly dependent. This
notion allows us to formulate the following condition from [29]: The feasible point x∗

satisfies the

• constant positive linear dependence condition (CPLD) if, for any subsets I1 ⊆ Ig and
I2 ⊆ {1, . . . , p} such that the gradients

{

∇gi(x
∗) | i ∈ I1

}

∪
{

∇hi(x
∗) | i ∈ I2

}

are positive-linearly dependent, there exists a neighborhood N(x∗) of x∗ such that
the gradients

{

∇gi(x) | i ∈ I1

}

∪
{

∇hi(x) | i ∈ I2

}

are linearly dependent for all x ∈ N(x∗).

Then the following implications hold between these different constraint qualifications:

MFCQ

#+
OOOOOOOOOOO

OOOOOOOOOOO

#+
OOOOOOOOOOO

OOOOOOOOOOO

LICQ

#+
OOOOOOOOOO

OOOOOOOOOO

3;
oooooooooo

oooooooooo

CPLD +3 ACQ +3 GCQ

CRCQ

3;ooooooooooo

ooooooooooo
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The fact that LICQ implies both MFCQ and CRCQ is obvious. Furthermore, it is not
difficult to see that CPLD is implied by MFCQ and CRCQ, whereas MFCQ and CRCQ are
not related to each other and are therefore independent constraint qualifications. Moreover,
it is an immediate consequence of the definitions that ACQ implies GCQ. Finally, the fact
that CPLD implies ACQ follows from results in [3, 6]. In particular, this means that CPLD
is in fact a constraint qualification for (2), which was not clear when this condition was
introduced originally in [29].

Now, let
L(x, λ, µ) := f(x) + λT g(x) + µT h(x)

be the Lagrangian of the optimization problem (2). Then, given a local minimum x∗ of (2)
such that a suitable constraint qualification, like, e.g., GCQ (or any of the other constraint
qualifications mentioned before), holds at x∗, then x∗ is a stationary point of (2), i.e., there
exist multipliers λ ∈ R

m and µ ∈ R
p such that (x∗, λ, µ) is a KKT point of (2), i.e., this

triple satisfies the corresponding KKT conditions

∇xL(x, λ, µ) = 0,

h(x) = 0,

g(x) ≤ 0, λ ≥ 0, λT g(x) = 0,

hence we call the x-part of a KKT point a stationary point.

2.2 MPEC-tailored Constraint Qualifications and Stationarity

Concepts

Due to the well-known fact that all standard constraint qualifications, except for GCQ, are
far too restrictive for MPECs, cf. [11], a whole bunch of more problem-tailored constraint
qualifications has been introduced in the past. In this section we recall some of them.

Moreover, due to the fact that most standard CQs are likely to be violated at a local
minimizer of an MPEC, the KKT conditions cannot readily be considered as the proper
stationarity concept. In view of that, a couple of more appropriate and, hence, necessarily
weaker stationarity notions have arisen. In order to state these, it is helpful to define some
crucial index sets that will occur frequently in the subsequent analysis.

Let x∗ be feasible for (1). Then we define

Ig := {i | gi(x
∗) = 0},

I0+ := {i | Gi(x
∗) = 0, Hi(x

∗) > 0},

I00 := {i | Gi(x
∗) = 0, Hi(x

∗) = 0},

I+0 := {i | Gi(x
∗) > 0, Hi(x

∗) = 0}.

Note that these index sets depend on the chosen point x∗. However, it will always be clear
from the context which point they refer to.
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Definition 2.3 Let x∗ be feasible for the MPEC (1). Then x∗ is said to be

(a) weakly stationary, if there are multipliers λ ∈ R
m, µ ∈ R

p, γ, ν ∈ R
l such that

∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µihi(x
∗)−

l
∑

i=1

γi∇Gi(x
∗)−

l
∑

i=1

νi∇Hi(x
∗) = 0

and λi ≥ 0, λigi(x
∗) = 0 (i = 1, . . . , l), γi = 0 (i ∈ I+0), νi = 0 (i ∈ I0+);

(b) C-stationary, if it is weakly stationary and γiνi ≥ 0 for all i ∈ I00;

(c) M-stationary, if it is weakly stationary and either γi > 0, νi > 0 or γiνi = 0 for all
i ∈ I00;

(d) stronlgy stationary if it is weakly stationary and γi, νi ≥ 0 for all i ∈ I00.

Note that strong stationarity implies M-stationarity, M-stationarity implies C-stationarity,
and C-stationarity, in turn, implies weak stationarity. Furthermore, it can be shown that
strong stationarity is equivalent to the standard KKT conditions of an MPEC, cf. [11].
However, even for very simple MPECs, strong stationarity may not hold at a global mini-
mum, see [32] for a counterexample. Therefore, in general, M-stationarity is the strongest
stationary concept that one can expect to hold at a local minimum under suitable assump-
tions.

In order to define the MPEC constraint qualifications needed for our analysis, we make
use of the auxiliary program

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) = 0, Hi(x) ≥ 0 ∀i ∈ I0+,
Gi(x) ≥ 0, Hi(x) = 0 ∀i ∈ I+0,
Gi(x) = 0, Hi(x) = 0 ∀i ∈ I00,

which is called the tightened nonlinear program TNLP(x∗). Note that TNLP(x∗) sub-
stantially depends on the chosen point x∗. This program leads to the following handy
definition.

Definition 2.4 We say that MPEC-LICQ (MPEC-MFCQ, MPEC-CRCQ, MPEC-CPLD)
is satisfied in a feasible point x∗ of (1) if standard LICQ (MFCQ, CRCQ, CPLD) is sat-
isfied for the corresponding tightened nonlinear program TNLP(x∗).

Since we frequently employ it in the following, let us write down MPEC-MFCQ and MPEC-
CPLD explicitly.

A point x∗ ∈ X satisfies MPEC-MFCQ if and only if the gradients

∇hi(x
∗) (i = 1, . . . , p),

∇Gi(x
∗) (i ∈ I00 ∪ I0+),

∇Hi(x
∗) (i ∈ I00 ∪ I+0)
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are linearly independent, and there exists a vector d ∈ R
n such that

∇gi(x
∗)T d < 0 (i ∈ Ig),

∇hi(x
∗)T d = 0 (i = 1, . . . , p),

∇Gi(x
∗)T d = 0 (i ∈ I00 ∪ I0+),

∇Hi(x
∗)T d = 0 (i ∈ I00 ∪ I+0).

On the other hand, x∗ ∈ X satisfies MPEC-CPLD if and only if, for any subsets I1 ⊆ Ig,
I2 ⊆ {1, . . . , p}, I3 ⊆ I00 ∪ I0+ and I4 ⊆ I00 ∪ I+0 such that the gradients

{∇gi(x
∗) | i ∈ I1} ∪

{

{∇hi(x
∗) | i ∈ I2} ∪ {∇Gi(x

∗) | i ∈ I3} ∪ {∇Hi(x
∗) | i ∈ I4}

}

(3)

are positive-linearly dependent, there exists a neighborhood N(x∗) of x∗ such that the
gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

are linearly dependent for all x ∈ N(x∗). Note that, in (3), we put an extra pair of curly
brackets around those vectors where no sign constraints occur in the definition of positive
linear dependence.

The relation between these MPEC-CQs are shown in the following diagram:

MPEC-MFCQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

MPEC-LICQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

MPEC-CPLD +3 MPEC-ACQ

MPEC-CRCQ

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

Note that this diagram also includes the MPEC-ACQ whose definition is different from
the other MPEC-CQs, so we do not include it here, especially since it will not be used in
our analysis. The reader is referred to [12] for a precise definition of MPEC-ACQ, as well
as to [16] and references therein for a justification of the above implications. It is known
that, given a local minimizer x∗ of the MPEC satisfying MPEC-ACQ (or any of the other
MPEC-CQs defined above), then x∗ is an M-stationary point, see [11, 12, 13].

3 Convergence Properties of Relaxation Schemes

The basic idea of all relaxation schemes is to get rid of the complicated complementarity
constraints

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , l
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by replacing these conditions in a suitable way such that the corresponding relaxed problem
has nicer properties. The relaxed problem depends on a parameter t > 0 which has to be
driven to zero in order to re-obtain the underlying MPEC.

For all relaxation schemes discussed here (we will discuss them in chronological order of
their date of publication), suitable convergence results are already known. Typically, the
most basic convergence results are as follows: Given a sequence tk → 0 and a corresponding
sequence of stationary points xk of the relaxed problems R(tk) such that xk converges to x∗

and such that a suitable MPEC CQ holds at x∗, then x∗ is a C-stationary point (for three
of the methods to be discussed below) or an M-stationary point (for the remaining two
methods). Furthermore, under additional conditions, one can verify that the limit point
x∗ has further properties, like being M- or even strongly stationary.

