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1 Introduction

Let F : IRn → IRn be continuously differentiable. The nonlinear complementarity problem is
to find a solution of the following system of equations and inequalities:

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i ∈ I := {1, . . . , n}.

We denote this problem by NCP(F ). It has a large number of important applications, and
we refer the interested reader to the survey papers by Harker and Pang [22] and Ferris and
Pang [17].

The basic idea of most algorithms for the solution of NCP(F ) is to reformulate this
problem as a nonlinear system of equations, as an optimization problem or as a parametric
problem. Here we concentrate ourselves on the equation-based approach where problem
NCP(F ) is written equivalently as

Φ(x) = 0 (1)

for a suitable equation-operator Φ : IRn → IRn. For certain reasons, the operator Φ is
usually nonsmooth, so that we cannot apply the classical Newton method in order to solve
the problem (1). Nevertheless, recent research shows that one can still design globally and
locally fast convergent methods for the solution of (1). In the following, we give a short
summary of the basic ideas of some of these methods which are related to this paper.

Nonsmooth Newton Methods: Instead of solving problem (1) by the classical Newton
method, one can apply a nonsmooth Newton method based, e.g., on Clarke’s [12] generalized
Jacobian ∂Φ(x) of Φ at the point x ∈ IRn. For example, the nonsmooth Newton methods by
Kummer [30] and Qi and Sun [37] solve at each iteration the generalized Newton equation

Vkd = −Φ(xk), (2)

where Vk ∈ ∂Φ(xk). This method is locally superlinearly/quadratically convergent under
certain assumptions, but (in contrast to the classical Newton method for smooth systems
of equations) cannot be globalized in a simple way for general operators Φ. However, by
using special functions Φ, several authors have recently presented globally and locally fast
convergent nonsmooth Newton-type methods, see, e.g., [25, 16, 13, 28, 5].

One of the main advantages of most of these methods is the fact that they are usually
well-defined for an arbitrary complementarity problem NCP(F ).

Smoothing Methods: Another way to deal with the nonsmoothness of Φ is to approximate
this function by a smooth operator Φµ : IRn → IRn, where µ > 0 denotes the smoothing
parameter. The basic idea of the class of smoothing methods is then to solve a sequence of
problems

Φµ(x) = 0 (3)

and to force µ to go to 0. The advantage of this approach is that one can apply the
standard Newton method for solving problem (3) so that one has to solve at each iteration
the smoothing Newton equation

Φ′
µ(xk)d = −Φµ(xk). (4)
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Smoothing methods of this kind were considered, e.g., by Chen and Harker [6], Chen and
Mangasarian [9], Kanzow [26], Gabriel and Moré [20], Burke and Xu [3, 43], Xu [41, 42],
Hotta and Yoshise [23], Chen and Ye [11], Chen and Chen [4], Jiang [24] and Tseng [40]. In
particular, the paper [3] by Burke and Xu initiated much of the recent research in this area.

The disadvantage of smoothing methods is that they usually require F to be at least a
P0-function in order to guarantee that the linear systems (4) are solvable. It seems difficult
to make smoothing methods work on general complementarity problems where the Jacobian
in (4) might be singular. This problem is also reflected by the fact that smoothing methods
try to follow the so-called smoothing path which may not exist for non-P0- or non-monotone
problems.

Nevertheless, a sophisticated implementation like in the SMOOTH code by Chen and
Mangasarian [9] seems to work quite well also for non-monotone problems, see [2].

Jacobian Smoothing Methods: The third class of algorithms for the solution of (1) is due
to Chen, Qi and Sun [10]. They call it a smoothing Newton method, but we prefer the name
Jacobian smoothing method in order to distinguish it better from the class of smoothing
methods. These methods try to solve at each iteration the mixed Newton equation

Φ′
µ(xk)d = −Φ(xk). (5)

This linear system is a mixture between the nonsmooth Newton equation (2) and the smooth-
ing Newton equation (4); it uses the unperturbed right-hand side from (2), but the smooth
matrix from (4).

The algorithm and convergence theory developed by Chen et al. [10] still relies on the
fact that the linear systems (5) are solvable at each iteration, and, similarly to the class of
smoothing methods, this assumption is intimately related to F being a P0-function. Hence
also this Jacobian smoothing method is not well-defined for general complementarity prob-
lems.

Note that the Jacobian smoothing idea is also used in a couple of recent smoothing papers
as a kind of hybrid step, see, e.g., [11, 4]. The main reason for doing this is that the Jacobian
smoothing method helps (or simplifies) to prove local fast convergence.

Despite the fact that Jacobian smoothing methods are often viewed as a variation of
smoothing methods, we take a different point of view: We view a Jacobian smoothing method
as a suitable perturbation of a nonsmooth Newton method. In fact, the Jacobian smoothing
method seems to be much closer to nonsmooth Newton methods than to smoothing methods
since they do not try to follow any smoothing path. Instead, they also try to solve the
unperturbed problem (1) directly by replacing the matrix Vk ∈ ∂Φ(xk) in (2) by a suitable
approximation Φ′

µ(xk).

Having this in mind, it seems reasonable to ask if one can modify the Jacobian smoothing
method by Chen et al. [10] in such a way that it becomes well-defined for general comple-
mentarity problems. This is actually the main motivation for this paper, and the answer is
positive.

In order to do this, however, we cannot consider the general class of smoothing methods
used by Chen et al. [10]. Instead, we concentrate on one particular reformulation of the
complementarity problem NCP(F ) and fully exploit the (additional) properties of this special
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reformulation. It is based on the Fischer-Burmeister function ϕ : IR2 → IR defined by

ϕ(a, b) :=
√

a2 + b2 − a− b,

see [18]. Then it is well-known and easy to see that problem NCP(F ) is equivalent to problem
(1) with Φ being defined by

Φ(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 .

The globalization strategy for our algorithm is heavily based on the natural merit function
Ψ : IRn → IR given by

Ψ(x) :=
1

2
Φ(x)TΦ(x).

The corresponding smooth operator Φµ : IRn → IRn is defined similarly by

Φµ(x) :=

 ϕµ(x1, F1(x))
...

ϕµ(xn, Fn(x))

 ,

where ϕµ : IR2 → IR denotes Kanzow’s [26] smooth approximation

ϕµ(a, b) :=
√

a2 + b2 + 2µ− a− b, µ > 0,

of the Fischer-Burmeister function.
The basic idea of the Jacobian smoothing method to be presented in this paper is to

solve the nonlinear complementarity problem NCP(F ) by minimizing the merit function Ψ.
Unfortunately, given an iterate xk, the search direction dk computed from the mixed Newton
equation (5) is not necessarily a descent direction for Ψ at the point xk; instead, this search
direction is used in order to reduce the related merit function

Ψµ(x) :=
1

2
Φµ(x)TΦµ(x).

In order to make the algorithm at least well-defined for an arbitrary nonlinear complemen-
tarity problem, we use a gradient step for the merit function Ψ in case the linear system
(5) does not have a solution or gives a poor search direction for Ψµ. Besides the fact that
the introduction of such a gradient step is a rather simple idea, it complicates especially
the global convergence analysis considerably. Basically this is due to the fact that we now
minimize different merit functions, and a reduction in one merit function does not necessarily
correspond to a reduction in the other merit function. The global convergence analysis is
therefore somewhat more difficult than for many nonsmooth Newton and smoothing meth-
ods; in particular, it is based on a rather sophisticated updating rule for the smoothing
parameter µ.

The organization of this paper is as follows: The mathematical background and some
preliminary results are summarized in Section 2. The Jacobian smoothing idea is discussed
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in more detail in Section 3. The algorithm together with some of its elementary properties
is presented in Section 4. The global and local convergence analysis is part of Sections 5 and
6, respectively. Extensive and very encouraging numerical results are reported in Section 7,
and Section 8 concludes this paper with some final remarks.

Some words about our notation. Let G : IRn → IRm be continuously differentiable. Then
G′(x) ∈ IRm×n denotes the Jacobian of G at a point x ∈ IRn, whereas the symbol ∇G(x) is
used for the transposed Jacobian. In particular, if m = 1, the gradient ∇G(x) is viewed as
a column vector. If G : IRn → IRm is only locally Lipschitzian, we can define Clarke’s [12]
generalized Jacobian as follows:

∂G(x) := conv
{
H ∈ IRm×n| ∃{xk} ⊆ DG : xk → x and G′(xk)→ H

}
;

here, DG denotes the set of differentiable points of G and convA is the convex hull of a set
A. If m = 1, we call ∂G(x) the generalized gradient of G at x for obvious reasons.

Usually, ∂G(x) is difficult to compute, especially for m > 1. Instead, Proposition 2.6.2
(e) in Clarke [12] provides the overestimation

∂G(x)T ⊆ ∂G1(x)× . . .× ∂Gm(x),

where the right-hand side denotes the set of matrices in IRn×m whose ith column is given
by the generalized gradient of the ith component function Gi. Since this right-hand side is
often easier to compute and motivated by the recent paper [34] by Qi, we write

∂CG(x)T := ∂G1(x)× . . .× ∂Gm(x)

and call ∂CG(x) the C-subdifferential of G at x. For the purpose of this paper, the C-
subdifferential is considerably more important than the more familiar generalized Jacobian.

If x ∈ IRn, we denote by ‖x‖ the Euclidian norm of x. Similarly, ‖A‖ denotes the spectral
norm of a matrix A ∈ IRn×n which is the induced matrix norm of the Euclidian vector norm.
Occasionally, we will also write ‖ · ‖2 in order to avoid any possible confusions. Sometimes
we also need the Frobenius norm ‖A‖F of a matrix A ∈ IRn×n.

If A ∈ IRn×n is any given matrix and A ⊆ IRn×n is a nonempty set of matrices, we denote
by dist(A,A) := infB∈A ‖A − B‖ the distance between A and A. This is sometimes also
written as dist2(A,A) in order to emphasize that the distance is measured using the spectral
norm. Similarly, we write distF (A,A) if the distance is calculated by using the Frobenius
norm. The (Euclidian) distance between a vector and a set of vectors of the same dimension
is defined in an analogous way.

Finally, we make use of the Landau symbols o(·) and O(·): Let {αk} and {βk} be two
sequences of positive numbers such that βk → 0. Then we write αk = o(βk) if αk/βk → 0,
and αk = O(βk) if lim supk→∞ αk/βk < ∞, i.e., if there exists a constant c > 0 such that
αk ≤ cβk for all k ∈ IN := {0, 1, 2, . . .}.

2 Preliminaries

In this section, we summarize some of the known properties of the functions Φ, Φµ and Ψ
which will be important for our subsequent analysis. In addition, we prove some preliminary
results which will also be used later.



