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Abstract. Mangasarian and Solodov [Mathematical Programming, Vol. 62, pp. 277–297,
1993] proposed to solve nonlinear complementarity problems by seeking the unconstrained
global minima of a new merit function which they called implicit Lagrangian. A crucial
point in such an approach is to determine conditions which guarantee that every uncon-
strained stationary point of the implicit Lagrangian is a global solution, since standard
unconstrained minimization techniques are only able to locate stationary points. Some
authors partially answered this question by giving sufficient conditions which guarantee
this key property. In this paper we settle the issue by giving a necessary and sufficient con-
dition for a stationary point of the implicit Lagrangian to be a global solution and, hence,
a solution of the nonlinear complementarity problem. We show that this new condition
easily allows us to recover all previous results and to establish new sufficient conditions.
We then consider a constrained reformulation based on the implicit Lagrangian in which
nonnegative constraints on the variables are added to the original unconstrained reformu-
lation. This is motivated by the fact that often, in applications, the function which defines
the complementarity problem is defined only on the nonnegative orthant. We consider the
KKT-points of this new reformulation and show that the same necessary and sufficient
condition which guarantees, in the unconstrained case, that every unconstrained station-
ary point is a global solution, also guarantees that every KKT-point of the new problem
is a global solution.
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1 Introduction

Consider the nonlinear complementarity problem, denoted by NCP(F ), which is to
find a vector in IRn satisfying the conditions

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i ∈ I := {1, . . . , n},

where F : IRn → IRn is a continuously differentiable function.
In 1993, Mangasarian and Solodov [12] introduced a new and interesting ap-

proach for the solution of NCP(F ) which is based on the so-called implicit La-
grangian

M(x) :=
∑
i∈I

ϕ(xi, Fi(x)),

where ϕ : IR2 → IR is defined by

ϕ(a, b) := ab+
1

2α

(
max2{0, a− αb} − a2 + max2{0, b− αa} − b2

)
and where α > 1 is any fixed parameter. Mangasarian and Solodov [12] proved that
M is a continuously differentiable, nonnegative function having the property

M(x) = 0 ⇐⇒ x solves NCP(F ).

If we assume that NCP(F ) has at least one solution, this implies that a vector
x∗ ∈ IRn solves NCP(F ) if and only if it is a global minimizer of the unconstrained
minimization problem

min
x∈IRn

M(x). (1)

However, unconstrained minimization procedures applied to problem (1) are in gen-
eral only able to find stationary points of M. An open question raised by Mangasar-
ian and Solodov [12] is the following: Under what assumptions is a stationary point
of M a solution of NCP(F )? A first answer to this question was given by Yamashita
and Fukushima [18]: They proved that if x∗ is a stationary point of M such that the
Jacobian matrix F ′(x∗) is positive definite, then x∗ solves NCP(F ). Independently
and based on a more general approach, the same result was obtained by Kanzow
[10]. Recently Jiang [9] implicitly showed that the positive definiteness of F ′(x∗)
can be replaced by the weaker assumption that F ′(x∗) is a P -matrix.

In this paper we settle the issue by giving a necessary and sufficient condition for
a stationary point of the implicit Lagrangian to be a global solution and, hence, a
solution of the nonlinear complementarity problem. We show that this new condition
easily allows us to recover all previously known results and to establish new sufficient
conditions.

We then consider a new constrained reformulation, based on the implicit La-
grangian, in which nonnegative constraints on the variables are added to the original
unconstrained reformulation (1), thus obtaining the problem

min
x≥0

M(x). (2)
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It is obvious that also in this case, assuming that NCP(F ) has a solution, solving
the nonlinear complementarity problem is equivalent to finding a global minimum
point of (2). This second approach is motivated by the fact that often, in applica-
tions, the function F is defined only on the nonnegative orthant. We consider the
Karush-Kuhn-Tucker- (KKT-) points of this new reformulation and show that the
same necessary and sufficient condition which guarantees, in the unconstrained case,
that every unconstrained stationary point is a global solution, also guarantees that
every KKT-point of (2) is a global solution.