In our subsequent analysis, we try to improve only the most basic convergence results by
relaxing the corresponding MPEC CQs. The additional results which guarantee stronger
properties of the limit point x∗ are not discussed here since a corresponding generalization
of the existing results are usually straightforward (in the sense that the techniques from
the corresponding papers can be used also in our weaker framework). However, we also
show which standard constraint qualification holds for the relaxed problems (hence these
relaxed problems then possess multipliers at a local minimum). In some cases, our results
generalize existing ones, in other cases, we prove completely new results.

3.1 The Global Relaxation Scheme by Scholtes

Probably the first attempt to use a relaxation idea for solving MPECs goes back to Scholtes
[33]. It is closely related to the smoothing-type method by Facchinei et al. [10]. Some local
properties of Scholtes’ approach around a strongly stationary point can also be found in
Ralph and Wright [31].

The basic idea of the relaxation scheme by Scholtes is to replace the MPEC by a se-
quence of the parametrized NLPs of the form (see Figure 1)

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ t ∀i = 1, . . . , l.

RS(t)

We denote the feasible set by XS(t). Since, geometrically, this is a global relaxation of the
complementarity conditions, we call this approach the global relaxation method.
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Hi(x)

Gi(x)Hi(x) = t

Gi(x)

Figure 1: Geometric interpretation of the relaxation method by Scholtes [33]

For the convergence analysis, some index sets are needed:

Ig(x) := {i | gi(x) = 0},

IG(x) := {i | Gi(x) = 0},

IH(x) := {i | Hi(x) = 0},

IGH(x; t) := {i | Hi(x)Gi(x) = t}.

The following is the most basic convergence result for the global relaxation method.

Theorem 3.1 Let {tk} ↓ 0 and let xk be a stationary point of RS(tk) with xk → x∗ such
that MPEC-MFCQ holds at x∗. Then x∗ is a C-stationary point of (1).

Proof. Since xk is a KKT point of RS(tk) there exist multipliers (λk, µk, γk, νk, δk) such
that

0 = ∇f(xk) +

m
∑

i=1

λk
i∇gi(x

k) +

p
∑

i=1

µk
i∇hi(x

k)−
l

∑

i=1

γk
i∇Gi(x

k)

−
l

∑

i=1

νk
i ∇Hi(x

k) +

l
∑

i=1

δk
i [Hi(x

k)∇Gi(x
k) + Gi(x

k)∇Hi(x
k)]

(4)

with

λk ≥ 0 and supp(λk) ⊆ Ig(x
k),

γk ≥ 0 and supp(γk) ⊆ IG(xk),

νk ≥ 0 and supp(νk) ⊆ IH(xk),

δk ≥ 0 and supp(δk) ⊆ IGH(xk; tk)

for all k ∈ N. This implies

supp(γk) ∩ supp(δk) = ∅, supp(νk) ∩ supp(δk) = ∅ (5)

for all k ∈ N. Moreover, for all k ∈ N sufficiently large, we have Ig(x
k) ⊆ Ig, IG(xk) ⊆

I00 ∪ I0+, and IH(xk) ⊆ I00 ∪ I+0.
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Our next step is to define suitable new multipliers

γ̃k
i =







γk
i , if i ∈ supp(γk),
−δk

i Hi(x
k), if i ∈ supp(δk)\I+0,

0, else,

and

ν̃k
i =







νk
i , if i ∈ supp(νk),
−δk

i Gi(x
k), if i ∈ supp(δk)\I0+,

0, else.

With these multipliers, we can rewrite (4) as

0 = ∇f(xk) +
m

∑

i=1

λk
i∇gi(x

k) +

p
∑

i=1

µk
i∇hi(x

k)−
l

∑

i=1

γ̃k
i∇Gi(x

k)−
l

∑

i=1

ν̃k
i ∇Hi(x

k)

+
∑

i∈I+0

δk
i Hi(x

k)∇Gi(x
k) +

∑

i∈I0+

δk
i Gi(x

k)∇Hi(x
k).

If we assume that the sequence {(λk, µk, γ̃k, ν̃k, δk
I+0∪I0+

)} is unbounded, then one can find
a subsequence K such that the normed sequence converges:

(λk, µk, γ̃k, ν̃k, δk
I+0∪I0+

)

‖(λk, µk, γ̃k, ν̃k, δk
I+0∪I0+

)‖
→K (λ, µ, γ̃, ν̃, δI+0∪I0+) 6= 0.

The equation above then yields

0 =
m

∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)−

l
∑

i=1

γ̃i∇Gi(x
∗)−

l
∑

i=1

ν̃i∇Hi(x
∗)

where λ ≥ 0 and for all k ∈ K sufficiently large

supp(λ) ⊆ Ig(x
k) ⊆ Ig,

supp(γ̃) ⊆ IG(xk) ∪ IGH(xk; tk)\I+0 ⊆ I00 ∪ I0+,

supp(ν̃) ⊆ IH(xk) ∪ IGH(xk; tk)\I0+ ⊆ I00 ∪ I+0.

Additionally, (λ, µ, γ̃, ν̃) 6= 0 has to hold. Otherwise, δi > 0 would have to hold for at least
one i ∈ I+0 ∪ I0+. Assume without loss of generality δi > 0 for an i ∈ I+0. This implies
δk
i > 0 for all k sufficiently large and consequently ν̃k

i = −δk
i Gi(x

k) for those k. Because of
i ∈ I+0, this yields ν̃i = limk∈K −δk

i Gi(x
k) < 0, a contradiction to our assumption ν̃ = 0.

However, (λ, µ, γ̃, ν̃) 6= 0 is a contradiction to the prerequisite that MPEC-MFCQ holds
in x∗. Thus, we may assume without loss of generality that the sequence is convergent to
some vector (λ∗, µ∗, γ̃∗, ν̃∗, δ∗I+0∪I0+

). It is easy to see that λ∗ ≥ 0 and supp(λ∗) ⊆ Ig.

According to the definition of γ̃k and ν̃k, we have

supp(γ̃∗) ⊆ I00 ∪ I0+, supp(ν̃∗) ⊆ I00 ∪ I+0.
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The continuous differentiability of f, g, h, G, H then implies

0 = ∇f(x∗) +

m
∑

i=1

λ∗
i∇gi(x

∗) +

p
∑

i=1

µ∗
i∇hi(x

∗)−
l

∑

i=1

γ∗
i∇Gi(x

∗)−
l

∑

i=1

ν∗
i∇Hi(x

∗).

To prove the C-stationarity of x∗, it remains to show that γ∗
i ν

∗
i ≥ 0 for all i ∈ I00. Assume

that there is an i ∈ I00 with γ∗
i < 0 and ν∗

i > 0 or with ν∗
i > 0 and γ∗

i < 0. We consider only
the first case, the second one can be treated similarly. Because of γk

i ≥ 0, the condition
γ∗

i < 0 implies i ∈ supp(δk) for all k ∈ N sufficiently large. This implies i /∈ supp(νk) in
view of (5) and, therefore, ν∗

i ≤ 0 in contradiction to our assumption. �

Note that the corresponding result in Scholtes [33] assumes MPEC-LICQ and shows that
the sequence of multipliers corresponding to the stationary points xk converges, whereas
here we assume the weaker MPEC-MFCQ which, obviously, does not guarantee convergence
of the corresponding sequence of multipliers, but the proof shows that one can extract a
sequence of multipliers which stays bounded and is, therefore, convergent at least on a
subsequence.

The assumption of xk being a stationary point of the relaxed problem RS(tk) assumes
the existence of multipliers. A priori, it is not clear that these multipliers really exist. The
following result essentially guarantees the existence of these multipliers by showing that
MPEC-MFCQ at a feasible point x∗ of the original MPEC implies that standard MFCQ
holds for the relaxed problems RS(t), at least locally around x∗.

Theorem 3.2 Let x∗ be feasible for (1) such that MPEC-MFCQ is satisfied at x∗. Then
there exists a neighborhood N of x∗ and t̄ > 0 such that standard MFCQ for RS(t) is
satisfied at all x ∈ N ∩XS(t).

Proof. First note that, by continuity, for all x ∈ XS(t) sufficiently close to x∗, we have

Ig(x) ⊆ Ig,
IG(x) ⊆ I00 ∪ I0+,
IH(x) ⊆ I00 ∪ I+0,

IGH(x) ∩ IG(x) = ∅,
IGH(x) ∩ IH(x) = ∅.