6 C. KANZOW AND H. PIEPER

The first result follows directly from the definition of the C-subdifferential and Proposition
3.1 in [16].

Proposition 2.1. For an arbitrary x ∈ IRn, we have

∂CΦ(x)T = Da(x) +∇F (x)Db(x) (6)

where Da(x) = diag(a1(x), . . . , an(x)), Db(x) = diag(b1(x), . . . , bn(x)) ∈ IRn×n are diagonal
matrices whose ith diagonal element is given by

ai(x) =
xi√

x2
i + Fi(x)2

− 1, bi(x) =
Fi(x)√

x2
i + Fi(x)2

− 1

if (xi, Fi(x)) 6= (0, 0), and by

ai(x) = ξi − 1, bi(x) = ρi − 1

for every (ξi, ρi) ∈ IR2 such that ‖(ξi, ρi)‖ ≤ 1 if (xi, Fi(x)) = (0, 0).

The next result follows from [16, 19] together with known results for (strongly) semismooth
functions [37] and the recent theory of C-differentiable functions by Qi [34].

Proposition 2.2. Assume that {xk} ⊆ IRn is any convergent sequence with limit point
x∗ ∈ IRn. Then the following statements hold:

(a) The function Φ is semismooth so that

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = o(‖xk − x∗‖)

for any Hk ∈ ∂CΦ(xk).

(b) If F is continuously differentiable with a locally Lipschitzian Jacobian, then Φ is
strongly semismooth so that

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2)

for any Hk ∈ ∂CΦ(xk).

The following result can be verified similarly to Lemma 3.7 in [27].

Proposition 2.3. The function ϕµ satisfies the inequality

|ϕµ1(a, b)− ϕµ2(a, b)| ≤
√

2|√µ1 −
√

µ2|

for all (a, b) ∈ IR2 and all µ1, µ2 ≥ 0. In particular, we have

|ϕµ(a, b)− ϕ(a, b)| ≤
√

2
√

µ

for all (a, b) ∈ IR2 and all µ > 0.



JACOBIAN SMOOTHING FOR COMPLEMENTARITY PROBLEMS 7

As an immediate consequence of Proposition 2.3, we obtain

Corollary 2.4. The function Φµ satisfies the inequality

‖Φµ1(x)− Φµ2(x)‖ ≤ κ |√µ1 −
√

µ2 | (7)

for all x ∈ IRn and µ1, µ2 ≥ 0, where κ :=
√

2n. In particular, we have

‖Φµ(x)− Φ(x)‖ ≤ κ
√

µ

for all x ∈ IRn and all µ ≥ 0.

We next state a result which is a minor extension of Proposition 3.4 of [16]. We omit its
proof here since it can be carried out in a similar way as the one in [16].

Proposition 2.5. The merit function Ψ is continuously differentiable with ∇Ψ(x) = V TΦ(x)
for an arbitrary V ∈ ∂CΦ(x).

The following technical result will be used in the proof of our main global convergence result,
Theorem 5.8 below.

Lemma 2.6. Let {xk} ⊆ IRn and {µk} ⊆ IR be two sequences with {xk} → x∗ for some
x∗ ∈ IRn and {µk} ↓ 0. Then

lim
k→∞
∇Ψµk

(xk) = ∇Ψ(x∗)

and
lim
k→∞

Φ′
µk

(xk)TΦ(xk) = ∇Ψ(x∗).

Proof. Since Ψµ is differentiable for all µ > 0, we have

∇Ψµk
(xk) = Φ′

µk
(xk)TΦµk

(xk) =
∑
i∈I

ϕµk
(xk

i , Fi(x
k))∇Φµk,i(x

k),

where Φµk,i denotes the ith component function of Φµk
. On the other hand, for arbitrary

V ∈ ∂CΦ(x∗), we obtain from Proposition 2.5:

∇Ψ(x∗) = V TΦ(x∗) =
∑
i∈I

ϕ(x∗i , Fi(x
∗))V T

i ,

where V T
i denotes the ith column of the matrix V T . Now let

β(x∗) := {i |x∗i = Fi(x
∗) = 0}.

We consider two cases:

Case 1: i /∈ β(x∗).
Then the Fischer-Burmeister function is continuously differentiable at (x∗i , Fi(x

∗)), and the
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ith column of V T is single valued and equal to ∇Φi(x
∗) (cf. Proposition 2.1). In particular,

all limits exist, and from the continuity of ϕ and ∇F , we obtain:

lim
k→∞

ϕµk
(xk

i , Fi(x
k))∇Φµk,i(x

k) = ϕ(x∗i , Fi(x
∗))∇Φi(x

∗) = ϕ(x∗i , Fi(x
∗))V T

i .

Case 2: i ∈ β(x∗).
Since

∂ϕµ

∂a
(a, b) ∈ (−2, 0) and

∂ϕµ

∂a
(a, b) ∈ (−2, 0)

for all (a, b) ∈ IR2 and µ > 0, the sequence {∇Φµk,i(x
k)} is bounded for k →∞. Since

lim
k→∞

ϕµk
(xk

i , Fi(x
k)) = ϕ(x∗i , Fi(x

∗)) = 0,

we therefore have
lim
k→∞

ϕµk
(xk

i , Fi(x
k))∇Φµk,i(x

k) = 0.

Since we also have ϕ(x∗i , Fi(x
∗))V T

i = 0 for all i ∈ β(x∗), the first statement follows from
Cases 1 and 2.

The second statement is easier to establish than the first one since we multiply by Φ(xk)
and not by Φµk

(xk). The proof would be similar to the one just given.

We conclude this section by stating another technical result which will also be utilized in
our global convergence analysis.

Lemma 2.7. Let {xk}, {dk} ⊆ IRn and {tk} ⊆ IR be sequences with xk+1 := xk + tkd
k such

that {xk} → x∗, {dk} → d∗ and {tk} ↓ 0 for certain vectors x∗, d∗ ∈ IRn. Furthermore let
{µk} ⊆ IR be a sequence with {µk} ↓ 0. Then

lim
k→∞

Ψµk
(xk + tkd

k)−Ψµk
(xk)

tk
= ∇Ψ(x∗)Td∗.

Proof. From Proposition 2.5 and the Mean Value Theorem, we obtain that, for each k ∈ IN,
there exists a vector ξk ∈ IRn on the line segment between xk and xk+1 (that is ξk = xk +θkd

k

for some θk ∈ [0, tk]) such that

Ψµk
(xk + tkd

k)−Ψµk
(xk) = tk∇Ψµk

(ξk)Tdk.

Dividing by tk gives

Ψµk
(xk + tkd

k)−Ψµk
(xk)

tk
= ∇Ψµk

(ξk)Tdk.

Since ξk lies between xk and xk+1, it follows that {ξk} → x∗. Therefore, we can apply the
first statement of Lemma 2.6, so that passing to the limit, we get

lim
k→∞

Ψµk
(xk + tkd

k)−Ψµk
(xk)

tk
= lim

k→∞
∇Ψµk

(ξk)Tdk = ∇Ψ(x∗)Td∗.

This completes the proof.
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3 Jacobian Smoothing

The basic idea of our algorithm to be presented in Section 4 is to replace the generalized
Newton equation

Vkd = −Φ(xk), Vk ∈ ∂CΦ(xk),

by the linear system
Φ′

µk
(xk)d = −Φ(xk),

i.e., we replace the element Vk from the C-subdifferential ∂CΦ(xk) by the (existing) Jacobian
Φ′

µk
(xk) of the smoothed operator Φµk

. In order to guarantee local fast convergence of this
iteration, we have to control the difference between Φ′

µk
(xk) and the set ∂CΦ(xk). A first

result in this direction is established in

Lemma 3.1. Let x ∈ IRn be arbitrary but fixed. Then we have

lim
µ↓0

dist(Φ′
µ(x), ∂CΦ(x)) = 0. (8)

Proof. From the definition of Φµ, we have for all µ > 0,

Φ′
µ(x) = diag

(
xi√

x2
i + Fi(x)2 + 2µ

− 1

)
+ diag

(
Fi(x)√

x2
i + Fi(x)2 + 2µ

− 1

)
F ′(x).

We consider the distance of the columns of the transposed Jacobians.
To this end, let us define

β(x) := {i |xi = Fi(x) = 0}.

If we denote the ith component function of Φµ by Φµ,i, we obtain

lim
µ↓0
∇Φµ,i(x) =


(

xi√
x2

i +Fi(x)2
− 1

)
ei +

(
Fi(x)√

x2
i +Fi(x)2

− 1

)
∇Fi(x) for i /∈ β(x),

−ei −∇Fi(x) for i ∈ β(x).

Hence the assertion follows from Proposition 2.1 (with (ξi, ρi) = (0, 0) for i ∈ β(x)).

It is an immediate consequence of Lemma 3.1 that we can find, for every fixed δ > 0, a
parameter µ̄ = µ̄(x, δ) > 0 such that

dist(Φ′
µ(x), ∂CΦ(x)) ≤ δ

for all 0 < µ ≤ µ̄. However, it does not follow from Lemma 3.1 how we can choose this
threshold value µ̄. On the other hand, it is important for the design of our algorithm to have
an explicit expression of a possible value of µ̄. This is made more precise in Proposition 3.4
below whose proof is based on the following two observations.

Lemma 3.2. Let x ∈ IRn and µ > 0 be arbitrary but fixed. Then

[distF (∇Φµ(x), ∂CΦ(x)T )]2 =
n∑

i=1

[dist2 (∇Φµ,i(x), ∂Φi(x))]2 .
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Proof. Let Vi be the ith column of a matrix V . Then, using the definition of the C-
subdifferential, it is easy to see that

inf
V ∈∂CΦ(x)T

n∑
i=1

‖∇Φµ,i(x)− Vi‖22 =
n∑

i=1

inf
Hi∈∂Φi(x)

‖∇Φµ,i(x)−Hi‖22.

Using this and the definition of the Frobenius norm, we obtain

[distF (∇Φµ(x), ∂CΦ(x)T )]2 = inf
V ∈∂CΦ(x)T

‖∇Φµ(x)− V ‖2F

= inf
V ∈∂CΦ(x)T

n∑
i=1

‖∇Φµ,i(x)− Vi‖22

=
n∑

i=1

inf
Hi∈∂Φi(x)

‖∇Φµ,i(x)−Hi‖22

=
n∑

i=1

[dist2 (∇Φµ,i(x), ∂Φi(x))]2 .

This completes the proof.

Lemma 3.3. Let µ > 0 be arbitrary but fixed. Then the function f : (0,∞) → IR, defined
by

f(τ) :=
1√
τ
− 1√

τ + 2µ
,

is strictly decreasing in τ > 0.