The organization of the paper is as follows. In the next section we state some
basic definitions and preliminary results. In Section 3 we introduce the notion
of regular point and prove that an unconstrained stationary point of the implicit
Lagrangian is a solution of NCP(F ) if and only if it is regular; furthermore we
give sufficient conditions for a point to be regular. Section 4 contains an analogous
analysis for the constrained reformulation (2). We conclude with some final remarks
in Section 5.

A few words about notation. We denote by IRn
+ the nonnegative orthant. If

F : IRn → IRn is a differentiable function, the Jacobian of F at a point x ∈ IRn

is denoted by F ′(x). The index set {1, . . . , n} is always abbreviated by the capital
letter I. If x ∈ IRn is an arbitrary vector and J ⊆ I, the vector xJ ∈ IR|J | consists
of the elements xi, i ∈ J. Similarly, given any matrix A ∈ IRn×n, A = (aij), i, j ∈ I,
we denote by AJJ ∈ IR|J |×|J | the submatrix which has the elements aij, i, j ∈ J.

2 Preliminaries

We first restate the definition of some important classes of matrices.

Definition 2.1 A matrix A ∈ IRn×n is called

(a) P -matrix ⇐⇒ ∀x ∈ IRn, x 6= 0,∃i ∈ I such that xi[Ax]i > 0;

(b) strictly semimonotone ⇐⇒ ∀x ∈ IRn
+, x 6= 0,∃i ∈ I such that xi[Ax]i > 0;

(c) S-matrix ⇐⇒ ∃x ∈ IRn such that x ≥ 0 and Ax > 0.

Obviously, every P -matrix is strictly semimonotone. Moreover, it is known that
every strictly semimonotone matrix is an S-matrix. For some further properties of
these classes of matrices, we refer the reader to the excellent book by Cottle, Pang
and Stone [2].

We now recall two elementary, but important properties of the function ϕ. The
proofs can be found in [12, 10].

Lemma 2.2 ϕ is a nonnegative function and the following relationships hold:

a ≥ 0, b ≥ 0, ab = 0 ⇐⇒ ϕ(a, b) = 0 ⇐⇒ ∇ϕ(a, b) = 0.
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Lemma 2.3 The following inequality holds for all (a, b)T ∈ IR2 :

∂ϕ

∂a
(a, b)

∂ϕ

∂b
(a, b) ≥ 0.

We conclude this section by proving three further results that will be needed in the
sequel.

Lemma 2.4 The following inequality holds for all (a, b)T ∈ IR2
+ :

∂ϕ

∂b
(a, b) ≥ 0.

Proof. First note that

∂ϕ

∂b
(a, b) = a+

1

α
(−αmax{0, a− αb}+ max{0, b− αa} − b) . (3)

Let (a, b) ∈ IR2
+ be fixed and consider the following four cases.

Case 1: a− αb ≥ 0 and b− αa > 0.
Since we also have a ≥ 0, b ≥ 0 and α > 1, we therefore get a ≥ αb ≥ b and
b > αa ≥ a, a contradiction. For this reason, this case cannot occur.
Case 2: a− αb ≥ 0 and b− αa ≤ 0.
Then it follows from (3) that

α
∂ϕ

∂b
(a, b) = (α2 − 1)b ≥ 0

since α > 1 and b ≥ 0.
Case 3: a− αb < 0 and b− αa > 0.
In this case, (3) reduces to

∂ϕ

∂b
(a, b) = 0,

which is obviously nonnegative.
Case 4: a− αb < 0 and b− αa ≤ 0.
Then a ≥ b/α so that (3) becomes

∂ϕ

∂b
(a, b) = a− b/α ≥ 0.