(6)

Since MPEC-MFCQ holds, the gradients

{∇gi(x
∗) | i ∈ Ig}∪

{

{∇hi(x
∗) | i = 1, . . . , p}∪{∇Gi(x

∗) | i ∈ I00∪I0+}∪{∇Hi(x
∗) | i ∈ I00∪I+0}

}

are positive-linearly independent. In view of [29, Prop. 2.2], this implies that the set of
gradients

{∇gi(x) | i ∈ Ig}∪
{

{∇hi(x) | i = 1, . . . , p}∪{∇Gi(x) | i ∈ I00∪I0+}∪{∇Hi(x) | i ∈ I00∪I+0}
}
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is also positive-linearly independent for all x ∈ XS(t) sufficiently close to x∗. Taking into
account that

IG(x) ∪
(

IGH(x) ∩ I0+

)

∪
(

IGH(x) ∩ I00

)

⊆ I00 ∪ I0+

and
IH(x) ∪

(

IGH(x) ∩ I+0

)

∪
(

IGH(x) ∩ I00

)

⊆ I00 ∪ I+0

for all x ∈ XS(t) sufficiently close to x∗ and using the fact that Gi(x) > 0, Hi(x) ≈ 0 for all
i ∈ I+0 as well as Gi(x) ≈ 0, Hi(x) > 0 for all i ∈ I0+ whenever x is close to x∗, it follows
that there is a neighbourhood N(x∗) such that the set of vectors

∇gi(x) (i ∈ Ig(x)),
∇hi(x) (i = 1, . . . , p),
∇Gi(x) (i ∈ IG(x)),
∇Hi(x) (i ∈ IH(x)),

Gi(x)∇Hi(x) + Hi(x)∇Gi(x) (i ∈ IGH(x) ∩ I0+),
Gi(x)∇Hi(x) + Gi(x)∇Hi(x) (i ∈ IGH(x) ∩ I+0),

∇Gi(x) (i ∈ IGH(x) ∩ I00),
∇Hi(x) (i ∈ IGH(x) ∩ I00)

(7)

is positive-linearly independent for all x ∈ XS(t) ∩N(x∗).
We now claim that standard MFCQ holds for the relaxed program RS(t) whenever

x ∈ XS(t) ∩N(x∗). To this end, take an arbitrary x ∈ XS(t) ∩N(x∗). In view of Remark
2.2, we have to show that

0 =
∑

i∈Ig(x)

λi∇gi(x) +

p
∑

i=1

µi∇hi(x)−
∑

i∈IG(x)

αi∇Gi(x)

−
∑

i∈IH(x)

βi∇Hi(x) +
∑

i∈IGH(x)

γi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))
(8)

with µ ∈ R
p and λ, α, β, γ ≥ 0 holds only for the trivial vector. To see this, we rewrite (8)

as

0 =
∑

i∈Ig(x)

λi∇gi(x) +

p
∑

i=1

µi∇hi(x)−
∑

i∈IG(x)

αi∇Gi(x)−
∑

i∈IH(x)

βi∇Hi(x)

+
∑

i∈IGH(x)∩(I0+∪I+0)

γi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))

+
∑

i∈I00∩IGH(x)

(γiGi(x))∇Hi(x) +
∑

i∈I00∩IGH(x)

(γiHi(x))∇Gi(x).

(9)

Applying the positive-linear independence of the vectors from (7) to (9) and using (6), we
immediately obtain that all coefficients from (8) are zero, and this completes the proof. �
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3.2 The Relaxation Scheme by Lin and Fukushima

The relaxation scheme proposed by Lin and Fukushima in [25] employs the following re-
laxation, see Figure 2:

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x)Hi(x)− t2 ≤ 0 ∀i = 1, . . . , l,
(Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀i = 1, . . . , l.

RLF (t)

Gi(x)Hi(x) = t2

(

Gi(x) + t
)(

Hi(x) + t
)

= t2

Gi(x)

Hi(x)

Figure 2: Geometric interpretation of the relaxation method by Lin and Fukushima [25]

Its feasible set is denoted by XLF (t).
The corresponding convergence theorem is given below, see [17] for a proof.

Theorem 3.3 Let {tk} ↓ 0 and let xk be a stationary point of RLF (t) with xk → x∗ such
that MPEC-MFCQ holds in x∗. Then x∗ is C-stationary.

Note that a result similar to the previous theorem was shown in [25], but under the stronger
MPEC-LICQ condition.

We next see that MPEC-MFCQ at a feasible point x∗ of the underlying MPEC implies
that standard MFCQ holds for the corresponding regularized problems at an arbitrary
point x ∈ XLF (t) sufficiently close to x∗. Again, we refer to [17] for a proof.

Theorem 3.4 Let x∗ be feasible for (1) such that MPEC-MFCQ is satisfied at x∗. Then
there exists a neighborhood N of x∗ such that standard MFCQ for RLF (t) is satisfied at all
x ∈ N ∩XLF (t).

Altogether, it follows that the relaxation scheme by Lin and Fukushima has the same
theoretical properties as the previous relaxation method by Scholtes.
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3.3 The Relaxation Scheme by Kadrani et al.

The approach in [21] proposes the following relaxation, see Figure 3:

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≥ −t ∀i = 1, . . . , l,
Hi(x) ≥ −t ∀i = 1, . . . , l,
(Gi(x)− t)(Hi(x)− t) ≤ 0 ∀i = 1, . . . , l.

RKDB(t)

(t, t)

Gi(x)

Hi(x)

Figure 3: Geometric interpretation of the relaxation method by Kadrani et al. [21]

Its feasible set is denoted by XKDB(t).
For a refined convergence result, we need to define certain index sets. To this end, let

x be feasible for RKDB(t). Then we set

IG(x, t) := {i | Gi(x) + t = 0},
IH(x, t) := {i | Hi(x) + t = 0},
IΦ(x, t) := {i | (Gi(x)− t)(Hi(x)− t) = 0},
I0∗
Φ (x, t) := {i ∈ IΦ(x, t) | Gi(x)− t = 0},

I0+
Φ (x, t) := {i ∈ I0∗

Φ (x, t) | Hi(x)− t > 0},
I0−
Φ (x, t) := {i ∈ I0∗

Φ (x, t) | Hi(x)− t < 0},
I00
Φ (x, t) := {i ∈ IΦ(x, t) | Gi(x)− t = Hi(x)− t = 0},

I∗0
Φ (x, t) := {i ∈ IΦ(x, t) | Hi(x)− t = 0},

I+0
Φ (x, t) := {i ∈ I∗0

Φ (x, t) | Gi(x)− t > 0},
I−0
Φ (x, t) := {i ∈ I∗0

Φ (x, t) | Gi(x)− t < 0}.

(10)

The following is the main convergence result for the relaxation method by Kadrani et
al. [21]. It generalizes a corresponding result from [21] by replacing the MPEC-LICQ
assumption by the much weaker MPEC-CPLD condition.
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Theorem 3.5 Let {tk} ↓ 0 and assume that xk is a stationary point of RKDB(tk) for all
k ∈ N. Moreover, suppose that xk → x∗ such that MPEC-CPLD holds at x∗. Then x∗ is
an M-stationary point of (1).

Proof. Note that in this proof we skip the standard constraints to keep the notation as
compact as possible.

Since xk is a KKT point of RKDB(tk) for all k, there exist multipliers αk, βk, γk ≥ 0
such that

0 = ∇f(xk)−
l

∑

i=1

αk
i∇Gi(x

k)−
l

∑

i=1

βk
i∇Hi(x

k)+

l
∑

i=1

γk
i [(Hi(x

k)−tk)∇Gi(x
k)+(Gi(x

k)−tk)∇Hi(x
k)]

and

αk
i (Gi(x

k) + tk) = 0, βk
i (Hi(x

k) + tk) = 0, γk
i (Gi(x

k)− tk)(Hi(x
k)− tk) = 0.

Now, put
ηG,k

i := −γk
i (Hi(x

k)− tk), ηH,k
i := −γk

i (Gi(x
k)− tk).

Then we infer from the equations above that

0 = ∇f(xk)−
l

∑

i=1

αk
i∇Gi(x

k)−
l

∑

i=1

βk
i∇Hi(x

k)−
l

∑

i=1

ηG,k
i ∇Gi(x

k)−
l

∑

i=1

ηH,k
i ∇Hi(x

k) (11)

and, for all k sufficiently large,

supp(αk) ⊆ IG(xk, tk) ⊆ I00 ∪ I0+,
supp(βk) ⊆ IH(xk, tk) ⊆ I00 ∪ I+0,

supp(ηG,k) ⊆ I0∗
Φ (xk, tk) ⊆ I00 ∪ I0+,

supp(ηH,k) ⊆ I∗0
Φ (xk, tk) ⊆ I00 ∪ I+0.