Proof. The function f is continuously differentiable with

f ′(τ) = −1

2

1

(
√

τ)3
+

1

2

1
√

τ + 2µ
3 = −1

2

(
1

(
√

τ)3
− 1
√

τ + 2µ
3

)
.

Hence we have f ′(τ) < 0 for all τ > 0. This implies our assertion.

We now come to the main result of this section.

Proposition 3.4. Let x ∈ IRn be arbitrary but fixed. Assume that x is not a solution of
NCP(F ). Let us define the constants

γ(x) := max
i6∈β(x)

{‖xiei + Fi(x)∇Fi(x)‖} ≥ 0

and

α(x) := min
i6∈β(x)

{x2
i + Fi(x)2} > 0,
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where β(x) := {i|xi = Fi(x) = 0}. Let δ > 0 be given, and define

µ̄(x, δ) :=

 1 if
(

nγ(x)2

δ2 − α(x)
)
≤ 0,

α(x)2

2

(
δ2

nγ(x)2−δ2α(x)

)
otherwise.

Then
distF (Φ′

µ(x), ∂CΦ(x)) ≤ δ

for all µ such that 0 < µ ≤ µ̄(x, δ).

Proof. We first note that {1, . . . , n} \ β(x) 6= ∅ since x is not a solution of NCP(F ) by
assumption. Hence α(x) > 0. Furthermore, since ‖A‖F = ‖AT‖F for an arbitrary matrix
A ∈ IRn×n, we obtain

distF

(
Φ′

µ(x), ∂CΦ(x)
)

= distF (∇Φµ(x), ∂CΦ(x)T )

=
√∑n

i=1 [dist2 (∇Φµ,i(x), ∂Φi(x))]2
(9)

from Lemma 3.2. Hence it is sufficient to consider the distance between the ith columns of
∇Φµ(x) and ∂CΦ(x)T . To this end, we recall that these columns are given by

∇Φµ,i(x) =
∂ϕµ

∂a
(xi, Fi(x))ei +

∂ϕµ

∂b
(xi, Fi(x))∇Fi(x)

and

∂Φi(x) =

{
∂ϕ
∂a

(xi, Fi(x))ei + ∂ϕ
∂b

(xi, Fi(x))∇Fi(x) if i 6∈ β(x),
(ξi − 1)ei + (ρi − 1)∇Fi(x) if i ∈ β(x),

respectively, where (ξi, ρi) ∈ IR2 denotes any vector such that ‖(ξi, ρi)‖ ≤ 1, see Proposition
2.1. We distinguish two cases:

Case 1: i ∈ β(x):
Then (xi, Fi(x)) = (0, 0) and therefore

∇Φµ,i(x) = −ei −∇Fi(x).

Hence, taking (ξi, ρi) = (0, 0), we see that

∇Φµ,i(x) ∈ ∂Φi(x)

so that
dist2 (∇Φµ,i(x), ∂Φi(x)) = 0 (10)

for all i ∈ β(x).

Case 2: i 6∈ β(x):
In this case, we have

∂Φi(x) = {∇Φi(x)}.



12 C. KANZOW AND H. PIEPER

By a simple calculation, we therefore get

dist2 (∇Φµ,i(x), ∂Φi(x))

= ‖∇Φµ,i(x)−∇Φi(x)‖

=

∥∥∥∥∥
(

xi√
x2

i + Fi(x)2 + 2µ
− 1

)
ei +

(
Fi(x)√

x2
i + Fi(x)2 + 2µ

− 1

)
∇Fi(x)

−

(
xi√

x2
i + Fi(x)2

− 1

)
ei −

(
Fi(x)√

x2
i + Fi(x)2

− 1

)
∇Fi(x)

∥∥∥∥∥
=

∥∥∥∥∥xiei

(
1√

x2
i + Fi(x)2 + 2µ

− 1√
x2

i + Fi(x)2

)

+Fi(x)∇Fi(x)

(
1√

x2
i + Fi(x)2 + 2µ

− 1√
x2

i + Fi(x)2

)∥∥∥∥∥
=

∥∥∥∥∥
(

1√
x2

i + Fi(x)2 + 2µ
− 1√

x2
i + Fi(x)2

)
(xiei + Fi(x)∇Fi(x))

∥∥∥∥∥
=

(
1√

x2
i + Fi(x)2

− 1√
x2

i + Fi(x)2 + 2µ

)
‖xiei + Fi(x)∇Fi(x)‖.

In view of the definitions of the constants α(x) and γ(x), we therefore obtain by using Lemma
3.3:

dist2(∇Φµ,i(x), ∂Φi(x)) ≤

(
1√
α(x)

− 1√
α(x) + 2µ

)
γ(x)

=

(√
α(x) + 2µ−

√
α(x)√

α(x)
√

α(x) + 2µ

)
γ(x)

≤

( √
2µ√

α(x)
√

α(x) + 2µ

)
γ(x),

where the latter inequality follows from the elementary fact that
√

a + b ≤
√

a +
√

b for all
a, b ≥ 0. We now want to show that( √

2µ√
α(x)

√
α(x) + 2µ

)
γ(x) ≤ δ√

n
(11)

for all 0 < µ ≤ µ̄(x, δ) which then implies

dist2 (∇Φµ,i(x), ∂Φi(x)) ≤ δ√
n

. (12)

If γ(x) = 0, then inequality (11) holds trivially (for arbitrary µ > 0). Hence we assume that
γ(x) > 0. Then an easy calculation shows that (11) is equivalent to

α(x)2 ≥ 2µ

(
nγ(x)2

δ2
− α(x)

)
. (13)
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Hence, if nγ(x)2

δ2 − α(x) ≤ 0, inequality (11) is satisfied for any µ > 0, in particular for all
µ ∈ (0, 1]. Otherwise we obtain the following upper bound from (13):

µ ≤ α(x)2

2

(
δ2

nγ(x)2 − δ2α(x)

)
=: µ̄(x, δ).

Putting together (9), (10) and (12), we therefore obtain

distF (Φ′
µ(x), ∂CΦ(x)) ≤

√√√√ n∑
i=1

δ2

n
= δ

for all 0 < µ ≤ µ̄(x, δ).

The constant µ̄(x, δ) defined in Proposition 3.4 will play a central role in the design of our
algorithm to be described in the following section.

We also note that, since ‖A‖ ≤ ‖A‖F for an arbitrary matrix A ∈ IRn×n, it follows from
Proposition 3.4 that

dist(Φ′
µ(x), ∂CΦ(x)) ≤ δ

for all µ with 0 < µ ≤ µ̄(x, δ).

4 Algorithm

In this section, we give a detailed description of our Jacobian smoothing method and state
some of its elementary properties. In particular, we show that the algorithm is well-defined
for an arbitrary complementarity problem.

Basically, we try to take the Jacobian smoothing method from Chen et al. [10]. In
addition, we incorporate a gradient step in a similar (but slightly different) way as this is
done by some nonsmooth Newton methods [13, 28, 5]. Unfortunately, the introduction of
these gradient steps makes the updating rules for our smoothing parameter µk as well as
the convergence theory considerably more technical and complicated. However, it is this
gradient step which makes the algorithm applicable to a general nonlinear complementarity
problem.

In fact, this is also the reason why we concentrate us on the Fischer-Burmeister function:
Its merit function Ψ is smooth due to Proposition 2.5, whereas the same does not hold for
the general class of smoothing functions considered in [10].

We now state our algorithm formally.

Algorithm 4.1. (Jacobian Smoothing Method)

(S.0) Choose x0 ∈ IRn, λ, α, η, ρ ∈ (0, 1), γ > 0, σ ∈ (0, 1
2
(1 − α)), p > 2 and ε ≥ 0. Set

β0 := ‖Φ(x0)‖, κ :=
√

2n, µ0 := ( α
2κ

β0)
2 and k := 0.

(S.1) If ‖∇Ψ(xk)‖ ≤ ε : STOP.
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(S.2) Find a solution dk ∈ IRn of the linear system

Φ′
µk

(xk)d = −Φ(xk). (Newton step) (14)

If the system (14) is not solvable or if the condition

Φ(xk)TΦ′
µk

(xk)dk ≤ −ρ‖dk‖p (15)

is not satisfied, set

dk := −∇Ψ(xk). (Gradient step) (16)

(S.3) Find the smallest mk in {0, 1, 2, . . . } such that

Ψµk
(xk + λmkdk) ≤ Ψµk

(xk)− 2σλmkΨ(xk) (17)

if dk is given by (14), and such that

Ψ(xk + λmkdk) ≤ Ψ(xk)− σλmk‖dk‖2. (18)

if dk is given by (16). Set tk := λmk and xk+1 := xk + tkd
k.

(S.4) If

‖Φ(xk+1)‖ ≤ max

{
ηβk,

1

α
‖Φ(xk+1)− Φµk

(xk+1)‖
}

, (19)

then set

βk+1 := ‖Φ(xk+1)‖

and choose µk+1 such that

0 < µk+1 ≤ min

{( α

2κ
βk+1

)2

,
µk

4
, µ̄(xk+1, γβk+1)

}
. (20)

If (19) is not satisfied and dk = −∇Ψ(xk), then set

βk+1 := βk

and choose µk+1 such that

0 < µk+1 ≤ min

{( α

2κ
‖Φ(xk+1)‖

)2

,

(
‖Φ(xk)‖ − ‖Φ(xk+1)‖

2κ

)2

,
µk

4

}
. (21)

If none of the above conditions is met, set βk+1 := βk and µk+1 := µk.

(S.5) Set k ← k + 1, and return to Step (S.1).
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For convenience of presentation, we assume implicitly throughout the theoretical part of
this paper that the termination parameter ε is equal to 0 and that the algorithm does not
terminate after a finite number of iterations.

Before we start to investigate the properties of Algorithm 4.1, we give some comments
on it: In Step (S.2), we try to solve the (mixed) Newton equation (14) which is the main
computational effort of our method. If the solution of this linear system does not provide
a direction of sufficient decrease (in the sense of (15)), we switch to the steepest descent
direction of the merit function Ψ.

In Step (S.3), we perform a line search. The line search rule depends on the search
direction chosen in Step (S.2): If dk is the Newton direction, the line search in (17) is used as
a globalization strategy. Note that this line search condition is exactly the same as in Chen
et al. [10]. On the other hand, if dk is a gradient step, we use the standard Armijo rule in
(18).

