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Abstract We discuss the full discretization of an elliptic optimal control problem
with pointwise control and state constraints. We provide the first reliable a-posteriori
error estimator that contains only computable quantities for this class of problems.
Moreover, we show, that the error estimator converges to zero if one has convergence
of the discrete solutions to the solution of the original problem. The theory is illustrated
by numerical tests.
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1 Introduction

In this paper we consider the optimal control problem of minimizing the cost functional
J given by

J (y, u) = 1

2
‖y − yd‖2

L2(�)
+ α

2
‖u‖2

L2(�)
(1.1)
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734 A. Rösch, D. Wachsmuth

subject to

− �y + y = u in �
(1.2)

y = 0 on �,

and

ua ≤ u ≤ ub a.e. in �, (1.3)

ya ≤ y ≤ yb in �. (1.4)

Let us define the set of admissible controls by

Uad := {u ∈ L2(�) : ua ≤ u ≤ ub a.e. in �}.

In order to guarantee existence and regularity of solutions, we assume for the whole
paper:

Assumption 1 � ⊂ R
n, n ∈ {2, 3}, is a convex polygonal domain with boundary

� = ∂�; ua < ub are constants; ya, yb ∈ C(�̄), yd ∈ L2(�), α > 0.

Note that our problem and also the discretized counterparts are strictly convex.
Therefore, one has only to show the existence of a feasible point to get existence and
uniqueness of an optimal control ū and state ȳ. Under a Slater type assumption we will
state such a result in Theorem 2.3. Using the same assumption, one obtains existence
and uniqueness of solutions (ȳh, ūh) for sufficiently fine discretizations.

The distance of the solution (ȳh, ūh) to (ȳ, ū) can be estimated a-priori as ‖ūh −
ū‖L2(�) + ‖ȳh − ȳ‖H1(�) ≤ Ch2− n

2 −ε, ε ≥ 0, see e.g. [9,19]. In order to generate
adaptively refined meshes, computable and localized a-posteriori error estimators are
inevitable. For work on dual-weighted residual error indicators for state constrained
problems we refer to [3,11,12,24]. The main drawback of this method is that the
resulting error estimators are not computable since they depend on the unknown solu-
tion of the continuous problem. The only work in context of residual error estimates
is due to [16]. However, this error estimator contains also an uncomputable part that
involves the Lagrange multipliers of the continuous problem. All cited papers contain
different heuristics to replace uncomputable quantities by computable ones. Our main
goal is to derive computable error bounds.

The main difficulty to obtain a computable error bound is that the errors in the dual
quantities ‖ p̄h − p̄‖ and ‖μ̄i,h − μ̄i‖ cannot be majorized by ‖ūh − ū‖L2(�). Hence,
we completely avoid the use of the Lagrange multipliers and of the first-order neces-
sary optimality system of Theorem 2.3. In our main result Theorem 3.14 we describe
detailed all the different error contributions.

Moreover, we prove that the error estimate converges to zero if the discrete quanti-
ties converge in a certain sense, see Sect. 4. Such a result does not seem to be available
even for pure control constrained problems, see the comments at the end of that section.

Let us shortly describe the structure of our paper. Section 2 contains basic properties
of the optimal control problem and its discrete counterpart. A-posteriori error estimates

123



A-posteriori error estimates for optimal control problems 735

are derived in Sect. 3. The behavior of the error bound when the discrete solutions
converge is studied in Sect. 4. Numerical experiments are presented in Sect. 5.

2 Optimality system and discretization

2.1 The undiscretized problem

First, let us define the notion of weak solutions of the state equation (1.2). A function
y ∈ H1

0 (�) is called weak solution of (1.2) if it satisfies the weak formulation

a(y, v) = (u, v)L2(�) ∀v ∈ H1
0 (�), (2.1)

where the bilinear form a is defined as

a(y, v) = (∇ y,∇v)L2(�)n + (y, v)L2(�).

Let us define the operators A : V := H2(�) ∩ H1
0 (�) → L2(�) by A = −� + I

and its dual A∗ : L2(�) → V ∗ by

(Aw, v)L2(�) = 〈w, A∗v〉 ∀w ∈ V, v ∈ L2(�).