(12)

Moreover, one sees that
supp(αk) ∩ supp(ηG,k) = ∅,
supp(βk) ∩ supp(ηH,k) = ∅,

supp(ηG,k) ∩ supp(ηH,k) = ∅.
(13)

In addition, we have

i ∈ supp(ηG,k) ∩ supp(βk) =⇒ ηG,k
i > 0,

i ∈ supp(ηH,k) ∩ supp(αk) =⇒ ηH,k
i > 0.

(14)

Without loss of generality, cf. [34, Lem. A.1], we may assume that the following gradients

{

∇Gi(x
k) | supp(αk) ∪ supp(ηG,k)

}

∪
{

∇Hi(x
k) | supp(βk) ∪ supp(ηH,k)

}

(15)
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are linearly independent. Now, we want to prove that the sequence {(αk, βk, ηG,k, ηH,k)}
is bounded. For these purposes, we assume the contrary. Nevertheless, we may suppose,
without loss of generality, that there is a vector (α̃, β̃, η̃G, η̃H) such that

(αk, βk, ηG,k, ηH,k)

‖(αk, βk, ηG,k, ηH,k)‖
→ (α̃, β̃, η̃G, η̃H) 6= 0,

and, clearly, for all k (sufficiently large) one has

supp(α̃) ⊆ supp(αk), supp(β̃) ⊆ supp(βk),
supp(η̃G) ⊆ supp(ηG,k), supp(η̃H) ⊆ supp(ηH,k).

(16)

By passing to the limit, (11) therefore yields

0 =
l

∑

i=1

α̃i∇Gi(x
∗) +

l
∑

i=1

β̃i∇Hi(x
∗) +

l
∑

i=1

η̃G
i ∇Gi(x

∗) +
l

∑

i=1

η̃H
i ∇Hi(x

∗),

i.e., the gradients
{

∇Gi(x
∗) | supp(α̃) ∪ supp(η̃G)

}

∪
{

∇Hi(x
∗) | supp(β̃) ∪ supp(η̃H)

}

are (positive-) linearly dependent. This, in view of MPEC-CPLD, remains true for xk

instead of x∗. But in view of (16), this contradicts the linear independence in (15). Thus,
we can infer that {(αk, βk, ηG,k, ηH,k)} is bounded, that is, at least on a subsequence, we
have

(αk, βk, ηG,k, ηH,k)→ (α, β, ηG, ηH),

for some vectors α, β, ηG, ηH satisfying

supp(α) ⊆ supp(αk), supp(β) ⊆ supp(βk),
supp(ηG) ⊆ supp(ηG,k), supp(ηH) ⊆ supp(ηH,k).

(17)

Now, for i = 1, . . . , l, put

λG
i :=







αi, if i ∈ supp(α),
ηG

i , if i ∈ supp(ηG),
0, else,

and λH
i :=







βi, if i ∈ supp(β),
ηH

i , if i ∈ supp(ηH),
0, else.

In view of (17) and (13), λG and λH are at least well-defined. We now show that x∗,
together with the multipliers λG, λH , is an M-stationary point. To this end, first note that
(11) implies

0 = ∇f(x∗)−
l

∑

i=1

λG
i ∇Gi(x

∗)−
l

∑

i=1

λH
i ∇Hi(x

∗).

Furthermore, note that, for i ∈ I+0, we have i 6∈ supp(αk) ∪ supp(ηG,k) in view of (12).
Using (17), this implies i 6∈ supp(α) ∪ supp(ηG), hence the definition of λg gives λG

i = 0.
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A symmetric argument shows that λH
i = 0 for all i ∈ I0+. This means that x∗ is at least

weakly stationary. Furthermore, if either λG
i = 0 or λH

i = 0, the M-stationarity condi-
tions are satisfied for such an index i. Consequently, taking into account the definitions of
λG

i , λH
i , it remains to consider four cases.

Case 1: i ∈ supp(α) ∩ supp(β). Then λG
i = αi ≥ 0 and λH

i = βi ≥ 0, so that the M-
stationarity conditions hold for such an index.

Case 2: i ∈ supp(α) ∩ supp(ηH). Then i ∈ supp(αk) ∩ supp(ηH,k) for all k ∈ N sufficiently
large, cf. (17). Hence (14) implies ηH,k

i > 0 for all k ∈ N sufficiently large which, in turn,
gives ηH

i ≥ 0, hence λH
i ≥ 0. Furthermore, since i ∈ supp(ηH,k), we have i 6∈ supp(ηG,k) by

(13), hence i 6∈ supp(ηG) by (14). This implies λG
i ≥ 0 and shows that the M-stationarity

conditions also holds for an index i from Case 2.

Case 3: i ∈ supp(ηG) ∩ supp(β). Here a symmetric reasoning to Case 2 shows that the
M-stationary conditions also hold in this case.

Case 4: i ∈ supp(ηG) ∩ supp(ηH). Then (14) implies that i ∈ supp(ηG,k) ∩ supp(ηH,k) for
all k ∈ N sufficiently large. In view of (13), we see that this case cannot occur.

Altogether, this shows that x∗ is an M-stationary point. �

The question regarding the existence of KKT multipliers for the relaxed problems, as
needed in the above convergence result, cannot be answered as satisfactory and quickly as
for the foregoing approaches. To illustrate this, let us consider the following example.

Example 3.6 Consider the two-dimensional MPEC

min x2
1 + x2

2 s.t. x1 ≥ 0, x2 ≥ 0, x1x2 = 0. (18)

Obviously, this MPEC satisfies MPEC-LICQ, and hence in particular MPEC-CPLD, at any
feasible point. Now, choose tk := 1

k
and xk := (tk, tk) for k ∈ N. Then xk → x∗ := (0, 0)

and geometric arguments and a quick calculation show that TXKDB(tk)(x
k) = {d ∈ R

2 |
d1d2 ≤ 0} 6= R

2 = LXKDB(tk)(x
k). Hence, ACQ is violated at xk, in particular, all stronger

concepts like CPLD, MFCQ or LICQ are also violated at xk. On the other hand, it is easy
to see that GCQ is satisfied.

Despite this counterexample, Kadrani et al. [21] were able to verify existence of KKT
multipliers for the relaxed problem under the MPEC-LICQ assumption. The following
result is a refinement of their observation and partly motivated by Example 3.6.

Theorem 3.7 Let x∗ be feasible for (1) such that MPEC-LICQ holds at x∗. Then there
exists t̄ > 0 and a neighborhood N of x∗ such that (standard) GCQ for RKDB(t) is fulfilled
at all x̂ ∈ N ∩XKDB(t) for all t ∈ (0, t̄).

Proof. Again, we skip the standard constraints from the proof without loss of generality.
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Let t > 0 and x̂ ∈ XKDB(t). Furthermore, let I ⊆ I00
Φ (x̂, t) and put Ī := I00

Φ (x̂, t) \ I.
Herewith, define the program NLP (I)

min f(x)
s.t. Gi(x) + t ≥ 0 (i = 1, . . . , l),

Hi(x) + t ≥ 0 (i = 1, . . . , l),
Gi(x)− t ≤ 0 (i ∈ I0+

Φ (x̂, t) ∪ I),
Gi(x)− t ≥ 0 (i ∈ I0−

Φ (x̂, t) ∪ Ī),
Hi(x)− t ≤ 0 (i ∈ I+0

Φ (x̂, t) ∪ Ī),
Hi(x)− t ≥ 0 (i ∈ I−0

Φ (x̂, t) ∪ I),

and denote its feasible set by X̂(I). Then we have x̂ ∈ X̂(I) and, locally around x̂, we
have X̂(I) ⊆ XKDB(t). We now claim that

TXKDB(t)(x̂) =
⋃

I⊆I00
Φ

(x̂,t)

TX̂(I)(x̂). (19)

The ⊇-inclusion is obvious. For the converse direction let d ∈ TXKDB(t)(x̂), i.e., there exists

{xk} ⊆ XKDB(t) with xk → x̂ and {tk} ↓ 0 such that xk−x̂
tk
→ d. By continuity, for k

sufficiently large, we have

Gi(x
k)− t ≤ 0 (i ∈ I0+

Φ (x̂, t)),

Gi(x
k)− t ≥ 0 (i ∈ I0−

Φ (x̂, t)),

Hi(x
k)− t ≤ 0 (i ∈ I+0

Φ (x̂, t)),

Hi(x
k)− t ≥ 0 (i ∈ I−0

Φ (x̂, t)),

since xk ∈ XKDB(t). Moreover, we also have Hi(x
k) + t ≥ 0, Gi(x

k) + t ≥ 0 (i = 1, . . . , l)
anyway. Due to the fact that I00

Φ (x̂, t) is finite, there exists an infinite subset K ⊆ N and
I ⊆ I00

Φ (x̂, t) such that

Gi(x
k)− t ≤ 0 (i ∈ I0+

Φ (x̂, t) ∪ I),

Gi(x
k)− t ≥ 0 (i ∈ I0−

Φ (x̂, t) ∪ Ī),

Hi(x
k)− t ≤ 0 (i ∈ I+0

Φ (x̂, t) ∪ Ī),

Hi(x
k)− t ≥ 0 (i ∈ I−0

Φ (x̂, t) ∪ I)

for all k ∈ K. Therefore, {xk}K ⊆ X̂(I) and hence, d ∈ TX̂(I)(x̂), which gives the desired
inclusion.