The complicated part of the algorithm is in Step (S.4), where we update the parameter
µk. The first part of the updating rules (where condition (19) is satisfied) is also used by
Chen et al. [10]. The second part is due to the gradient step. In the following list, we give
some more detailed comments on the role on these two updating rules:

(a) In both updating rules, namely in (20) and (21), we reduce µk at least by a factor of
1/4. This is reasonable since we want to force µk to go to 0.

(b) The last part of the updating rule (20) controls the distance between our smooth
Jacobian and the C-subdifferential, see Lemma 4.2 (b) below.

(c) The remaining parts of the updating rules (20) and (21) are important in order to
guarantee that Algorithm 4.1 is well-defined and globally convergent. We will exploit
these rules several times in our convergence proofs.

We now turn to the analysis of Algorithm 4.1. To this end, we introduce the index set

K = {0} ∪
{

k ∈ IN
∣∣∣ ‖Φ(xk)‖ ≤ max

{
ηβk−1,

1

α
‖Φ(xk)− Φµk−1

(xk)‖
}}

. (22)

We stress that, compared to the updating rule (19), there is a shift of the indices in the
definition of the index set K!

We can prove the following result.

Lemma 4.2. The following two statements hold:

(a) We have
‖Φ(xk)− Φµk

(xk)‖ ≤ α‖Φ(xk)‖ (23)

for all k ≥ 0.

(b) We have
distF (Φ′

µk
(xk), ∂CΦ(xk)) ≤ γ‖Φ(xk)‖ (24)

for all k ∈ K with k ≥ 1.
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Proof. (a) We distinguish three cases:
Case 1: k ∈ K:
Then we obtain from (20) and Corollary 2.4:

‖Φ(xk)− Φµk
(xk)‖ ≤ κ

√
µk ≤

α

2
βk ≤ αβk = α‖Φ(xk)‖.

Case 2: k 6∈ K and the (k − 1)st step is a Newton step (i.e., µk is not updated by (21)):
In this case, we have µk = µk−1, so that we obtain from (19):

‖Φ(xk)− Φµk
(xk)‖ = ‖Φ(xk)− Φµk−1

(xk)‖ < α‖Φ(xk)‖.

Case 3: k 6∈ K and the (k − 1)st step is a gradient step (i.e., µk is updated by (21)):
Then we obtain from Corollary 2.4 and (21):

‖Φ(xk)− Φµk
(xk)‖ ≤ κ

√
µk ≤

α

2
‖Φ(xk)‖ ≤ α‖Φ(xk)‖.

Statement (a) now follows from these three cases.

(b) Statement (b) follows immediately from the definition of the threshold value µ̄(x, δ) in
Proposition 3.4 and the updating rule (20).

As a consequence of Lemma 4.2, we obtain

Theorem 4.3. Algorithm 4.1 is well-defined.

Proof. We only have to show that the exponent mk in the line search rules (17)/(18) is
finite for any k ∈ IN. In case of a gradient step, this is well-known since we use the standard
Armijo-rule. In case of a Newton step, we can use Part (a) of Lemma 4.2 and prove the
finiteness of mk in essentially the same way as this was done in [10, Lemma 3.1].

5 Global Convergence

The aim of this section is to show that any accumulation point of a sequence generated by
Algorithm 4.1 is at least a stationary point of Ψ. Unfortunately, the analysis is somewhat
technical due to the different updating rules for Newton and gradient steps in Algorithm 4.1.
We therefore need a couple of preliminary results. Some of them, however, are of interest by
their own.

We begin our global convergence analysis with the following observation.

Lemma 5.1. Let {xk} ⊆ IRn be a sequence generated by Algorithm 4.1. Assume that {xk}
has an accumulation point x∗ which is a solution of NCP(F ). Then the index set K is infinite
and {µk} → 0.
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Proof. Assume that K is finite. Then it follows from (19) and the updating rules for βk in
Step (S.4) of Algorithm 4.1 that there is a k0 ∈ IN such that

βk = βk0

and

‖Φ(xk+1)‖ > max

{
ηβk,

1

α
‖Φ(xk+1)− Φµk

(xk+1)‖
}
≥ ηβk = ηβk0

for all k ∈ IN with k ≥ k0. However, this contradicts the fact that x∗ is a solution of NCP(F )
so that we have Φ(x∗) = 0.

Hence K is an infinite set. The updating rules for µk therefore immediately imply that
the whole sequence {µk} converges to 0.

We will also need the following simple result.

Lemma 5.2. The following two statements hold:

(a) If dk is given by (14), we have

‖Φµk
(xk+1)‖ < ‖Φµk

(xk)‖.

(b) If dk = −∇Ψ(xk) and if µk is updated by (21), then

‖Φµk+1
(xk+1)‖ ≤ ‖Φµk+1

(xk)‖.

(Note the difference between the index µk and µk+1 in statements (a) and (b).)

Proof. Part (a) follows immediately from the line search rule (17).

(b) Let dk = −∇Ψ(xk) and assume (19) is not satisfied. From (18), we have ‖Φ(xk)‖ −
‖Φ(xk+1)‖ =: ck > 0. Therefore, together with Corollary 2.4, we get

‖Φµk+1
(xk+1)‖ ≤ ‖Φµk+1

(xk+1)− Φ(xk+1)‖+ ‖Φ(xk+1)‖
≤ κ
√

µk+1 + ‖Φ(xk)‖ − ck

≤ ‖Φµk+1
(xk)‖+ ‖Φ(xk)− Φµk+1

(xk)‖+ κ
√

µk+1 − ck

≤ ‖Φµk+1
(xk)‖+ 2κ

√
µk+1 − ck

≤ ‖Φµk+1
(xk)‖,

where the last inequality follows from the special choice of µk+1 made in (21).

As a simple consequence of this result, we obtain the following

Corollary 5.3. If k 6∈ K, then

‖Φµk
(xk)‖ ≤ ‖Φµk

(xk−1)‖.
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Proof. First assume that k 6∈ K and the updating rule (21) is active (i.e., dk−1 is a gradient
step). Taking into account the shift of indices in the definition of the set K, we directly
obtain from Lemma 5.2 (b)

‖Φµk
(xk)‖ ≤ ‖Φµk

(xk−1)‖.

On the other hand, if (21) is not active (i.e., dk−1 is a Newton direction), then we have
µk = µk−1 and therefore

‖Φµk
(xk)‖ = ‖Φµk−1

(xk)‖ < ‖Φµk−1
(xk−1)‖ = ‖Φµk

(xk−1)‖

by Lemma 5.2 (a). This completes the proof.

Using these preliminary results, we are now able to show that the iterates xk stay in a certain
level set. To this end, we first note that, in all standard descent methods, the iterates would
stay in the level set belonging to the level Ψ(x0) of Ψ at the initial iterate x0. This is no
longer true for our algorithm basically because we minimize different merit functions in our
line search rules, namely Ψ when using a gradient step, and Ψµk

when using a Newton step.
(Note that a decrease in one merit function does not necessarily imply a decrease in the
other.) Fortunately, our following result shows that the possible increase in Ψ can’t be too
dramatic. In fact, this result shows that all iterates xk stay in a level set whose level can be
made arbitrarily close to the level Ψ(x0).

Proposition 5.4. The sequence {xk} generated by Algorithm 4.1 remains in the level set

L0 := {x ∈ IRn |Ψ(x) ≤ (1 + α)2Ψ(x0)}. (25)

Proof. We define the following two index sets:

K1 :=

{
k ∈ K

∣∣∣ ηβk−1 ≥
1

α
‖Φ(xk)− Φµk−1

(xk)‖
}

(26)

and

K2 :=

{
k ∈ K

∣∣∣ ηβk−1 <
1

α
‖Φ(xk)− Φµk−1

(xk)‖
}

. (27)

Then K = {0} ∪K1 ∪K2, where K is defined in (22). Assume K consists of k0 = 0 < k1 <
k2 < . . . (notice that K is not necessarily infinite). Let k ∈ IN be an arbitrary but fixed
index and kj the largest number in K such that kj ≤ k. Then we have

µk ≤ µkj
and βk = βkj

in view of the updating rules in Step (S.4) of Algorithm 4.1. We divide the proof into three
parts.

(a) In this part, we show that the following inequality holds:

‖Φ(xk)‖ ≤ βkj
+ 2κ

√
µkj

. (28)
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If kj = k, this inequality is obviously true since βkj
= ‖Φ(xkj)‖ in this case. Hence we

assume that kj < k in the following. From Corollary 5.3, we obtain

‖Φµl
(xl)‖ ≤ ‖Φµl

(xl−1)‖

for all kj < l < kj+1. Since k < kj+1, this implies

‖Φµl
(xl)‖ ≤ ‖Φµl

(xl−1)‖

for all kj < l ≤ k or, equivalently,

‖Φµl+1
(xl+1)‖ ≤ ‖Φµl+1

(xl)‖

for all l such that kj ≤ l ≤ k − 1. Then, by Corollary 2.4, we get for all l such that
kj ≤ l ≤ k − 1:

‖Φµl+1
(xl+1)‖+ κ

√
µl+1 ≤ ‖Φµl+1

(xl)‖+ κ
√

µl+1

≤ ‖Φµl
(xl)‖+ ‖Φµl+1

(xl)− Φµl
(xl)‖+ κ

√
µl+1

≤ ‖Φµl
(xl)‖+ κ(

√
µl −

√
µl+1) + κ

√
µl+1

= ‖Φµl
(xl)‖+ κ

√
µl.

(29)

This inequality together with Corollary 2.4 gives

‖Φ(xk)‖ ≤ ‖Φµk
(xk)‖+ ‖Φ(xk)− Φµk

(xk)‖
≤ ‖Φµk

(xk)‖+ κ
√

µk

≤ ‖Φµk−1
(xk−1)‖+ κ

√
µk−1

...

≤ ‖Φµkj
(xkj)‖+ κ

√
µkj

≤ ‖Φ(xkj)‖+ ‖Φµkj
(xkj)− Φ(xkj)‖+ κ

√
µkj

≤ ‖Φ(xkj)‖+ κ
√

µkj
+ κ
√

µkj

= βkj
+ 2κ

√
µkj

,

(30)

where the dots indicate the repeated use of (29). This shows that (28) holds for arbitrary
k ∈ IN.

(b) In this part, we show that

√
µkj
≤ 1

2j+1

α

κ
‖Φ(x0)‖

and
βkj
≤ rj‖Φ(x0)‖,

where

r := max{1
2
, η}.
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Indeed, for j = 0, we have k0 = 0 and therefore

√
µk0 =

√
µ0 =

α

2κ
‖Φ(x0)‖

and
βk0 = β0 = r0‖Φ(x0)‖

by the definitions of µ0 and β0. For j ≥ 1, Step (S.4) of Algorithm 4.1 shows that

βkj
≤ ηβkj−1 = ηβkj−1

≤ rβkj−1
for kj ∈ K1,

and, using Corollary 2.4,

βkj
≤ 1

α
‖Φ(xkj)− Φµkj−1

(xkj)‖ ≤ κ

α

√
µkj−1 ≤

κ

α

√
µkj−1

≤ 1

2
βkj−1

≤ rβkj−1
for kj ∈ K2.