The assertion is therefore an immediate consequence of the cases 1 – 4. 2

Lemma 2.5 For all b ∈ IR, we have

∂ϕ

∂a
(0, b) = 0.
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Proof. It is readily verified that

∂ϕ

∂a
(a, b) = b+

1

α
(max{0, a− αb} − a− αmax{0, b− αa}) .

Hence we have

α
∂ϕ

∂a
(0, b) = αb+ max{0,−αb} − αmax{0, b}.

Now it can easily be verified by considering the two possible cases b ≥ 0 and b < 0
separately that ∂ϕ

∂a
(0, b) = 0. 2

Lemma 2.6 For all b ∈ IR, we have

∂ϕ

∂b
(0, b) ≤ 0.

Proof. Recalling the expression (3), we can write

α
∂ϕ

∂b
(0, b) = (−αmax{0,−αb}+ max{0, b} − b)

which, by considering the two cases b ≥ 0 and b < 0, is easily seen to be a nonpositive
quantity. 2

3 Unconstrained Stationary Points

In the remaining part of this paper we make use of the following notation:

∂ϕ

∂a
(x, F (x)) :=

(
∂ϕ

∂a
(x1, F1(x)), . . . ,

∂ϕ

∂a
(xn, Fn(x))

)T

∈ IRn,

∂ϕ

∂b
(x, F (x)) :=

(
∂ϕ

∂b
(x1, F1(x)), . . . ,

∂ϕ

∂b
(xn, Fn(x))

)T

∈ IRn,

where x ∈ IRn is an arbitrary vector. Using this notation, we can write the gradient
of M at x as

∇M(x) =
∂ϕ

∂a
(x, F (x)) + F ′(x)T

∂ϕ

∂b
(x, F (x)). (4)

In order to prove the main result of this section, we need the following lemma.

Lemma 3.1 Let x∗ ∈ IRn be a stationary point of M. Then x∗ is a solution of
NCP(F ) if and only if ∂ϕ

∂b
(x∗, F (x∗)) = 0.
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Proof. Since x∗ is a stationary point of M, we get from (4):

∂ϕ

∂a
(x∗, F (x∗)) + F ′(x∗)T

∂ϕ

∂b
(x∗, F (x∗)) = 0. (5)

Now assume that x∗ solves NCP(F ). Then ϕ(x∗i , Fi(x
∗)) = 0 for all i ∈ I, so that we

have ∇ϕ(x∗i , Fi(x
∗)) = 0 for all i ∈ I by Lemma 2.2. This implies ∂ϕ

∂b
(x∗, F (x∗)) = 0.

Conversely, assume that ∂ϕ
∂b

(x∗, F (x∗)) = 0 holds. From (5), we then obtain
∂ϕ
∂a

(x∗, F (x∗)) = 0, i.e. ∇ϕ(x∗i , Fi(x
∗)) = 0 for all i ∈ I. In view of Lemma 2.2,

this implies ϕ(x∗i , Fi(x
∗)) = 0 for all i ∈ I and therefore M(x∗) = 0. Hence x∗ is a

solution of NCP(F ). 2

We now give the definition of a regular point (with respect to the merit function
M) which will be central in the subsequent analysis. Similar conditions, but for
different merit functions, are considered by Pang and Gabriel [14], Moré [13], Ferris
and Ralph [4] and De Luca, Facchinei and Kanzow [3]. To this end, we partition
the index set I = {1, . . . , n} into the following subsets:

C := {i ∈ I| ∂ϕ
∂b

(xi, Fi(x)) = 0} (complementary indices),

P := {i ∈ I| ∂ϕ
∂b

(xi, Fi(x)) > 0} (positive indices),

N := {i ∈ I| ∂ϕ
∂b

(xi, Fi(x)) < 0} (negative indices).

Note that these index sets depend on the particular vector x, but that this depen-
dence is not reflected in our notation since the underlying vector will always be clear
from the context.