Lemma 2.1 For each control u ∈ L2(�) the state equation (1.2) admits a unique
weak solution y ∈ H2(�), and the mapping u �→ y(u) is continuous from L2(�) to
H2(�), i.e. ‖y‖H2(�) ≤ C0‖u‖L2(�).

For the proof we refer to Grisvard [10].
Throughout the article we will assume the existence of a Slater point:

Assumption 2 There exists û ∈ Uad and τ ∈ R, τ > 0, such that the associated state
ŷ satisfies ya + τ ≤ ŷ ≤ yb − τ .

Please note, that this assumption implies that the state constraints cannot be active
on �, i.e. it holds ya < −τ and τ < yb on � since ŷ = 0 on � due to the Dirichlet
boundary conditions.

Additionally, Assumption 2 implies that the feasible set of the control problem is
non-empty. Due to convexity, we get immediately the existence and uniqueness of
solutions.

Lemma 2.2 Under Assumption 2, the optimal control problem (1.1)–(1.4) admits a
unique solution (ȳ, ū).

The solution of the optimal control problem can be characterized by means of first-
order necessary optimality conditions. Due to Assumption 2, one can prove existence of
Lagrange multipliers, see e.g. [6,23]. In the following, let us denote by M(�) = C(�̄)∗
the space of regular Borel measures.
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736 A. Rösch, D. Wachsmuth

Theorem 2.3 Let (ȳ, ū) be a solution of the problem (1.1)–(1.3). Then there are
μ̄a, μ̄b ∈ M(�) and p̄ ∈ W 1,s(�), s < n

n−1 , such that the following system is
satisfied, which consists of adjoint equation

−� p̄ + p̄ = ȳ − yd − μ̄a + μ̄b in �,

p̄ = 0 on �,
(2.2)

complementarity conditions for μ̄a and μ̄b

μ̄i ≥ 0, 〈μ̄i , ȳ − yi 〉 = 0 i ∈ {a, b}, (2.3)

and the variational inequality

(αū + p̄, u − ū)L2(�) ≥ 0 ∀u ∈ Uad . (2.4)

For the proof we refer to Casas [6].

2.2 Discretization

Let us fix the assumptions on the discretization of problem (1.1)–(1.4) by finite
elements. First let us specify the notation of regular meshes. Each mesh Th consists
of closed cells T (for example triangles, tetrahedra, etc. ) such that �̄ = ⋃

T ∈Th
T

holds. We assume that the mesh is regular in the following sense: for different cells
Ti , Tj ∈ Th, i �= j , the intersection Ti ∩ Tj is either empty or a node, an edge, or a
face of both cells, i.e. hanging nodes are not allowed. Let us denote the size of each
cell by hT = diam T and define h(Th) = maxT ∈Th hT . For each T ∈ Th , we define
RT to be the diameter of the largest ball contained in T .

We will work with a family of regular meshes F = {Th}h>0, where the meshes are
indexed by their mesh size, i.e. h(Th) = h. We assume in addition that there exists a
positive constant R such that

hT

RT
≤ R

holds for all cells T ∈ Th and all h > 0. With each mesh Th ∈ F , we associate
the finite-dimensional space Vh ⊂ H1

0 (�) that consists of polynomial finite element
functions of degree l ≥ 1.

Furthermore, let us denote by Uh ⊂ L2(�) the corresponding control discretiza-
tion. Here, we have the following three possibilities in mind: discretization of controls
by piecewise constant or linear finite element functions, or the choice Uh = L2(�),
which corresponds to the so-called variational discretization introduced by Hinze [14].