Similarly, we obtain

µkj
≤ 1

4
µkj−1 ≤

1

4
µkj−1

.

From the definitions of µ0 and β0, we thus have

√
µkj
≤ 1

2j

√
µ0 =

1

2j+1

α

κ
‖Φ(x0)‖ (31)

and
βkj
≤ rjβ0 = rj‖Φ(x0)‖. (32)

This completes the proof of Part (b).

(c) In this part, we now want to verify the statement of our Proposition. Using Parts (a)
and (b), we obtain

‖Φ(xk)‖ ≤ βkj
+ 2κ

√
µkj

≤ rj‖Φ(x0)‖+
α

2j
‖Φ(x0)‖

≤ rj(1 + α)‖Φ(x0)‖
≤ (1 + α)‖Φ(x0)‖.

(33)

Hence xk ∈ L0.

Note that the level set L0 as defined in Proposition 5.4 is known to be compact if F is a
uniform P -function or, more general, an R0-function [19].

Remark 5.5. We explicitly point out that the proof of Proposition 5.4 showed that the
following inequality holds for all k ∈ IN:

‖Φ(xk)‖ ≤ rj(1 + α)‖Φ(x0)‖,

where, if K = {k0, k1, k2, . . .} with k0 = 0, the index j ∈ IN is defined to be the largest integer
kj ∈ K such that kj ≤ k.
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As an immediate consequence of Remark 5.5, we obtain

Proposition 5.6. Let {xk} be a sequence generated by Algorithm 4.1 and assume that the
index set K is infinite. Then each accumulation point of the sequence {xk} is a solution of
NCP(F ).

Proof. Let x∗ be an accumulation point of the sequence {xk}, and let {xk}L be a subsequence
converging to x∗. Since K is infinite by assumption, we obtain from Remark 5.5:

‖Φ(x∗)‖ = lim
k∈L
‖Φ(xk)‖ ≤ lim

j→∞
rj(1 + α)‖Φ(x0)‖ = 0,

where the exponent j ∈ IN is defined as in Remark 5.5. Hence x∗ is a solution of NCP(F ).

In our next result, we consider the situation that x∗ is a limit point of a subsequence which
consists of gradient steps only.

Proposition 5.7. Let {xk} be a sequence generated by Algorithm 4.1 and let {xk}L be a
subsequence converging to a point x∗ ∈ IRn. If dk = −∇Ψ(xk) for all k ∈ L, then x∗ is a
stationary point of Ψ.

Proof. If the index set K is infinite, the accumulation point x∗ is a solution of NCP(F ) by
Proposition 5.6. Hence x∗ is a global minimum and therefore a stationary point of Ψ.

So let K be finite. Then, without loss of generality, we can assume that K ∩ L = ∅ so
that the updating rule (21) is active for all k ∈ L. This, in particular, implies that {µk} → 0.

Let k̂ be the largest number in K (which exists since K is finite). Then we obtain from
the updating rules in Step (S.4) of Algorithm 4.1 for all k > k̂:

µk ≤ µk̂, βk = βk̂ = ‖Φ(xk̂)‖, (34)

‖Φ(xk)‖ > ηβk−1 = η‖Φ(xk̂)‖ > 0 (35)

and

α‖Φ(xk)‖ > ‖Φ(xk)− Φµk−1
(xk)‖. (36)

From (35), we get

Ψ(xk) > η2Ψ(xk̂) > 0 (37)

for all k > k̂.
The proof is by contradiction: Assume that ∇Ψ(x∗) 6= 0. Our first aim is to show that

lim infk∈L tk = 0. Suppose that lim infk∈L tk = t∗ > 0. Since dk = −∇Ψ(xk) for all k ∈ L,
we obtain from the Armijo-rule (18):

Ψ(xk+1)−Ψ(xk) ≤ −σtk‖∇Ψ(xk)‖2 ≤ − c

2
(38)

for all k ∈ L sufficiently large, where c := σt∗‖∇Ψ(x∗)‖2 > 0. Since {µk} → 0, Corollary 2.4
shows that

|Ψµk
(xk+1)−Ψ(xk+1)| ≤ c

4
and |Ψµk

(xk)−Ψ(xk)| ≤ c

4
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for all k ∈ IN sufficiently large. Using {µk} → 0 once again and taking into account that the
sequence {‖Φ(xk)‖} is bounded by Proposition 5.4, we also have

2κ
√

µk‖Φ(xk)‖+ 2κ2µk ≤
c

4
(39)

for all k ∈ IN large enough. Let L consist of l0, l1, l2, . . .. Then, for all lj sufficiently large,
we obtain in a similar way as in the proof of Proposition 5.4 (see (30) and recall that K is
finite):

Ψ(xlj+1) = 1
2
‖Φ(xlj+1)‖2

≤ 1
2

(
‖Φ(xlj+1)‖+ 2κ

√
µlj+1

)2
= Ψ(xlj+1) + 2κ

√
µlj+1‖Φ(xlj+1)‖+ 2κ2µlj+1

≤ Ψ(xlj+1) + c
4
,

(40)

where the last inequality follows from (39). Using (38) and (40), we obtain

Ψ(xlj+1)−Ψ(xlj) = Ψ(xlj+1)−Ψ(xlj+1)︸ ︷︷ ︸
≤ c

4

+ Ψ(xlj+1)−Ψ(xlj)︸ ︷︷ ︸
≤− c

2

≤ − c

4

for all lj large enough. Hence {Ψ(xlj)} → −∞ for j →∞, but this contradicts the fact that
Ψ(x) ≥ 0 for all x ∈ IRn. Hence we have lim infk∈L tk = 0.

Subsequencing if necessary, we can assume that limk∈L tk = 0. We now want to derive a
contradiction to our assumption that ∇Ψ(x∗) 6= 0. Since limk∈L tk = 0, the full stepsize is
never accepted for all k ∈ L sufficiently large. Hence we obtain from the Armijo-rule (18)

Ψ(xk + λmk−1dk) > Ψ(xk)− σλmk−1‖dk‖2

or, equivalently,
Ψ(xk + λmk−1dk)−Ψ(xk)

λmk−1
> −σ‖dk‖2. (41)

By taking the limit k →∞ on L, we obtain from (41), the continuous differentiability of Ψ,
dk = −∇Ψ(xk) for all k ∈ L and the fact that λmk−1 → 0 for k →L ∞:

−∇Ψ(x∗)T∇Ψ(x∗) ≥ −σ∇Ψ(x∗)T∇Ψ(x∗).

This yields 1 ≤ σ, a contradiction to our choice of the parameter σ. Hence we must have
∇Ψ(x∗) = 0, and this completes the proof of Proposition 5.7.

We are now able to prove the main global convergence result for Algorithm 4.1.

Theorem 5.8. Let {xk} be a sequence generated by Algorithm 4.1. Then each accumulation
point of the sequence {xk} is a stationary point of Ψ.

Proof. If K is infinite, the conclusion follows immediately from Proposition 5.6. Hence we
can assume that K contains only finitely many indices.

Similar to the proof of Proposition 5.7, we denote by k̂ the largest index in K. Then
(34), (35), (36) and (37) hold for all k > k̂.
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Let x∗ be an accumulation point of the sequence {xk}, and let {xk}L be a subsequence
converging to x∗. If dk = −∇Ψ(xk) for infinitely many k ∈ L, then x∗ is a stationary point of
Ψ by Proposition 5.7. Hence we can assume without loss of generality that dk is the Newton
direction computed as a solution of the linear system (14) for all k ∈ L, so that

‖Φ(xk)‖ = ‖Φ′
µk

(xk)dk‖ ≤ ‖Φ′
µk

(xk)‖ ‖dk‖ (42)

holds for all k ∈ L. Since K is finite, we can further assume without loss of generality that
k 6∈ K for all k ∈ L, i.e., neither the updating rule (20) nor the updating rule (21) is active
for k ∈ L.

The proof is by contradiction: Assume that x∗ is not a stationary point of Ψ. Since the
sequence {µk} is monotonically decreasing and bounded from below, it converges to some
µ∗ ≥ 0. If µ∗ > 0, then it follows from the updating rules of Step (S.4) in Algorithm 4.1 that
µk is actually constant for all k sufficiently large.

The remaining part of this proof is divided into three steps.

(a) We first show that there exist positive constants m and M such that

0 < m ≤ ‖dk‖ ≤M for all k ∈ L. (43)

In fact, if {‖dk‖}L̃ → 0 on a subset L̃ ⊆ L, we would have from (42) that {‖Φ(xk)‖}L̃ → 0
because the sequence {Φ′

µk
(xk)}L̃ is obviously bounded on the convergent sequence {xk}L̃.

But then the continuity of Φ would imply that Φ(x∗) = 0, so that K would be infinite by
Lemma 5.1. This, however, would contradict our assumption that K is finite.

On the other hand, we have from (15) for all k ∈ L:

−‖Φ′
µk

(xk)TΦ(xk)‖ ‖dk‖ ≤ Φ(xk)TΦ′
µk

(xk)dk ≤ −ρ‖dk‖p. (44)

Since {Φ′
µk

(xk)TΦ(xk)}L is convergent (either by Lemma 2.6 or because µk is eventually
constant) and therefore bounded, there exists a constant C > 0 such that

‖Φ′
µk

(xk)TΦ(xk)‖ ≤ C

for all k ∈ L. With (44), we have

ρ‖dk‖p ≤ ‖Φ′
µk

(xk)TΦ(xk)‖‖dk‖ ≤ C‖dk‖

for all k ∈ L. Since p > 1, this shows that {‖dk‖}L is bounded. This completes the proof of
Part (a).

(b) We now show that lim infk∈L tk = 0. Suppose that lim infk∈L tk =: t∗ > 0. Then from
(37) and the line search rule (17), we have for all k ∈ L sufficiently large:

Ψµk
(xk+1)−Ψµk

(xk) ≤ −2σtkΨ(xk) ≤ −σt∗η
2Ψ(xk̂) < 0. (45)

We define c := σt∗η
2Ψ(xk̂) > 0 and consider two cases.