Definition 3.2 A point x ∈ IRn is called regular if for every nonzero z ∈ IRn with

zC = 0, zP > 0, zN < 0, (6)

there exists a vector y ∈ IRn such that

yC = 0, yP ≥ 0, yN ≤ 0 (7)

and

yTF ′(x)Tz > 0. (8)

We are now in the position to prove the main result of this section.

Theorem 3.3 Let x∗ ∈ IRn be a stationary point of M . Then x∗ solves NCP(F ) if
and only if x∗ is regular.

Proof. If x∗ ∈ IRn is a solution of NCP(F ), then P = N = ∅ by Lemma 3.1, and
hence there is no nonzero vector satisfying (6). To prove the converse result, first
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note that (5) holds since x∗ is a stationary point of M by assumption. Hence we
have

yT
∂ϕ

∂a
(x∗, F (x∗)) + yTF ′(x∗)T

∂ϕ

∂b
(x∗, F (x∗)) = 0 (9)

for every y ∈ IRn. Assume that x∗ is not a solution of NCP(F ), and define z :=
∂ϕ
∂b

(x∗, F (x∗)). By Lemma 3.1, z is a nonzero vector. Moreover, it follows from the
very definitions of the corresponding index sets that z satisfies the conditions (6).
Since x∗ is a regular point, there is a vector y ∈ IRn such that (7) and (8) hold.
From Lemma 2.3, it follows that

∂ϕ

∂a
(x∗, F (x∗))P ≥ 0,

∂ϕ

∂a
(x∗, F (x∗))N ≤ 0

and therefore

yT
∂ϕ

∂a
(x∗, F (x∗)) = yT

C
∂ϕ

∂a
(x∗, F (x∗))C + yT

P
∂ϕ

∂a
(x∗, F (x∗))P + yT

N
∂ϕ

∂a
(x∗, F (x∗))N ≥ 0

(10)
and

yTF ′(x∗)T
∂ϕ

∂b
(x∗, F (x∗)) = yTF ′(x∗)Tz > 0. (11)

From (10) and (11), however, we get a contradiction to (9). Hence x∗ is a solution
of NCP(F ). 2

In the remaining part of this section we shall give several sufficient conditions for a
stationary point to be a solution of NCP(F ).

Proposition 3.4 Let x∗ ∈ IRn be a stationary point of M and assume that the
Jacobian matrix F ′(x∗) is a P -matrix. Then x∗ is a solution of NCP(F ).

Proof. In view of Theorem 3.3, it suffices to show that x∗ is regular. Let z ∈
IRn be the vector in the Definition 3.2 of regular point. Since, by assumption,
F ′(x∗) and therefore also F ′(x∗)T is a P -matrix, there exists an index j for which
zj[F

′(x∗)Tz]j > 0. Let y ∈ IRn be the vector whose components are all 0 except for
its j-th component, which is equal to zj. It is then easy to see that this y satisfies
the conditions (7). Furthermore we also have, by the definition of y,

yTF ′(x∗)Tz = yj[F
′(x∗)Tz]j = zj[F

′(x∗)Tz]j > 0

so that also (8) holds and x∗ is a regular point. 2

Note that Proposition 3.4 gives the result by Jiang [9]. Analogously the following
corollary points out that also the result by Yamashita and Fukushima [18] is an easy
consequence of Proposition 3.4.

Corollary 3.5 Let x∗ ∈ IRn be a stationary point of M and assume that the Jaco-
bian matrix F ′(x∗) is positive definite. Then x∗ is a solution of NCP(F ).
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Proof. This follows immediately from Proposition 3.4 and the fact that every
positive definite matrix is also a P -matrix. A different proof of Corollary 3.5 can be
obtained by taking y = z in Definition 3.2 of a regular point and by using Theorem
3.3. 2

We now give a new sufficient condition which includes and generalizes the results of
Proposition 3.4 and Corollary 3.5. To this end we need some further notation. Let
us set

D := N ∪ P

and define a diagonal matrix T := diag(t1, . . . , t|D|) ∈ IR|D|×|D| by

ti :=

{
1 if i ∈ P ,
−1 if i ∈ N .