Now, for an arbitrary I ⊆ I00
Φ (x̂, t), the active gradients of NLP (I) at x̂ are

∇Gi(x̂) (i ∈ IG(x̂, t) ⊆ I00 ∪ I0+),

∇Hi(x̂) (i ∈ IH(x̂, t) ⊆ I00 ∪ I+0),

∇Gi(x̂) (i ∈ I0+
Φ (x̂, t) ∪ I ⊆ I00 ∪ I0+),

∇Gi(x̂) (i ∈ I0−
Φ (x̂, t) ∪ Ī ⊆ I00 ∪ I0+),

∇Hi(x̂) (i ∈ I+0
Φ (x̂, t) ∪ Ī ⊆ I00 ∪ I+0),

∇Hi(x̂) (i ∈ I−0
Φ (x̂, t) ∪ I ⊆ I00 ∪ I+0),
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where for the index set inclusions, in particular, we exploit the fact that I00
Φ (x̂, t) ⊆ I00.

The above gradients are, in view of MPEC-LICQ at x∗, linearly independent if x̂ is
sufficiently close to x∗, i.e., LICQ and hence ACQ holds for NLP (I) at x̂. This means that
TX̂(I)(x̂) = LX̂(I)(x̂) and in view of (19) and invoking [4, Th. 3.1.9], this yields

TXKDB(t)(x̂)◦ =
⋂

I⊆I00
Φ

(x̂,t)

LX̂(I)(x̂)◦, (20)

where, by means of [4, Th. 3.2.2], we have

LX̂(I)(x̂)◦ = {v ∈ R
n | ∃α,β,γ,δ,ǫ,ρ≥0 : v = −

∑

i∈IG(x̂,t)

αi∇Gi(x̂)−
∑

i∈IH(x̂,t)

βi∇Hi(x̂)

+
∑

i∈I0+

Φ
(x̂,t)∪I

γi∇Gi(x̂)−
∑

i∈I0−

Φ
(x̂,t)∪Ī

δi∇Gi(x̂)

+
∑

i∈I+0

Φ
(x̂,t)∪Ī

ǫi∇Hi(x̂)−
∑

i∈I−0

Φ
(x̂,t)∪I

ρi∇Hi(x̂)}.

In order to verify GCQ for RKDB(t) at x̂, i.e., TXKDB(t)(x̂)◦ ⊆ LXKDB(t)(x̂)◦, let v ∈
TXKDB(t)(x̂)◦. Using (20), it then follows that, for some I ⊆ I00

Φ (x̂, t), we have both d ∈
LX̂(I)(x̂)◦ and d ∈ LX̂(Ī)(x̂)◦. Then exploiting the representation above and the linear
independence of the occuring gradients, it is quickly argued that the multipliers with indices
in I and Ī must vanish and hence, v can be expressed as

v = −
∑

i∈IG(x̂,t)

αi∇Gi(x̂)−
∑

i∈IH(x̂,t)

βi∇Hi(x̂) +
∑

i∈I0+

Φ
(x̂,t)

γi∇Gi(x̂)

−
∑

i∈I0−

Φ
(x̂,t)

δi∇Gi(x̂) +
∑

i∈I+0

Φ
(x̂,t)

ǫi∇Hi(x̂)−
∑

i∈I−0

Φ
(x̂,t)

ρi∇Hi(x̂)

for some α, β, γ, δ, ǫ, ρ ≥ 0, and this means that v ∈ LXKDB(t)(x̂)◦, again by [4, Th. 3.2.2].
This concludes the proof. �

The following result shows that RKDB(t) satisfies stronger constraint qualifications in all
points where I00

Φ (x, t) = ∅ holds.

Theorem 3.8 Let x∗ be feasible for the MPEC (1) such that MPEC-CPLD (MPEC-
LICQ) holds at x∗. Then there is a t̄ > 0 and a neighborhood N of x∗ such that the
following holds for all t ∈ (0, t̄ ]: If x ∈ N ∩ XKDB(t) with I00

Φ (x, t) = ∅ then standard
CPLD (LICQ) for RKDB(t) holds at x.

Proof. Note that we only need to prove the CPLD part, since the assertion on LICQ
follows from [21, Th. 2.4].

Now, suppose our assertion is false. Then there exist sequences {tk} ↓ 0 and {xk} ⊆
XKDB(tk) with xk → x∗ and I00

Φ (x, t) = ∅ such that CPLD for RKDB(tk) is violated at
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xk. This yields subsets Ik
1 ⊆ Ig(x

k), Ik
2 ⊆ {1, . . . , p}, I

k
3 ⊆ IG(xk, tk), I

k
4 ⊆ IH(xk, tk), I

k
5 ⊆

I0∗
Φ (xk, tk), I

k
6 ⊆ I∗0

Φ (xk, tk) such that the gradients

{∇hi(x) | i ∈ Ik
2} ∪

{

{∇gi(x) | i ∈ Ik
1} ∪ {−∇Gi(x) | i ∈ Ik

3} ∪ {−∇Hi(x) | i ∈ Ik
4 }

∪{(Hi(x)− tk)∇Gi(x) | i ∈ Ik
5 } ∪ {(Gi(x)− tk)∇Hi(x) | i ∈ Ik

6 }
}

are positive-linearly dependent at x = xk, but linearly independent in x arbitrary close
to xk. Moreover, by a finiteness argument, we can assume without loss of generality that
Ik
i = Ii for i = 1, . . . , 6 and all k ∈ N. Then it is easy to see that I1 ⊆ Ig, I3∪I5 ⊆ I00∪I0+,

and I4 ∪ I6 ⊆ I00 ∪ I+0. The positive-linear dependence of the above gradients at xk

immediately implies the positive-linear dependence of the gradients

{∇gi(x) | i ∈ I1} ∪
{

{∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3 ∪ I5} ∪ {∇Hi(x) | i ∈ I4 ∪ I6}
}

at x = xk. Due to the violation of CPLD at xk this yields a sequence {yk} → x∗ such that
these gradients are linearly independent at x = yk. If they were positive-linearly indepen-
dent at x∗, by [29, Theorem 2.2], they would remain positive-linearly independent nearby,
which contradicts the existence of {xk}. On the other hand, if they were positive-linearly
dependent, by MPEC-CPLD, they would remain linearly dependent in a whole neighbor-
hood, which contradicts the existence of {yk}. This concludes the proof. �

3.4 The Local Relaxation Scheme by Steffensen and Ulbrich

The scheme introduced by Steffensen and Ulbrich in [34] is based on the relaxation (cf.
Figure 4)

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
ΦSU(Gi(x), Hi(x); t) ≤ 0 ∀i = 1, . . . , l

RSU(t)

with
ΦSU : R

2 → R, ΦSU(x1, x2; t) := x1 + x2 − ϕ(x1 − x2; t),

where

ϕ(·; t) : R→ R, ϕ(a; t) :=

{

|a|, if |a| ≥ t,
tθ(a

t
), if |a| < t,

and θ : [−1, 1]→ R is a function satisfying:

(a) θ is twice continuously differentiable on [−1, 1];
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(b) θ(−1) = θ(1) = 1;

(c) θ′(−1) = −1 and θ′(1) = 1;

(d) θ′′(−1) = θ′′(1) = 0;

(e) θ′′(x) > 0 for all x ∈ (−1, 1).

Let XSU(t) denote the feasible set of RSU(t).

Hi(x)

Gi(x)

t

t

Figure 4: Geometric interpretation of the relaxation method by Steffensen and Ulbrich [34]

The original convergence result from [34] states that, given a convergent sequence xk → x∗

of stationary points of the relaxed problems RSU(tk) with {tk} ↓ 0, then the limit point x∗

is C-stationary provided that MPEC-CRCQ holds at x∗. Very recently, it has been shown
that the same statement holds under the weaker MPEC-CPLD assumption, see [16], which
is therefore the result that we restate here. Note that the assertion holds, in particular,
under MPEC-MFCQ.

Theorem 3.9 Let {tk} ↓ 0 and let xk be a stationary point of RSU(tk) with xk → x∗ such
that MPEC-CPLD holds in x∗. Then x∗ is a C-stationary point of (1).