24 C. KANZOW AND H. PIEPER

Case 1: {µk} → µ∗ > 0.
Then we have µk = µ∗ is constant for k ∈ IN sufficiently large. Hence we obtain from (45)
for all k ∈ L large enough:

Ψµ∗(x
k+1)−Ψµ∗(x

k) = Ψµk
(xk+1)−Ψµk

(xk) ≤ −c. (46)

Since µk is eventually constant, the updating rule (21) excludes the existence of gradient
steps for k ∈ IN sufficiently large. Hence, if we assume that L consists of l0, l1, l2, . . ., we
obtain from Lemma 5.2 (a) for all lj sufficiently large:

Ψµ∗(x
lj+1)−Ψµ∗(x

lj) ≤ Ψµ∗(x
lj+1)−Ψµ∗(x

lj) ≤ −c.

This implies
Ψµ∗(x

lj)→ −∞
for j →∞, a contradiction to Ψµ∗(x) ≥ 0 for all x ∈ IRn.

Case 2: {µk} → 0.
Then we obtain from Corollary 2.4 that

|Ψµk
(xk+1)−Ψ(xk+1)| ≤ c

4
and |Ψµk

(xk)−Ψ(xk)| ≤ c

4
(47)

for all k ∈ IN sufficiently large. Again, let the sequence L consists of l0, l1, l2, . . . . Then the
following inequality holds for all lj large enough:

Ψ(xlj+1)−Ψ(xlj) =− (Ψµlj
(xlj+1)−Ψ(xlj+1)) + (Ψµlj

(xlj)−Ψ(xlj))

+ Ψµlj
(xlj+1)−Ψµlj

(xlj)

≤ |Ψµlj
(xlj+1)−Ψ(xlj+1)|︸ ︷︷ ︸

≤ c
4

by (47)

+ |Ψµlj
(xlj)−Ψ(xlj)|︸ ︷︷ ︸
≤ c

4
by (47)

+ Ψµlj
(xlj+1)−Ψµlj

(xlj)︸ ︷︷ ︸
≤−c by (45)

≤− c

2
.

(48)

The remaining part of the proof for Case 2 is now similar to the one for Proposition 5.7: In
particular, for lj large enough, we can prove the following inequality in essentially the same
way as in the proof of Proposition 5.7 (see (40) and recall that K is finite):

Ψ(xlj+1) ≤ Ψ(xlj+1) +
c

4
. (49)

Combining (48) and (49), we obtain

Ψ(xlj+1)−Ψ(xlj) = Ψ(xlj+1)−Ψ(xlj+1) + Ψ(xlj+1)−Ψ(xlj) ≤ c

4
− c

2
= − c

4
.

This implies Ψ(xlj)→ −∞ for j →∞, contradicting the fact that Ψ(x) ≥ 0 for all x ∈ IRn.
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Since both Case 1 and Case 2 lead to a contradiction, the proof of Part (b) is also
completed.

(c) We now turn back to the main part of our proof, i.e., we will now derive a contradiction
to our assumption that ∇Ψ(x∗) 6= 0.

Because of Part (b), we have lim infk∈L tk = 0. Let L0 be a subsequence of L such that
{tk}L0 converges to 0. Then mk > 0 for all k ∈ L0 sufficiently large, where mk ∈ IN denotes
the exponent from the line search rule (17). By this line search rule, we therefore have

−2σλmk−1Ψ(xk) < Ψµk
(xk + λmk−1dk)−Ψµk

(xk)

for all k ∈ L0 large enough. Dividing both sides by λmk−1, we obtain

−2σΨ(xk) <
Ψµk

(xk + λmk−1dk)−Ψµk
(xk)

λmk−1
.

Let µ∗ be the limit of {µk}, and if µ∗ = 0, we write ∇Ψµ∗(x
∗) for the gradient of the

unperturbed function Ψ at the limit point x∗. By (43) we can assume, subsequencing if
necessary, that {dk}L0 → d∗ 6= 0, so that, passing to the limit, we get

−2σΨ(x∗) ≤ ∇Ψµ∗(x
∗)Td∗. (50)

For µ∗ = 0 this follows from Lemma 2.7, and if µ∗ > 0, then µk = µ∗ for sufficiently large k,
so that (50) follows from the Mean Value Theorem.

Using (14), (36) and Corollary 2.4, we further have for k ∈ L0:

∇Ψµk
(xk)Tdk =− Φ(xk)TΦµk

(xk)

=− 2Ψ(xk) + Φ(xk)T (Φ(xk)− Φµk
(xk))

≤− 2Ψ(xk) + ‖Φ(xk)‖ ‖Φ(xk)− Φµk−1
(xk)‖

+ ‖Φ(xk)‖ ‖Φµk−1
(xk)− Φµk

(xk)‖
≤ − 2Ψ(xk) + 2αΨ(xk) + κ‖Φ(xk)‖(√µk−1 −

√
µk)

=− 2(1− α)Ψ(xk) + κ‖Φ(xk)‖(√µk−1 −
√

µk).

(51)

By taking the limit k →L0 ∞ in (51), we obtain from (50) (and Lemma 2.6 if µ∗ = 0)

−2σΨ(x∗) ≤ ∇Ψµ∗(x
∗)Td∗ ≤ −2(1− α)Ψ(x∗), (52)

since {‖Φ(xk)‖} is bounded (by Proposition 5.4), and (
√

µk−1 −
√

µk) → 0 (because {µk}
converges). We have Ψ(x∗) > 0, because otherwise K would be infinite. Therefore (52) gives
σ ≥ (1 − α) which is a contradiction to σ < 1

2
(1 − α). This, finally, completes the proof of

Theorem 5.8.

Note that Theorem 5.8 is a subsequential convergence result to stationary points of Ψ only.
However, it is well-known that such a stationary point x∗ is already a solution of NCP(F )
if, e.g., the Jacobian F ′(x∗) is a P0-matrix, see [16, 13]. Moreover, Proposition 5.6 provides
another sufficient condition for an accumulation point to be a solution of the complementarity
problem. In particular, Algorithm 4.1 is guaranteed to converge to a solution of the nonlinear
complementarity problem if F is a P0- and R0-function.
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6 Local Convergence

In this section, we want to show that Algorithm 4.1 is locally Q-superlinearly/Q-quadratically
convergent under certain assumptions. As a first step in this direction, we show that the
whole sequence {xk} generated by Algorithm 4.1 converges to a unique point x∗ if certain
conditions hold. The proof of this result is based on the following Proposition by Moré
and Sorensen [31] (note that their result is fairly general and completely independent of any
specific algorithm).

Proposition 6.1. Assume that x∗ ∈ IRn is an isolated accumulation point of a sequence
{xk} ⊆ IRn (not necessarily generated by Algorithm 4.1) such that {‖xk+1 − xk‖}L → 0 for
any subsequence {xk}L converging to x∗. Then the whole sequence {xk} converges to x∗.

Proposition 6.1 enables us to establish the following result.

Theorem 6.2. Let {xk} be a sequence generated by Algorithm 4.1. If one of the accumulation
points of the sequence {xk}, let us say x∗, is an isolated solution of NCP(F ), then {xk} → x∗.

Proof. Let x∗ be an isolated solution of NCP(F ). We want to verify the assumptions of
Proposition 6.1. To this end, we first show that x∗ is also an isolated accumulation point of
the sequence {xk}.

Since x∗ solves NCP(F ), Lemma 5.1 shows that the index set K is infinite and {µk}
converges to 0. Hence Proposition 5.6 shows that each accumulation point of the sequence
{xk} is already a solution of NCP(F ). Thus x∗ is necessarily an isolated accumulation point
of the sequence {xk}.

Now let {xk}L be an arbitrary subsequence of {xk} converging to x∗. From the updating
rule in Step (S.3) of Algorithm 4.1, we have

‖xk+1 − xk‖ = λmk‖dk‖ ≤ ‖dk‖. (53)

Therefore it suffices to show that {‖dk‖}L → 0. Since Ψ is continuously differentiable and
since the solution x∗ of NCP(F ) is, in particular, a stationary point of Ψ, we have

{∇Ψ(xk)}L → ∇Ψ(x∗) = 0. (54)

Suppose the sequence {dk}L contains only a finite number of Newton directions. Then
{‖dk‖}L → 0 follows immediately. Assume therefore that there is a subsequence {dk}L0 of
{dk}L such that dk is the solution of the linear system (14) for all k ∈ L0.

From (15), we obtain

ρ‖dk‖p ≤ −(Φ′
µk

(xk)TΦ(xk))T dk ≤ ‖Φ′
µk

(xk)TΦ(xk)‖ ‖dk‖

for all k ∈ L0, from which we get

‖dk‖ ≤

(
‖Φ′

µk
(xk)TΦ(xk)‖

ρ

) 1
p−1

(55)
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because p > 1. Since {µk} → 0, we obtain

lim
k→∞,k∈L0

Φ′
µk

(xk)TΦ(xk)→ ∇Ψ(x∗) = 0

from Lemma 2.6. Hence the right-hand side of (55) converges to 0, so that {dk}L0 → 0. We
obviously also have {dk}L\L0 → 0 from (54) (if the set L \ L0 is infinite). Hence (53) shows
that

{‖xk+1 − xk‖}L → 0.

The assertion now follows from Proposition 6.1.

Remark 6.3. We explicitly point out that, in the proof of Theorem 6.2, we have actu-
ally shown that if the sequence {xk} generated by Algorithm 4.1 converges to a solution of
NCP(F ), then {‖dk‖} → 0. This fact will be important in the proof of Theorem 6.6 below.

In order to verify that Algorithm 4.1 eventually takes the full stepsize tk = 1, we state the
following Lemma which was shown by Chen, Qi and Sun [10, Lemma 3.2].

Lemma 6.4. If there exists a scalar

ω ∈
[
1

2
− (1− α− 2σ)2

2(2 + α)2
,
1

2

]
such that

Ψ(y) ≤ Ψ(xk)− 2ωΨ(xk) (56)

for some k ∈ K and y ∈ IRn, then it holds

Ψµk
(y) ≤ Ψµk

(xk)− 2σΨ(xk), (57)

where µk is the smoothing parameter in the kth step.

In the proof of our main local convergence result, we will also utilize the following Proposition
which was originally shown by Facchinei and Soares [16]. An alternative proof of this result
was given by Kanzow and Qi [29] under slightly different assumptions. Here we restate the
result from [29].

Proposition 6.5. Let G : IRn → IRn be locally Lipschitzian and x∗ ∈ IRn with G(x∗) = 0
such that all elements in ∂G(x∗) are nonsingular, and assume that there are two subsequences
{xk} ⊆ IRn and {dk} ⊆ IRn with

lim
k→∞

xk = x∗ and ‖xk + dk − x∗‖ = o(‖xk − x∗‖).