Theorem 3.6 Let x ∈ IRn and assume that the matrix TF ′(x)DDT is an S-matrix.
Then x is a regular point.

Proof. By the definition of an S-matrix, there is a vector ỹD ∈ IR|D| such that

ỹD ≥ 0 and TF ′(x)DDT ỹD > 0. (12)

Let y ∈ IRn be the unique vector defined by

yC = 0, yD = T ỹD.

Since ỹD ≥ 0, we have
yP ≥ 0 and yN ≤ 0

by the definition of the diagonal matrix T, i.e., the vector y ∈ IRn satisfies all the
conditions in (7). Now let z ∈ IRn be an arbitrary vector such that z 6= 0 and

zC = 0, zP > 0, zN < 0.

Since TT = I, it is easy to see that

yTF ′(x)Tz = yT

DF
′(x)T

DDzD

= yT

D(TT )F ′(x)T

DD(TT )zD

= (yT

DT )(TF ′(x)T

DDT )(TzD)

= ỹT

D(TF ′(x)T

DDT )(TzD)

> 0,

where the last inequality follows from (12) and the fact that (TzD) > 0. This proves
that x is a regular point. 2
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We recall that a matrix A is a P -matrix if and only if DAD is a P -matrix for every
nonsingular diagonal matrix D and that every principal submatrix of a P -matrix
is again a P -matrix. These properties, along with the fact that every P -matrix
is also an S-matrix, clearly show that Proposition 3.4 (and hence Corollary 3.5)
is a particular case of Theorem 3.6. We conclude this section by deducing from
Theorem 3.6 another sufficient criterion for a stationary point of M to be a solution
of NCP(F ). Before stating this result, recall that a vector x ∈ IRn is said to be
feasible if x ≥ 0 and F (x) ≥ 0.

Corollary 3.7 Let x∗ ∈ IRn be a feasible stationary point of M and assume that the
Jacobian matrix F ′(x∗) is strictly semimonotone. Then x∗ is a solution of NCP(F ).

Proof. Since x∗ is feasible we have, by Lemma 2.4, that N = ∅. Hence the matrix
T used in Theorem 3.6 is just the identity matrix, and the assertion follows from
Theorem 3.3 and Theorem 3.6 by noting that if F ′(x∗) is strictly semimonotone then
F ′(x∗)DD is an S-matrix, see [2, Corollary 3.9.13]. 2

4 Bound Constrained Reformulation

In many applications, in particular in those arising from economic equilibrium mod-
els, the function F of the nonlinear complementarity problem NCP(F ) is not defined
on the whole space IRn. For these problems we cannot apply the unconstrained
reformulation considered in the previous section. In these cases it may be more
appropriate to try to solve the nonlinear complementarity problem by solving the
constrained problem (2) that we recall here for convenience:

min
x≥0

M(x), (13)

where we assume that F is defined and continuously differentiable on an open neigh-
borhood of IRn