The local relaxation scheme discussed in this section has another advantage, namely that it
might not be necessary for the sequence {tk} to go down to zero under suitable assumptions,
in particular, when Gi(x

∗)+Hi(x
∗) > 0 holds for all i = 1, . . . , l. This follows immediately

from the observation that, in this case, the feasible sets of the MPEC itself and of the
relaxed problem RSU(t) coincide locally.

On the other hand, the question under which assumptions one may expect to get
multipliers for the relaxed problem has not been discussed thus far. To this end, let us first
consider a simple example.

Example 3.10 Consider again the MPEC from Example 3.6. Given a sequence {tk} ↓ 0,
we define {xk} by xk := (tk, 0). Then the active gradients at xk are −

(

0
1

)

,∇Φ(tk, 0; tk) =
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(

0
2

)

, which are obviously positive-linearly dependent. On the other hand, for ε > 0 suffi-

ciently small, the above gradients evaluated at xk
ε := (tk − ε, 0) become −

(

0
1

)

,
(1−θ′(

tk−ε

tk
)

1+θ′(
tk−ε

tk
)

)

,

which are obviously linearly independent. Hence, CPLD is violated at xk for all k, although
MPEC-LICQ holds at x∗ = (0, 0). However, it is easy to see that ACQ is fulfilled.

In order to prove our result on constraint qualifications, some index sets need to be defined.
For these purposes, let t > 0 and x̂ ∈ XSU(t). Then we put

IG(x̂) := {i | Gi(x̂) = 0},
IH(x̂) := {i | Hi(x̂) = 0},

IΦ(x̂, t) := {i | Φ(Gi(x), Hi(x); t) = 0}.

Theorem 3.11 Let x∗ be feasible for (1) such that MPEC-LICQ holds at x∗. Then there
exists a neighborhood N of x∗ and t̄ > 0 such that for all t ∈ (0, t̄) and x̂ ∈ XSU(t) ∩ N
(standard) ACQ for RSU(t) is satisfied at x̂.

Proof. Note that, again, we skip the standard constraints from the proof for clarity’s
sake.

Now, if I0+ ∪ I+0 6= ∅, first put t̄ := 1
2
min{Gi(x

∗) (i ∈ I+0), Hi(x
∗) (i ∈ I0+)}. Then,

in particular, one has t̄ > 0. Otherwise choose t̄ > 0 arbitrarily. Now, let t ∈ (0, t̄) and
x̂ ∈ XSU(t). Then we define the program NLP (x̂) by

min f(x)
s.t. Gi(x) ≥ 0 (i /∈ IΦ(x̂, t)),

Hi(x) ≥ 0 (i /∈ IΦ(x̂, t)),
Φ(Gi(x), Hi(x); t) = 0 (i ∈ IΦ(x̂, t) ∩ {IG(x̂) ∪ IH(x̂)}),
Φ(Gi(x), Hi(x); t) ≤ 0 (i /∈ IΦ(x̂, t) ∩ {IG(x̂) ∪ IH(x̂)}),

and denote its feasible region by X̂. Then, clearly, x̂ ∈ X̂. Moreover, using [16, Lem.
4.5/4.6], the gradients for the active constraints of NLP (x̂) at x̂ read to

∇Gi(x̂) (i ∈ IG(x̂) \ IΦ(x̂, t)),
∇Hi(x̂) (i ∈ IH(x̂) \ IΦ(x̂, t)),
2∇Gi(x̂) (i ∈ IG(x̂) ∩ IΦ(x̂, t)),
2∇Hi(x̂) (i ∈ IH(x̂) ∩ IΦ(x̂, t)),
αi∇Gi(x̂) + βi∇Hi(x̂) (i ∈ IΦ(x̂, t) \ {IG(x̂) ∪ IH(x̂)}),

(21)

where αi = 1− θ′(Gi(x̂)−Hi(x̂)
t

), βi = 1 + θ′(Gi(x̂)−Hi(x̂)
t

). Now, for x̂ sufficiently close to x∗,
we have the inclusions

IG(x̂) ⊆ I00 ∪ I0+, IH(x̂) ⊆ I00 ∪ I+0,

and by the choice of t̄, we also get

IΦ(x̂, t) \ {IG(x̂) ∪ IH(x̂)} ⊆ I00.
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Hence, in view of MPEC-LICQ at x∗, the gradients in (21) are linearly independent for x̂
sufficiently close to x∗, and thus, LICQ and in particular ACQ for NLP (x̂) holds at x̂.

Moreover, we have

LX̂(x̂) =
{

d ∈ R
n | ∇Gi(x̂)Td ≥ 0 (i ∈ IG(x̂) \ IΦ(x̂, t)),

∇Hi(x̂)Td ≥ 0 (i ∈ IH(x̂) \ IΦ(x̂, t)),
∇Gi(x̂)T d = 0 (i ∈ IG(x̂) ∩ IΦ(x̂, t)),
∇Hi(x̂)T d = 0 (i ∈ IH(x̂) ∩ IΦ(x̂, t)),

∇(Φ(Gi(x̂), Hi(x̂); t))Td ≤ 0 (i ∈ IΦ(x̂, t) \ {IG(x̂) ∪ IH(x̂)})
}

= LXSU (t)(x̂),
(22)

where the last equality can easily be verified by direct calculation. We now want to show
that, locally around x̂, we have X̂ ⊆ XSU(t).

For these purposes, it remains to see that, for x ∈ X̂ sufficiently close to x̂, we have

Gi(x) ≥ 0 (i ∈ IΦ(x̂, t)) and Hi(x) ≥ 0 (i ∈ IΦ(x̂, t)).

To this end, consider first the case of i ∈ IΦ(x̂, t) ∩ {IG(x̂) ∪ IH(x̂)}. Then, in particu-
lar, Φ(Gi(x), Hi(x); t) = 0, which in view of [16, Lemma 4.6] gives Gi(x), Hi(x) ≥ 0. If
otherwise i /∈ IG(x̂) ∪ IH(x̂), we get Gi(x), Hi(x) > 0 by continuity.

The local inclusion X̂ ⊆ X(t) yields TX̂(x̂) ⊆ TXSU (t)(x̂) and hence, by ACQ for NLP (x̂)
at x̂ and (22), we have

LX̂(x̂) = TX̂(x̂) ⊆ TXSU (t)(x̂) ⊆ LXSU (t)(x̂) = LX̂(x̂),

which gives the assertion. �

The following result shows that a stronger constraint qualification holds at all points of
XSU(t) where the local relaxation is active.

Theorem 3.12 Let x∗ be feasible for (1) such that MPEC-LICQ holds at x∗. Then there
exists a neighborhood N of x∗ such that the following holds: If x ∈ N ∩ XSU(t) with
IΦ(x, t) ∩ {IG(x) ∪ IH(x)} = ∅ then standard LICQ holds for RSU(t) at x.

Proof. Let x ∈ XSU(t). Then, if IΦ(x, t) ∩ {IG(x) ∪ IH(x)} = ∅, the active gradients for
RSU(t) at x are,

∇gi(x) (i ∈ Ig(x)),

∇hi(x) (i = 1, . . . , p),

∇Gi(x) (i ∈ IG(x)),

∇Hi(x) (i ∈ IH(x)),

αi∇Gi(x) + βi∇Hi(x) (i ∈ IΦ(x, t) \ {IG(x) ∪ IH(x)}),

23



where αi = 1 − θ′(Gi(x̂)−Hi(x̂)
t

), βi = 1 + θ′(Gi(x̂)−Hi(x̂)
t

). Moreover, cf. also the proof of
Theorem 3.11, for x sufficiently close to x∗, we have the inclusions

Ig(x) ⊆ Ig,

IG(x) ⊆ I00 ∪ I0+,

IH(x) ⊆ I00 ∪ I+0,

IΦ(x, t) \ {IG(x) ∪ IH(x)} ⊆ I00,

and in view of MPEC-LICQ the active gradients from above are linearly independent, i.e.,
LICQ holds at x. �

3.5 The Relaxation Scheme by Kanzow and Schwartz

The relaxation scheme established by Kanzow and Schwartz in [22] is given by (see Figure 5)

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . , m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Φ(Gi(x), Hi(x); t) ≤ 0 ∀i = 1, . . . , l,

RKS(t)

Gi(x)

t

t

Hi(x)

Figure 5: Geometric interpretation of the relaxation method by Kanzow and Schwartz [22]

where Φ : R
2 × R → R is defined by Φ(x1, x2; t) := φ(x1 − t, x2 − t) and φ : R

2 → R is
given by

φ(a, b) :=

{

ab, if a + b ≥ 0,
−1

2
(a2 + b2), if a + b < 0.