Let us now introduce the discretized version of the optimal control problem (1.1)–
(1.4). This problem is given as: Find yh ∈ Vh and uh ∈ Uh that minimize

min J (yh, uh) = 1

2
‖yh − yd‖2

L2(�)
+ α

2
‖uh‖2

L2(�)
(2.5)
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A-posteriori error estimates for optimal control problems 737

subject to the discretized state equation

a(yh, vh) = (uh, vh)L2(�) ∀vh ∈ Vh, (2.6)

the control constraints

ua ≤ uh ≤ ub a.e. in �, (2.7)

and the discrete state constraints

ya(xi ) ≤ yh(xi ) ≤ yb(xi ) for i = 1, . . . , Kh . (2.8)

Here, we denoted by xi , i = 1, . . . , Kh , the nodes of the mesh Th .
In the sequel, we will rely on the following assumption:

Assumption 3 We assume that the discrete optimal control problem admits a unique
solution.

Let us now discuss sufficient conditions such that this assumption is fulfilled. We
first state some auxiliary results.

Lemma 2.4 Let yh and yh be the solution of (2.1) and (2.6) for the control uh. Let
CM > 1 be given such that maxT ∈Th hT ≤ CM minT ∈Th hT is satisfied. Then the
following L∞-error estimate holds

‖yh − yh‖L∞(�) ≤ ch‖uh‖L2(�).

For a proof, we refer to Braess [4].
Let us denote by 	h the L2(�)-projection onto Uh for piecewise constant func-

tions. For piecewise linear functions one can use a quasi-interpolation, see [20]. In the
case of the variational discretization we take 	h = I . In all three cases, this operator
has the following known approximation property.

Lemma 2.5 There is a constant cI independent of h such that

‖u − 	hu‖L2(�) ≤ cI h‖∇u‖L2(�)n

is fulfilled for all u ∈ H1(�).

Regarding existence of solutions of the discrete optimal control problem, we have
the following result.

Lemma 2.6 Let CM > 1 be given and maxT ∈Th hT ≤ CM minT ∈Th hT . Then, there
exists a mesh size h0 > 0 such that for all h ≤ h0 a feasible point of the discretized
problem exists.
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738 A. Rösch, D. Wachsmuth

Proof We set ûh = 	hû, where û is the Slater point from Assumption 2. The function
ûh satisfies the control constraints. It remains to check the state constraints. Let us
denote the solutions of the discrete and continuous state equation associated to ûh by
ŷh and ŷh , respectively. We find

ŷh(xi ) − ya(xi ) ≥ τ − |ŷ(xi ) − ŷh(xi )| − |ŷh(xi ) − ŷh(xi )|
≥ τ − ‖ŷ − ŷh‖L∞(�) − ‖ŷh − ŷh‖L∞(�)

Here, ‖ŷ − ŷh‖L∞(�) becomes small for small h because of Lemmas 2.5 and 2.1. The
term ‖ŷh − ŷh‖L∞(�) reflects the pointwise discretization error, which tends to zero
for h → 0 due to Lemma 2.4. Consequently, for sufficiently small h the discrete lower
state constraints are fulfilled. Analogously, one shows that the upper state constraint
of the discrete problem is satisfied for h small enough. Hence, the point (ŷh, ûh) is
admissible for the discrete problem. ��

As for the continuous problem, we get existence and uniqueness of solutions of the
discrete problem.

Lemma 2.7 Let Assumption 2 be satisfied and maxT ∈Th hT ≤ CM minT ∈Th hT . Let
the mesh-size satisfy h < h0. Then the optimal control problem (2.5)–(2.8) admits a
uniquely determined solution (ȳh, ūh) for all meshes with mesh-size h < h0.

Proof Due to Lemma 2.6 the feasible set of the discrete problem is non-empty for
h < h0. By standard arguments one concludes the existence of a unique solution of
this problem. ��

Remark 2.8 Let us note that the existence of a feasible point for the discrete prob-
lem is not guaranteed for arbitrary meshes with h < h0. This is due to the fact that
a-priori L∞-error estimates are derived using inverse inequalities. To apply standard
results, the relation between minimal and maximal element size must be limited by
some constant CM . Another possibility are meshes for which a discrete maximum
principle holds, see [8]. Usually, sequences of adaptive refined grids do not satisfy
these requirements. Here it is an open question, how the existence of feasible points
for the discrete problem can be maintained or regained during adaptive refinement.

Analogous to the continuous problem, one finds that the solution of the discrete
problem can be characterized by a first-order optimality system.