Then

‖G(xk + dk)‖ = o(‖G(xk)‖).
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Before stating our local convergence result, we recall that a solution x∗ of NCP(F ) is called
R-regular if the submatrix F ′(x∗)αα is nonsingular and the Schur complement

F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1
ααF ′(x∗)αβ ∈ IR|β|×|β|

is a P -matrix, see Robinson [38]; here, we have used the standard index set notation

α := {i|x∗i > 0 = Fi(x
∗)},

β := {i|x∗i = 0 = Fi(x
∗)},

γ := {i|x∗i = 0 < Fi(x
∗)}.

Theorem 6.6. Let {xk} be a sequence generated by Algorithm 4.1. If one of the limit points
of the sequence {xk}, let us say x∗, is an R-regular solution of NCP(F ), then {xk} → x∗, and
the convergence rate is at least Q-superlinear. If F : IRn → IRn is continuously differentiable
with a locally Lipschitzian Jacobian, then the convergence rate is Q-quadratic.

Proof. We first note that the assumed R-regularity of the solution x∗ implies that all
elements of the C-subdifferential ∂CΦ(x∗) are nonsingular, see [16]. Hence Proposition 2.5
in [33] together with Proposition 2.2 shows that x∗ is an isolated solution of Φ(x) = 0 and
therefore also of NCP(F ). Hence, by Theorem 6.2, the whole sequence {xk} converges to x∗.
Let K be again the set defined by (22), which, by Lemma 5.1, is infinite since the sequence
{xk} converges to a solution of NCP(F ). In particular, we have {xk}K → x∗.

We now divide the proof into four steps.

(a) In this part, we show that, for all k ∈ K sufficiently large, the matrix Φ′
µk

(xk) is nonsin-
gular and satisfies the inequality

‖Φ′
µk

(xk)−1‖ ≤ 2c

for a certain constant c > 0.
Since {xk} converges to x∗, the assumed R-regularity together with the upper semicon-

tinuity of the C-subdifferential implies that, for all k ∈ IN sufficiently large, all matrices
Vk ∈ ∂CΦ(xk) are nonsingular with ‖V −1

k ‖ ≤ c for some constant c > 0. We now want to
show that the same is true for Φ′

µk
(xk). Let Hk ∈ ∂CΦ(xk) such that

distF (Φ′
µk

(xk), ∂CΦ(xk)) = ‖Φ′
µk

(xk)−Hk‖F

(note that such an element exists since the set ∂CΦ(xk) is nonempty and compact). With
(24) we have

‖Hk − Φ′
µk

(xk)‖ ≤ ‖Hk − Φ′
µk

(xk)‖F ≤ γβk (58)

for all k ∈ K. Hence it follows that

‖I −H−1
k Φ′

µk
(xk)‖ = ‖H−1

k (Hk − Φ′
µk

(xk))‖
≤ ‖H−1

k ‖ ‖Hk − Φ′
µk

(xk)‖
≤ γβkc.

(59)
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Since K is infinite, we have βk → 0 in view of the updating rules in Step (S.4) of Algorithm
4.1. Therefore, for k ∈ K large enough such that βk ≤ 1

2γc
, we have

‖I −H−1
k Φ′

µk
(xk)‖ ≤ 1

2
.

From the Perturbation Lemma [14, Theorem 3.1.4], we obtain that Φ′
µk

(xk) is nonsingular
for all k ∈ K large enough with

‖Φ′
µk

(xk)−1‖ ≤ 2‖H−1
k ‖ ≤ 2c. (60)

Hence system (14) admits a solution for all k ∈ K sufficiently large, and the proof of Part
(a) is completed.

(b) We next want to show that, for all k ∈ K sufficiently large, the solution dk of the linear
system (14) satisfies the descent condition (15).

To this end, we first note that the linear system (14) has a unique solution for all k ∈ K
sufficiently large by Part (a). We now show that these dk satisfy the inequality

Φ(xk)TΦ′
µk

(xk)dk ≤ −ρ1‖dk‖2 (61)

for a certain positive constant ρ1. Indeed, this follows from the fact that

‖dk‖ ≤ ‖Φ′
µk

(xk)−1‖ ‖Φ(xk)‖

by (14), so that (60) implies

Φ(xk)TΦ′
µk

(xk)dk = −‖Φ(xk)‖2 ≤ −‖d
k‖2

4c2
(62)

for all k ∈ K large enough. Hence (61) follows from (62) by taking ρ1 = 1/(4c2). Since
{‖dk‖} → 0 by Remark 6.3, it is now easy to see that (61) eventually implies (15) for any
ρ > 0 und p > 2. Hence, for all k ∈ K sufficiently large, the search direction dk is always
given by (14).

(c) In view of Parts (a) and (b), the search direction dk is given by (14) for all k ∈ K large
enough. In this step, we want to show that there is an index k̄ ∈ K such that if k ∈ K is
any index with k ≥ k̄, then the index k + 1 also belongs to the set K and xk+1 = xk + dk.
Repeating this argument, it then follows that eventually all iterations k belong to the set K,
and that the full step tk = 1 is always accepted.

In order to prove this statement, we recall from Part (a) that there is a constant c > 0
such that ‖Φ′

µk
(xk)−1‖ ≤ 2c for all k ∈ K sufficiently large. From Algorithm 4.1 and (58),

we therefore obtain for all k ∈ K large enough:

‖xk + dk − x∗‖
= ‖xk − x∗ − Φ′

µk
(xk)−1Φ(xk)‖

= ‖Φ′
µk

(xk)−1(Φ′
µk

(xk)(xk − x∗)− Φ(xk) + Φ(x∗))‖
≤ ‖Φ′

µk
(xk)−1‖

(
‖(Φ′

µk
(xk)−Hk)(x

k − x∗)‖+ ‖Hk(x
k − x∗)− Φ(xk) + Φ(x∗)‖

)
≤ 2c(γβk‖xk − x∗‖+ ‖Hk(x

k − x∗)− Φ(xk) + Φ(x∗)‖),

(63)
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where, again, Hk ∈ ∂CΦ(xk) is chosen in such a way that

distF (Φ′
µk

(xk), ∂CΦ(xk)) = ‖Φ′
µk

(xk)−Hk‖F ,

see Part (a) of this proof. Using Proposition 2.2 (a) and taking into account that βk → 0,
we have

‖xk + dk − x∗‖ = o(‖xk − x∗‖) for k →∞, k ∈ K. (64)

Hence (64) and Proposition 6.5 show that

‖Φ(xk + dk)‖ = o(‖Φ(xk)‖) for k →∞, k ∈ K. (65)

Let ω := max
{

1
2
− (1−α−2σ)2

2(2+α)2
, 1−η2

2

}
. Then (65) implies that there exists an index k̄ ∈ K

such that
Ψ(xk + dk) ≤ Ψ(xk)− 2ωΨ(xk) (66)

for all k ∈ K with k ≥ k̄. Hence, by Lemma 6.4, we therefore have

Ψµk
(xk + dk) ≤ Ψµk

(xk)− 2σΨ(xk) (67)

for all k ∈ K with k ≥ k̄. Hence the full stepsize of 1 will eventually be accepted for all
k ≥ k̄, k ∈ K. In particular, xk̄+1 = xk̄ + dk̄, and from (66) and the definition of ω, we
obtain

‖Φ(xk̄+1)‖ ≤
√

1− 2ω‖Φ(xk̄)‖ ≤ η‖Φ(xk̄)‖ = ηβk̄,

which implies that k̄ + 1 ∈ K, cf. (22). Repeating the above process, we may prove that for
all k ≥ k̄, we have

k ∈ K

and
xk+1 = xk + dk.

This completes the proof of Part (c).

(d) We now turn to the final part of the proof where we want to verify the Q-superlinear/Q-
quadratic rate of convergence. Since k ∈ K and tk = 1 for all k ∈ IN sufficiently large by
Part (c), the Q-superlinear convergence follows immediately from (64).

If F : IRn → IRn is continuously differentiable with a locally Lipschitzian Jacobian, then
Proposition 2.2 (b) shows that

‖Hk(x
k − x∗)− Φ(xk) + Φ(x∗)‖ = O(‖xk − x∗‖2).

Since Φ is obviously locally Lipschitzian, we further have

βk = ‖Φ(xk)‖ = ‖Φ(xk)− Φ(x∗)‖ = O(‖xk − x∗‖).

Hence the Q-quadratic rate of convergence of {xk} to x∗ follows from (63) by using similar
arguments as for the proof of the local Q-superlinear convergence.
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7 Numerical Results

We implemented the Jacobian smoothing method from Algorithm 4.1 in MATLAB and tested
it on a SUN SPARC 20 station. As test problems, we use all complementarity problems and
all available starting points from the MCPLIB and GAMSLIB collections.

The implemented version of the algorithm differs from the one described before in mainly
two aspects: On the one hand, we replaced the monotone Armijo-rule by a nonmonotone
variant [21]. For the details of the implementation of this nonmonotone Armijo-rule, we refer
the interested reader to [32].

On the other hand, we incorporated a heuristic backtracking strategy in our implemen-
tation in order to avoid domain violations which occur quite often since the mapping F in
many examples of the test libraries is not defined everywhere. To this end, we first compute

t̂k := max{νl
k| l = 0, 1, 2, . . . }

in such a way that F (xk + t̂kd
k) is well-defined, and then we take t̂k as initial steplength with

which we go into the nonmonotone line search test. Note that we allow the backtracking
factor νk to vary in each iteration. In our implementation we choose νk between 0.5 and
0.75, i.e., we increase νk gradually in case l ≤ 1 and decrease it for l > 1. This procedure
leads to less function evaluations and slightly faster convergence for some of the pgvon105

and pgvon106 test problems.
The algorithm terminates if one of the following conditions is satisfied:

Ψ(xk) ≤ ε1, ‖∇Ψ(xk)‖ ≤ ε2, k > kmax or tk < tmin.

In the implementation we used the following parameter settings:

ρ = 10−18, p = 2.1, λ = 0.5, σ = 10−4, γ = 30, α = 0.95, η = 0.9,

and

ε1 = 10−12, ε2 = 10−6, kmax = 300, tmin = 10−16.