Let XKS(t) be the feasible set of RKS(t). Given x ∈ XKS(t), we put I00
Φ (x; t) := {i |

Gi(x)−t = Hi(x)−t = 0}. The following is the main convergence result for this relaxation,
see [22] for a proof.
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Theorem 3.13 Let {tk} ↓ 0 and xk be a stationary point of NLP(tk) with xk → x∗ such
that MPEC-CPLD holds in x∗. Then x∗ is an M-stationary point of the MPEC (1).

Existence of multipliers can also be guaranteed under suitable assumptions.

Theorem 3.14 Let x∗ be feasible for the MPEC (1) such that MPEC-LICQ holds in x∗.
Then there is a t̄ > 0 and a neighbourhood N of x∗ such that GCQ holds for RKS(t) at all
x̂ ∈ N ∩XKS(t) for all t ∈ (0, t̄).

Theorem 3.15 Let x∗ be feasible for the MPEC (1) such that MPEC-CPLD (MPEC-
LICQ) holds at x∗. Then there is a t̄ > 0 and a neighborhood N of x∗ such that the
following holds for all t ∈ (0, t̄]: If x ∈ U(x∗) ∩ XKS(t) with I00

Φ (x; t) = ∅, then standard
CPLD (LICQ) for RKS(t)) holds at x.

In Table 1, we try to summarize the results of this section in a very concise way. The
columns contain the five relaxation schemes discussed here. The first two lines then state
under which MPEC constraint qualification a limit point of a sequence generated by one of
these methods is either C- or M-stationary. The second part of the table indicates under
which MPEC constraint qualification the corresponding regularized problem satisfies one of
the standard NLP constraint qualifications. Of course, this part only holds locally around
a given feasible point x∗ of the MPEC.

Relaxation Scholtes Lin–Fukush. Kadrani et al. Steff.–Ulbrich K.–Schwartz
stationary point results

Assuming MPEC-MFCQ MPEC-MFCQ MPEC-CPLD MPEC-CPLD MPEC-CPLD
limit pts. are C–stationary C–stationary M–stationary C–stationary M–stationary

existence of Lagrange multipliers
Assuming MPEC-MFCQ MPEC-MFCQ MPEC-LICQ MPEC-LICQ MPEC-LICQ

NLP(t) satisf. MFCQ MFCQ GCQ ACQ GCQ

Table 1: Summary of results regarding stationary points and constraint qualifications for
the different relaxation methods

Note, however, that this second part does not cover the complete story. To this end,
let us first note that MPEC-LICQ implies that the MPEC itself satisfies standard GCQ,
cf. [11]. Therefore, when simply looking at the table, it seems that the feasible sets of
some of the relaxation methods do not have better properties than the underlying MPEC,
hence one might wonder why using such a regularization. In fact, GCQ or the slightly
stronger ACQ are relatively weak conditions which, however, guarantee the existence of
Lagrange multipliers at a local minimum. The main difference is that standard MFCQ
(hence also standard LICQ) is violated at any feasible point of the MPEC itself, while the
corresponding results for the three regularization methods by Kadrani et al. [21], Steffensen
and Ulbrich [34], and Kanzow and Schwartz [22] typically satisfy LICQ (hence also MFCQ)
in many points under the MPEC-LICQ condition.
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Let us discuss this point is more detail. The two relaxation methods by Scholtes [33]
and Lin and Fukushima [25], besides being only convergent to C-stationary points, have
no problems regarding constraint qualifications: MPEC-LICQ implies LICQ for the cor-
responding regularized problems, as shown in the original references [33, 25], and MPEC-
MFCQ also implies MFCQ, as shown in this section for the Scholtes-relaxation and in [16]
for the Lin-Fukushima-relaxation. Moreover, it also seems that MPEC-CRCQ (MPEC-
CPLD) implies CRCQ (CPLD) for the corresponding relaxed problem, i.e., basically any
MPEC constraint qualification implies that the corresponding standard CQ holds for the
relaxed problem (locally, of course).

The situation is completely different with the other three relaxation schemes. These
other three schemes have stronger convergence properties than the first two methods, more
precisely, the two relaxation schemes by Kadrani et al. [21] and Kanzow and Schwartz [22]
converge to M-stationary points, which is a much stronger property than C-stationarity,
whereas the local regularization approach by Steffensen and Ulbrich [34] only converge to
C-stationary points, but has a nice finite termination property in the sense that it is not
always necessary that the relaxation parameter t has to be driven down to zero. On the
other hand, our analysis and the corresponding (counter-) examples show that the relaxed
problems of any of these three methods usually do not inherit the corresponding standard
CQ from an MPEC CQ.

In fact, it is easy to see that the relaxed problem by Steffensen and Ulbrich [34] not
only violates LICQ, but also CRCQ and CPLD, whereas ACQ (hence GCQ) is satisfied
under MPEC-LICQ. Similarly, the relaxed problems by Kadrani et al. [21] and Kanzow and
Schwartz [22] do not even satisfy ACQ, whereas GCQ holds under MPEC-LICQ. Hence,
from this point of view, it seems that the Steffensen-Ulbrich regularization is slightly better
than the other two relaxations. However, also this is not true in general since, speaking in
the (Gi(x), Hi(x))-space, both the Kadrani et al.- and the Kanzow-Schwartz-regularization
satisfy standard LICQ in all points except for one (locally and assuming MPEC-LICQ, of
course), whereas the Steffensen-Ulbrich relaxation violates standard LICQ in many points,
namely in all points on the Gi- and Hi-axes where the feasible set of the MPEC is not
changed by the local relaxation.

4 Numerical Comparison

We implemented all five methods in MATLAB 7.10.0 and ran some tests using the MacM-
PEC collection [23]. The basic algorithm is Algorithm 1, where the maximum violation of
all constraints

maxVio(xopt) = max{max{0, g(xopt)}, |h(xopt)|, |min{G(xopt), H(xopt)}|} (23)

is used to measure the feasibility of the final iterate xopt.
However, before we delve into the numerical details, let us clarify the aim of this sec-

tion. So far, we have discussed the different theoretical properties of these five relaxation
methods. Now, we want to find out what differences there are in the numerical behaviour.
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Algorithm 1 Basic relaxation algorithm (x0, t0, σ, tmin, ε)

Require: a starting vector x0, an initial relaxation parameter t0, and parameters σ ∈
(0, 1), tmin > 0, and ε > 0.

Set k := 0.
while tk ≥ tmin do

Find an approximate solution xk+1 of the relaxed problem R(tk). To solve R(tk), use
xk as starting vector.
Let tk+1 ← σ · tk and k ← k + 1.

end while

Return: the final iterate xopt := xk, the corresponding function value f(xopt), and the
maximum constraint violation maxVio(xopt).

Therefore, we tried to implement all five methods as similar as possible to ensure that
different numerical results are caused by the different properties of the relaxations and
not by algorithmic differences. As a consequence, we did not optimize our implementation
individually for every relaxation, i.e. it is possible to obtain better results by tailoring the
algorithms to the characteristics of the relaxations. For example, Steffensen and Ulbrich
[34] and Kadrani, Dussault, and Benchakroun [21] proposed numerical approaches that
deal with the specific characteristics of their relaxations.

All relaxations except for the one by Kadrani et al. have the property that the following
inclusion holds for all 0 ≤ t1 < t2

X(t1) ⊂ X(t2),

where X(t) is the feasible area of the relaxed problem R(t) and X = X(0) is the feasible
area of the MPEC (1). This can be used in the numerical implementation in the following
way: If a relaxed problem R(tk) is infeasible, the MPEC is infeasible, too, and we can
terminate the algorithm immediately. We can also terminate the algorithm early if the
solution xk+1 of an iteration k is feasible for the MPEC because in this case, xk+1 is also a
solution of the MPEC itself. Finally, if the solution xk+1 also is feasible for R(tk+1), is also
is a solution of R(tk+1). Thus, we can skip the next iteration and reduce the relaxation
parameter further until xk+1 is not feasible for the next iteration anymore. These changes
are incorporated into Algorithm 2, where feasibility of the iterate xk for the original MPEC
is measured by the violation of the complementarity constraints

compVio(xk) = ‖min{G(xk), H(xk)}‖∞.

Note, that the standard constraints g(x) ≤ 0 and h(x) = 0 are part of the relaxed problems
R(t) and therefore do not need to be checked here.

We used the parameters tmin = 10−15 and ε = 10−6 for all relaxations and the TOMLAB
7.4.0 solver snopt to solve the relaxed problems R(tk). The remaining parameters and the
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Algorithm 2 Improved relaxation algorithm (x0, t0, σ, tmin, ε)

Require: a starting vector x0, an initial relaxation parameter t0, and parameters σ ∈
(0, 1), tmin > 0, and ε > 0.