+. Obviously, x∗ ∈ IRn is a solution of NCP(F ) if and only ifM(x∗) = 0
and x∗ ≥ 0. So, again, the problem is to find a global solution of (13). Since there
are nowadays many efficient algorithms for problems of the type (13) where all it-
erates remain feasible, the reformulation (13) of NCP(F ) can be applied to those
applications where F is not defined everywhere. In choosing an algorithm for solv-
ing problem (13) one should keep in mind that if x∗ is a solution of NCP(F ), then,
since, as shown in the previous section, ∇M(x∗) = 0, x∗ is a degenerate solution
of the bound constrained optimization reformulation (13). Hence, if one wants to
guarantee a fast convergence rate, an appropriate minimization algorithm has to be
selected. A suitable candidate is, for example, the algorithm proposed by Conn,
Gould and Toint [1], as shown by Lescrenier [11]. However, whatever the algorithm
selected and in view of the nonconvexity of the merit function M (see, however, Peng
[16]), it will only be possible, in general, to find a KKT-point of (13). In this section
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we therefore investigate conditions which guarantee that every KKT-point of (13)
is a global minimum of (13) and hence (if the solution set of NCP(F ) is nonempty)
a solution of the nonlinear complementarity problem itself. The surprising result of
the analysis is that a KKT-point x∗ of (13) is a global solution if and only if x∗ is a
regular point according to Definition 3.2. In particular, all the sufficient conditions
stated in the previous section also guarantee that a KKT-point of problem (13) is a
global solution.

We start by recalling the KKT-conditions of (13), which can be written as follows:

x ≥ 0, (14)

∇M(x) ≥ 0, (15)

xi[∇M(x)]i = 0, ∀i ∈ I. (16)

Given any KKT-point x ∈ IRn, we partition the index set I into the following two
subsets:

I+ := {i ∈ I| [∇M(x)]i > 0} ,
I0 := {i ∈ I| [∇M(x)]i = 0} .

Correspondingly, we shall consider partitions of vectors as x = (xT
+, x

T
0 )T . We now

state two preliminary results. The first one is the direct counterpart of Lemma 3.1
for the bound constrained reformulation of NCP(F ).

Lemma 4.1 Let x∗ ∈ IRn be a KKT-point of (13). Then x∗ solves NCP(F ) if and
only if ∂ϕ

∂b
(x∗, F (x∗)) = 0.

Proof. If x∗ solves NCP(F ) it follows from Lemma 2.2 that ∂ϕ
∂b

(x∗, F (x∗)) = 0.
So we only have to prove the reverse direction. Since x∗ is a KKT-point of (13)
satisfying ∂ϕ

∂b
(x∗, F (x∗)) = 0 by assumption, the KKT-conditions (14) – (16) reduce,

taking into account the explicit expression (4) of the gradient of M , to

x∗ ≥ 0,
∂ϕ

∂a
(x∗, F (x∗)) ≥ 0, x∗i

∂ϕ

∂a
(x∗i , F (x∗i )) = 0 ∀ i ∈ I.

Assume there exists an index j ∈ I such that ∂ϕ
∂a

(x∗j , F (x∗j)) 6= 0. Then we have

x∗j = 0 because of (16). But by Lemma 2.5 we also have ∂ϕ
∂a

(0, Fj(x
∗)) = 0, which is

a contradiction, so that ∂ϕ
∂a

(x∗, F (x∗)) = 0. Therefore, by assumption and Lemma
2.2, we have M(x∗) = 0. This means that x∗ solves NCP(F ). 2

Lemma 4.2 Assume that x∗ ∈ IRn is a KKT-point of problem (13). Then we have
∂ϕ
∂b

(x∗i , Fi(x
∗)) ≤ 0 for all i ∈ I+.

Proof. If i ∈ I+ then, by (16), x∗i = 0. Hence the thesis follows by Lemma 2.6. 2

We can now prove the main result of this section.
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Theorem 4.3 Let x∗ ∈ IRn be a KKT-point of (13). Then x∗ solves NCP(F ) if
and only if x∗ is regular.

Proof. If x∗ ∈ IRn is a solution of NCP(F ), then P = N = ∅ by Lemma 4.1, so
that there is no nonzero vector satisfying (6). Hence x∗ is a regular point.