We report the results for all complementarity problems in the MCPLIB and GAMSLIB
libraries and all available starting points in Tables 1 and 2, respectively. The columns in
these tables have the following meanings:

problem: name of the test problem in the specific test library
n: dimension of the test problem
SP: number of starting point
k: number of iterations
F -eval: number of function evaluations
N: number of Newton steps taken
G: number of gradient steps taken
Ψ(xf ): Ψ(x) at the final iterate x = xf

‖∇Ψ(xf )‖: ‖∇Ψ(x)‖ at the final iterate x = xf

B: number of backtracking steps.
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Table 1: Numerical results for MCPLIB test problems

problem n SP k F -ev. N G Ψ(xf ) ‖∇Ψ(xf )‖ B

bertsekas 15 1 34 271 34 0 1.5e-19 3.5e-08 0
bertsekas 15 2 37 353 37 0 1.4e-16 1.0e-06 0
bertsekas 15 3 42 406 42 0 2.5e-19 4.4e-08 0
billups 1 1 27 389 27 0 4.1e-17 1.8e-08 0

colvdual 20 1 15 37 15 0 1.0e-17 4.8e-07 0
colvdual 20 2 26 64 26 0 9.4e-16 4.4e-06 0
colvnlp 15 1 16 39 16 0 2.7e-17 7.8e-07 0
colvnlp 15 2 14 26 14 0 6.8e-15 1.7e-05 0
cycle 1 1 3 5 3 0 8.1e-16 4.0e-08 0

explcp 16 1 5 6 5 0 2.8e-15 7.5e-08 0
hanskoop 14 1 9 14 9 0 2.9e-16 3.3e-08 0
hanskoop 14 2 9 12 9 0 1.4e-17 1.8e-08 0
hanskoop 14 3 8 12 8 0 9.5e-16 1.5e-07 0
hanskoop 14 4 9 13 9 0 4.2e-18 1.0e-08 0
hanskoop 14 5 10 16 10 0 3.3e-18 8.9e-09 1
josephy 4 1 8 11 8 0 1.3e-19 1.7e-09 0
josephy 4 2 7 12 7 0 1.7e-18 1.5e-08 0
josephy 4 3 13 18 13 0 1.0e-14 4.8e-07 0
josephy 4 4 5 6 5 0 2.6e-20 7.6e-10 0
josephy 4 5 5 6 5 0 2.4e-13 2.6e-06 0
josephy 4 6 6 8 6 0 8.1e-21 9.9e-10 0
kojshin 4 1 10 17 10 0 3.3e-24 1.6e-11 0
kojshin 4 2 9 21 9 0 2.9e-15 1.2e-07 0
kojshin 4 3 7 10 7 0 1.8e-15 2.0e-07 0
kojshin 4 4 12 26 12 0 8.0e-17 1.6e-07 0
kojshin 4 5 5 7 5 0 5.0e-18 8.8e-09 0
kojshin 4 6 6 8 6 0 4.7e-25 8.5e-12 0

mathinum 3 1 7 11 7 0 1.7e-24 3.8e-12 0
mathinum 3 2 5 6 5 0 4.4e-15 2.6e-07 0
mathinum 3 3 5 6 5 0 9.2e-18 8.6e-09 0
mathinum 3 4 7 8 7 0 5.1e-23 2.8e-11 0
mathisum 4 1 5 7 5 0 4.1e-19 2.1e-09 0
mathisum 4 2 6 7 6 0 1.5e-13 1.3e-06 0
mathisum 4 3 8 10 8 0 9.0e-17 2.3e-08 0
mathisum 4 4 6 7 6 0 1.5e-22 4.1e-11 0

nash 10 1 8 9 8 0 5.3e-20 2.4e-08 0
nash 10 2 11 25 11 0 1.8e-22 6.9e-10 0
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Table 1 (continued): Numerical results for MCPLIB test problems

problem n SP k F -ev. N G Ψ(xf ) ‖∇Ψ(xf )‖ B

pgvon105 105 1 33 81 33 0 1.1e-13 4.7e-03 33
pgvon105 105 2 33 98 33 0 1.3e-14 7.3e-03 31
pgvon105 105 3 69 251 69 0 6.2e-17 5.0e-04 68
pgvon106 106 1 23 49 23 0 4.6e-14 4.0e-07 23

powell 16 1 13 41 13 0 3.3e-17 9.1e-08 4
powell 16 2 14 36 14 0 2.4e-14 3.3e-06 4
powell 16 3 23 45 23 0 1.3e-13 1.5e-06 4
powell 16 4 16 45 16 0 9.7e-16 5.7e-07 6

scarfanum 13 1 10 13 10 0 1.7e-16 1.7e-07 0
scarfanum 13 2 12 15 12 0 1.7e-16 1.7e-07 0
scarfanum 13 3 12 16 12 0 1.7e-16 1.7e-07 1
scarfasum 14 1 8 11 8 0 1.1e-18 3.1e-08 0
scarfasum 14 2 10 14 10 0 9.6e-17 2.8e-07 0
scarfasum 14 3 11 14 11 0 2.5e-19 1.4e-08 0
scarfbnum 39 1 23 36 23 0 1.7e-14 3.4e-05 0
scarfbnum 39 2 24 42 24 0 2.4e-14 3.7e-05 0
scarfbsum 40 1 20 56 20 0 1.2e-16 1.9e-06 0
scarfbsum 40 2 26 72 26 0 9.1e-20 5.2e-08 0

sppe 27 1 7 8 7 0 4.8e-14 4.4e-07 0
sppe 27 2 6 7 6 0 4.8e-25 2.9e-12 0
tobin 42 1 9 12 9 0 4.8e-13 9.9e-07 0
tobin 42 2 11 15 11 0 4.8e-24 3.1e-12 0

From the definition of the algorithm it follows that the number of Jacobian evaluations is
one more than the number of iterations k.

Looking at Tables 1 and 2, the most obvious observation is that we do not have a single
failure, i.e., the main termination criterion

Ψ(xk) ≤ 10−12

is satisfied for all test problems including the difficult ones like billups, colvdual, vonthmcp
and vonthmge, to mention just a few.

As known to the authors, there is currently only one other algorithm available which also
has no failures on these problems, namely the semismooth Newton-type method by Chen,
Chen and Kanzow [5]. Compared to that algorithm, it seems that our Jacobian smoothing
method sometimes needs fewer iterations, whereas the number of function evaluations is
usually higher. This may indicate that the step size rule (17) is not “optimal” and may be
improved. However, function evaluations are, in general, considerably cheaper than, e.g., the
solution of the linear system (14). We also stress that the philosophy of these two methods
is different, so it is difficult to compare them with each other.
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Table 2: Numerical results for GAMSLIB test problems

problem n SP k F -ev. N G Ψ(xf ) ‖∇Ψ(xf )‖ B

cafemge 101 1 11 19 11 0 7.9e-25 1.7e-09 0
cammge 128 1 0 1 0 0 5.1e-13 3.1e-04 0
co2mge 208 1 1 2 1 0 1.3e-14 1.0e-07 0
dmcmge 170 1 88 523 88 0 1.3e-21 2.1e-07 1
etamge 114 1 20 49 20 0 1.6e-15 3.6e-05 0
finmge 153 1 0 1 0 0 2.2e-14 7.6e-06 0

hansmcp 43 1 17 31 17 0 3.3e-14 7.8e-07 0
hansmge 43 1 14 30 14 0 4.9e-13 9.1e-07 0
harkmcp 32 1 13 16 13 0 2.0e-16 2.9e-08 0
kehomge 9 1 10 12 10 0 1.7e-20 7.9e-09 0
mr5mcp 350 1 10 17 10 0 1.7e-18 2.8e-07 1
nsmge 212 1 12 19 12 0 5.6e-18 2.9e-07 0

oligomcp 6 1 6 7 6 0 7.1e-17 1.5e-07 0
sammge 23 1 0 1 0 0 0.0 0.0 0
scarfmcp 18 1 9 12 9 0 9.2e-17 1.3e-07 1
scarfmge 18 1 11 15 11 0 5.3e-13 1.1e-05 0
shovmge 51 1 1 2 1 0 5.6e-14 5.7e-05 0
threemge 9 1 0 1 0 0 0.0 0.0 0
transmcp 11 1 13 22 13 0 3.1e-16 2.5e-08 0
two3mcp 6 1 8 12 8 0 4.8e-13 2.0e-05 0
unstmge 5 1 8 9 8 0 1.6e-13 7.6e-07 0
vonthmcp 125 1 54 280 54 0 6.1e-15 2.9e-02 37
vonthmge 80 1 31 97 30 1 4.5e-13 1.3e-04 0

On the other hand, however, we could try to compare our algorithm with its underlying
semismooth Newton method from De Luca et al. [13]. It turns out that our algorithm
is more reliable and that we use considerably fewer gradient steps. In fact, we have just
one gradient step, namely on example vonthmge. We believe that this indicates that the
smoothing parameter µ regularizes the Jacobian matrix Φ′

µ(x) to some extent. This is also
reflected by some known theoretical results, e.g., the Jacobian Φ′

µ(x) is nonsingular if F ′(x) is
a P0-matrix (see [26]), whereas an element from the C-subdifferential ∂CΦ(x) is nonsingular
only under a slightly stronger assumption (see [13]).

We finally stress that we also tested some other parameter settings; there, we usually had
some more gradient steps, but still less than for the method from [13]. This fact may explain
why our Jacobian smoothing method seems to be superior to its underlying semismooth
Newton method from [13] since it is well-accepted in the community that taking as many
Newton steps as possible usually improves the overall behaviour of the algorithm. On the
other hand, we stress that we were not able to solve the vonthmge example without using a
gradient step.
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8 Final Remarks

In this paper, we introduced a new algorithm for the solution of a general (i.e., not necessarily
monotone) complementarity problem. We call this algorithm a Jacobian smoothing method
since, basically, it is a perturbation of a semismooth Newton method being applied to a
reformulation of the complementarity problem as a nonsmooth system of equations Φ(x) = 0.
In this perturbation, we replace an element from the generalized Jacobian by a standard
Jacobian of a smooth operator Φµ which approximates Φ for µ→ 0.

The basic idea of this Jacobian smoothing method is taken from the recent paper [10] by
Chen, Qi and Sun. We modified their algorithm in such a way that it becomes applicable
to general complementarity problems. Although this modification makes the convergence
analysis rather technical (especially the global one), the main convergence results are quite
nice. Moreover, the numerical performance is extremely promising. In fact, we are able
to solve all complementarity problems from the MCPLIB and GAMSLIB test problem col-
lections. In particular, our Jacobian smoothing method is considerably more reliable than
the semismooth method by De Luca et al. [13] which is the underlying semismooth Newton
method for our algorithm.

It would be interesting to see how our perturbation technique would work if we apply it to
other equation-reformulations of the nonlinear complementarity problem like those presented
in [28, 35, 5]. Finally, it would also be interesting to see how the Jacobian smoothing method
would work on mixed complementarity problems. An extension to this more general class
of problems seems possible by using, e.g., an idea from Billups [1], see also Qi [35] and Sun
and Womersley [39]. We leave this as a future research topic.
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