Set k := 0.
while (tk ≥ tmin and compVio(xk) > ε) or k = 0 do

Find an approximate solution xk+1 of the relaxed problem R(tk). To solve R(tk), use
xk as starting vector.
If R(tk) is infeasible, terminate the algorithm.
Let tk+1 ← maxl=1,2,3,...{σ

l · tk | x
k+1 /∈ X(σl · tk) and σl · t ≥ tmin} and k ← k + 1.

end while

Return: the final iterate xopt := xk, the corresponding function value f(xopt), and the
maximum constraint violation maxVio(xopt).

used algorithm are given in Table 2. Note that we cannot use the improved Algorithm 2
for the relaxation method by Kadrani et al. since the feasible area of the MPEC (1) is not
included in the feasible area of the relaxed problems used in this method.

Relaxation Scholtes Lin–Fukush. Kadrani et al. Steff.–Ulbrich K.–Schwartz
Algorithm Algorithm 2 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 2

t0 1 1 1 2π
π−2

1

σ 0.0001 0.01 0.01 0.01 0.01

Table 2: Parameters and algorithms used for the different relaxation methods

The parameters t0 and σ are chosen such that in the k-th iteration (assume that no
iterations are skipped) the point (0.01k, 0.01k) lies on the boundary of the relaxed feasible
area, for example ΦSU

i (0.01k, 0.01k; tk) = 0 for all k = 0, 1, . . . with tk = t0σ
k. Thus, it is

guaranteed that the relaxed area shrinks with the same speed for all relaxation methods.
To illustrate the different behaviour of the five relaxation methods, we chose 126 prob-

lems from the MacMPEC collection [23]. The other problems were discarded partly due to
their size or form and partly because errors occured during the evaluation of the objective
function or the constraints by AMPL. Communication between AMPL and MATLAB is
achieved using the mex function amplfunc [27]. To present the results, we use performance
profiles as introduced by Dolan and Moré in [9]. In Figure 6, the performance profile for
the maximum violation of all constraints as defined in (23) is depicted.

It can be seen that the relaxation method by Steffensen and Ulbrich produces the
smallest constraint violation, followed by the relaxation of Scholtes and the one of Kanzow
and Schwartz. We consider a problem as solved if the maximum violation of all constraints
is less than or equal to 10−6 (independent of the optimal function value found by the
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Figure 6: Comparison of constraint violation

corresponding method). According to this criterion, the relaxation method by Scholtes
did not solve 12 problems, the relaxation method by Lin and Fukushima 62 problems,
Kadrani et al. 19 problems. The relaxation method by Steffensen and Ulbrich failed to
solve 18 problems and the method by Kanzow and Schwartz did not solve 23 problems.
We would like to mention at this point that the number of unsolved problems depends on
the chosen parameters. If a bigger σ is chosen, say σ = 0.1, the method by Kanzow and
Schwartz solves most problems followed by Steffensen-Ulbrich and then Scholtes. However,
the performance profiles do not change significantly and, all in all, more problems are solved
with the parameters given in Table 2. Trouble had to be expected for at least some test
problems: design-cent-1 is known to be infeasible, ralphmod has an unbounded set of
feasible solutions and ex9.2.2, qpec2, ralph1, and scholtes4 do not have strongly
stationary solutions, see for example [5, 30]. In fact, many of them are among the unsolved
problems for all approaches.

We expected the relaxation method by Scholtes to be quite successful since it is the
relaxation with the most regular subproblems. For the same reason, we are somewhat
surprised by the results of the relaxation method by Steffensen and Ulbrich. Although
the corresponding relaxed problems satisfy only very weak constraint qualifications, this
method produces highly feasible solutions. This might be due to the fact that the relaxed
feasible area is much smaller than for all other methods since it is only relaxed locally
around the origin. However, in those cases where the maximum constraint violation is
not less than or equal to 10−6, it is mostly between 1 and 10, i.e. this small relaxed area
sometimes leads to problems. This is very much in contrast to some of the other methods,
e.g., for the majority of the 23“unsolved”problems by the method of Kanzow and Schwartz,
the feasibility is around 10−5, and the iterates are usually close to the solution.

The two sided relaxation by Lin and Fukushima seems to cause serious numerical trou-
ble. Here, the constraint violation in the unsolved problems covers the whole spectrum
from 10−5 up to 10. This might be due to the fact that the functions Gi(x)Hi(x)− t2 and
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(Gi(x) + t)(Hi(x) + t)− t2 nearly coincide for small relaxation parameters t > 0. Perhaps
a different approach, where the relaxation parameters are individually adjusted such that
for every pair of functions relaxing one complementarity constraint only one relaxation
parameter tends to zero, would work better for this method.

In the following two performance profiles, we set the values corresponding to unsolved
problems to +∞. These two performance profiles compare the value of the objective
function in the final iterate and the time needed for the calculation of this iterate. We
plotted performance profiles comparing the number of objective function evaluations and
gradient evaluations as well, but they look almost exactly like the one comparing the time.
Thus, we do not include them here. A few words on the performance profile comparing the
optimal function value: As the optimal function value is negative for some test problems,
we have to normalize the corresponding data slightly different than Dolan and Moré. Let
fk

R be the optimal function value for test problem k found by the relaxation method R,
R ∈ {S, LF, KDB, SU, KS}. We then define the normalized data for the method by
Scholtes as

f̄k
S :=

fk
S −min{fR | R ∈ {S, LF, KDB, SU, KS}}

|min{fR | R ∈ {S, LF, KDB, SU, KS}}|

and analogously for all other methods, i.e. we consider the difference to the best value
found by any of the five methods normalized by the absolute value of this best value.
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(b) Comparison of elapsed time

Figure 7: Comparison of function value and time

Note that the highest possible value for a relaxation method in Figure 7 is the percentage
of solved problems, e.g. 90.5% for the method by Scholtes. Figure 7b indicates that the
relaxation method by Scholtes needs the least time, followed by the one by Steffensen and
Ulbrich. The relaxation method by Kanzow and Schwartz is slightly faster that the one
by Kadrani et al. It had to be expected that the order here is about the same as the one
in Figure 6 as we terminate the relaxation algorithm early if a solution feasible for the
MPEC (1) is found. The only exception to this rule is the relaxation by Kadrani et al.,
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see the discussion corresponding to Algorithm 2. If we take a look at Figure 7a, we see
that the relaxation by Scholtes finds the best function values, again followed by Steffensen
and Ulbrich, Kadrani et al., and Kanzow and Schwartz. However, these last three methods
are very close to each other, and differences in the optimal function value might simply
be explained by different feasibilities, i.e., a point less feasible for one approach is likely to
have a better function value than a point that was computed by another method and is
closer to the feasible set (or even feasible).

All in all, we have seen that the oldest and simplest relaxation, namely the one by
Scholtes, still yields the best numerical results although most of the other methods have
better theoretical properties. The relaxation method proposed by Lin and Fukushima
is theoretically equivalent to the one by Scholtes and has the advantage of needing less
constraints. However, it has serious numerical problems if one uses only one relaxation
parameter. Thus, we would propose to combine this method with an active set strategy
like to the one used by Demiguel et al. in [7]. The relaxation methods by Kadrani et al.
and Kanzow and Schwartz have similar theoretical properties and also behave similarly
when it comes to numerical results. The method by Kanzow and Schwartz is slightly
faster and the final iterates have a smaller constraint violation, whereas the method by
Kadrani et al. sometimes finds slightly smaller objective function values. As it had to be
expected, both exhibit slow convergence for those test problems where it is known that
the solutions are not strongly stationary. Finally, the relaxation method by Steffensen and
Ulbrich works surprisingly well without special tuning of the solver as it was proposed in
the original work [34] although the feasible area of the relaxed problems does not have
a strictly feasible interior and most constraint qualifications are violated. However, in
contrast to the other methods, a certain instability can be observed since the final iterates
either have an extremely small maximum constraint violation or they are far away from
being feasible.

5 Final Remarks

In this paper, we gave a theoretical and numerical comparison of five different relaxation
schemes for the solution of mathematical programs with equilibirum constraints. In the
theoretical part, we were able to improve a number of existing convergence results, and
also added some completely new results regarding the satisfaction of standard constraint
qualifications for the relaxed problems.

Despite some theoretical advantages of some of the newer relaxation schemes, the nu-
merical comparison favours the oldest relaxation scheme due to Scholtes [33]. This is not
completely surprising since it is the simplest regularization among all schemes investigated
here. However, one should also take into account that the situation might be different
when these solvers are applied to highly difficult MPECs where C-stationary points attract
those methods which, in general, converge to C-stationary points only. A corresponding
(and sufficiently large) test suite of such problems is currently not available and, therefore,
special tests on these kind of problems are not included.
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We believe that the method from [21] and, especially, the method from [22] will eventu-
ally outperform the other methods on these kind of difficult MPECs, but leave this point
as one of our future research topics.
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