To prove the converse result, let x∗ ∈ IRn be a regular KKT-point of (13)
and assume, by contradiction, that x∗ is not a solution of NCP(F ). Define z :=
∂ϕ
∂b

(x∗, F (x∗)). By Lemma 4.1, z is a nonzero vector. Moreover, it follows from the
very definition of the index sets C, P and N that z satisfies the conditions (6). Since
x∗ is a regular point, there is a vector y ∈ IRn such that (7) and (8) hold. Since
x∗+ = 0 because of (16), we have z+ ≤ 0 by Lemma 4.2. In view of Definition 3.2,
we therefore also have y+ ≤ 0. Hence, recalling (15), we can write

yT∇M(x∗) = (yT

+, y
T

0 )

(
[∇M(x∗)]+
[∇M(x∗)]0

)
= (yT

+, y
T

0 )

(
[∇M(x∗)]+

0

)
= yT

+[∇M(x∗)]+ ≤ 0.

(17)
On the other hand, by the definition of regular point, we have

yTF ′(x∗)Tz > 0, (18)

and also, recalling Lemma 2.3 and (7)

yT
∂ϕ

∂a
(x∗, F (x∗)) = yT

C
∂ϕ

∂a
(x∗, F (x∗))C+yT

P
∂ϕ

∂a
(x∗, F (x∗))P +yT

N
∂ϕ

∂a
(x∗, F (x∗))N ≥ 0.

(19)
But, taking into account that

∇M(x∗) =
∂ϕ

∂a
(x∗, F (x∗)) + F ′(x∗)Tz,

relations (18) and (19) give a contradiction to (17). Hence x∗ is a solution of
NCP(F ). 2

For the sake of completeness, we restate here the following result which follows
directly from Theorem 4.3 and the corresponding results of Section 3.

Corollary 4.4 Let x∗ ∈ IRn be a KKT-point of (13). Then:
(a) If F ′(x∗) is a P -matrix, then x∗ solves NCP(F ).
(b) If F ′(x∗) is strictly semimonotone and x∗ is feasible, then x∗ solves NCP(F ).

Since x∗ is assumed to be a KKT-point of (13) in Corollary 4.4, we know that
x∗ ≥ 0. Hence the feasibility condition of x∗ in Corollary 4.4 (b) is more likely to
be satisfied than in the corresponding result (Corollary 3.7) for the unconstrained
reformulation.
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After finishing this paper it was pointed out to the authors by Solodov [17] that
Theorem 4.3 remains true also for the following bound constrained reformulation of
NCP(F ):

min
x≥0

N(x), (20)

where

N(x) :=
∑
i∈I

ψ(xi, Fi(x))

denotes the restricted implicit Lagrangian [12, 7] and

ψ(a, b) := ab+
1

2α

(
max2{0, a− αb} − a2

)
.

It is know that, for any parameter α > 0, the function N(x) is nonnegative on IRn
+

and that N(x) = 0 for x ∈ IRn
+ if and only if x solves NCP(F ), see [12, 7]. Hence

the global minimizers of (20) correspond to the solutions of NCP(F ) if the solution
set is nonempty. In order to see that Theorem 4.3 is true also for the constrained
reformulation (20), one just has to show that the function ψ enjoys properties similar
to those of the function ϕ. We omit the details here.

5 Summary and Discussion

In this paper we considered the implicit Lagrangian function and gave a necessary
and sufficient condition for a stationary point to be a global solution and, hence, a
solution of the nonlinear complementarity problem. We showed that this new con-
dition, which we called regularity, easily allows us to recover previous results and to
establish new sufficient conditions. We then considered a constrained reformulation
based on the implicit Lagrangian in which nonnegative constraints on the variables
are added to the original unconstrained reformulation. We proved that, also in this
case, regularity guarantees that a KKT-point of the new problem is a global solution.

We think that the results reported in this work indicate that, from the theoretical
point of view, the implicit Lagrangian based minimization reformulation of a nonlin-
ear complementarity problem enjoys weaker properties than other recently proposed
optimization reformulations see, e.g., [4, 9, 10], especially if compared to those based
on the Fischer-function, see [3, 5, 8] and references therein. The main drawback of
the implicit Lagrangian reformulation seems to be that a certain “degree of nonsin-
gularity” is needed in order to guarantee that every stationary point is a solution
of the nonlinear complementarity problem. So, as already noted by Yamashita and
Fukushima [18], a minimization approach based on the implicit Lagrangian cannot
handle monotone complementarity problems. This is also confirmed by the numer-
ical experience reported in [8], where convergence to points which are not solutions
was observed in practice in the case of monotone complementarity problems derived
from strictly convex quadratic problems.
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This point can be enlightened and made precise by the following analysis. We
first recall that a matrix A ∈ IRn×n is said to be column sufficient [2, p. 157] if, for
every x ∈ IRn, it satisfies the implication

(xi[Ax]i ≤ 0 for all i ∈ I) =⇒ (xi[Ax]i = 0 for all i ∈ I).

The matrix A is called row sufficient if its transpose is column sufficient.
Obviously, every positive semidefinite matrix is both row and column sufficient.

Note also that all Jacobian matrices of a (strictly) monotone function are positive
semidefinite and hence row sufficient. The following result indicates what is the
degree of nonsingularity which is needed in order to guarantee that every stationary
point of the implicit Lagrangian is a global solution. We recall that D denotes the
index set defined before Theorem 3.6.

Proposition 5.1 Let x∗ ∈ IRn be a stationary point of M such that F ′(x∗) is row
sufficient. If x∗ is not a solution of NCP(F ), then the principal submatrix F ′(x∗)DD
is singular.

Proof. Since x∗ ∈ IRn is a stationary point of M, we have

[∇M(x∗)]i =
∂ϕ

∂a
(x∗i , Fi(x

∗)) +

[
F ′(x∗)T

∂ϕ

∂b
(x∗, F (x∗))

]
i

= 0 ∀i ∈ I.

Premultiplying the ith equation by ∂ϕ
∂b

(x∗i , Fi(x
∗)) and taking into account Lemma

2.3, we obtain

∂ϕ

∂b
(x∗i , Fi(x

∗))

[
F ′(x∗)T

∂ϕ

∂b
(x∗, F (x∗))

]
i

= −∂ϕ
∂a

(x∗i , Fi(x
∗))
∂ϕ

∂b
(x∗i , Fi(x

∗)) ≤ 0

for all i ∈ I. Since F ′(x∗) is row sufficient, F ′(x∗)T is column sufficient. We therefore
obtain

∂ϕ

∂b
(x∗i , Fi(x

∗))

[
F ′(x∗)T

∂ϕ

∂b
(x∗, F (x∗))

]
i

= 0 ∀i ∈ I.

Since x∗ is not a solution of NCP(F ), we have D 6= ∅. Since ∂ϕ
∂b

(x∗, F (x∗))C = 0C
and ∂ϕ

∂b
(x∗i , Fi(x

∗)) 6= 0 for all i ∈ D by definition of the index sets C and D, we get

F ′(x∗)T

DD
∂ϕ

∂b
(x∗, F (x∗))D = 0D.

This shows that F ′(x∗)DD must be singular. 2

Since in most of the cases D = I, we see that the submatrix considered in the
previous proposition is just the Jacobian itself.

Notwithstanding the drawbacks just described, we should also note that the
limited numerical experience reported in [8, 10] seems to indicate that, when the



14 FRANCISCO FACCHINEI AND CHRISTIAN KANZOW

conditions required for a stationary point of M to solve NCP(F ) are satisfied, a
minimization approach to the numerical solution of a nonlinear complementarity
problem based on the implicit Lagrangian can be rather efficient. This may be
due to the fact that the gradient of the implicit Lagrangian enjoys the favourable
property of being piecewise smooth. It may also be interesting to point out that the
implicit Lagrangian can be generalized to handle variational inequalities [15, 19].
So only a more extensive numerical testing and comparison of theoretical properties
can settle the question of which merit function, if any, is better from the practical
point of view.
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