Theorem 2.9 Let (ȳh, ūh) be a solution of the problem (2.5)–(2.8). Then there are
μ̄a,h, μ̄b,h ∈ M(�) and p̄h ∈ Vh, such that the following system is satisfied, which
consists of discrete adjoint equation

a(vh, p̄h) = (ȳh − yd , vh)L2(�) + 〈−μ̄a,h + μ̄b,h, vh〉 ∀vh ∈ Vh, (2.9)
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A-posteriori error estimates for optimal control problems 739

complementarity condition

μ̄i,h =
Kh∑

j=1

μ̄
j
i,hδ(x j ), μ̄

j
i,h ≥ 0,

μ̄
j
i,h(ȳh(x j ) − yi (x j )) = 0, i ∈ {a, b}, j ∈ {1, . . . , Kh}, (2.10)

and variational inequality

(αūh + p̄h, uh − ūh)L2(�) ≥ 0 ∀uh ∈ Uh ∩ Uad .

Since the state constraints for the discrete problem were prescribed in the mesh nodes,
the Lagrange multipliers μ̄a,h and μ̄b,h are positive linear combinations of Dirac
measures concentrated in the mesh nodes. Due to this representation, the complemen-
tarity condition in (2.10) can be written as

〈μ̄i,h, ȳh − yi 〉 = 0 i ∈ {a, b}.

3 A-posteriori error estimates

In this section, we will derive an upper bound for the error ‖ūh − ū‖L2(�). In order to
avoid the difficulties mentioned in the introduction, we will not work with the first-
order optimality system given by Theorem 2.3. We will work with the optimality of ū
instead, i.e. J (ȳ, ū) ≤ J (y, u) for all (y, u) satisfying the constraints (1.2)–(1.4).

Let us suppose that we have computed the solution (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h) of the
discrete problem. At first, we have to find a pair (ỹ, ũ) ≈ (ȳh, ūh) that is feasible for
the continuous problem, which would give J (ȳ, ū) ≤ J (ỹ, ũ).

3.1 Construction of feasible control

Let us first define an auxiliary state yh as the weak solution of the state equation with
right-hand side ūh , i.e.

a(yh, v) = (ūh, v)L2(�) ∀v ∈ H1
0 (�). (3.1)

Lemma 3.1 Let û denote the Slater point as given by Assumption 2. Let yh denote
the solution of (3.1). Let us define the violation of the state constraints by

esc := max(‖(ȳh − ya)−‖L∞(�), ‖(yb − ȳh)−‖L∞(�)). (3.2)

Then the state ỹ := (1 − σ)yh + σ ŷ associated to the control ũ := (1 − σ)ūh + σ û
is admissible for the state constraints (1.4) if σ is chosen as

σ = ‖ȳh − yh‖L∞(�) + esc

τ + ‖ȳh − yh‖L∞(�) + esc
.

123



740 A. Rösch, D. Wachsmuth

Proof We find

(1 − σ)yh + σ ŷ ≥ (1 − σ)(ȳh − ‖ȳh − yh‖L∞(�)) + σ(ya + τ)

≥ ya + τ + (1 − σ)(ȳh − ‖ȳh − yh‖L∞(�) − ya − τ)

≥ ya + τ + (1 − σ)(−‖(ȳh − ya)−‖L∞(�) − ‖ȳh − yh‖L∞(�) − τ)

≥ ya + τ − (1 − σ)(τ + ‖ȳh − yh‖L∞(�) + esc),

which implies (1 − σ)yh + σ ŷ ≥ ya for 1 − σ ≤ τ
τ+‖ȳh−yh‖L∞(�)+esc

. An analogous

discussion for the upper state constraint yields the claim. ��
With the notation of the previous lemma, we have

ũ − ūh = σ(û − ūh), (3.3)

which allows to estimate the difference ‖ũ − ūh‖L2(�) provided upper bounds for σ

are available. The difference in the states ỹ − ȳh can be written as

ỹ − ȳh = ỹ − yh + yh − ȳh = σ(ŷ − yh) + yh − ȳh

= σ(ŷ − ȳh) + (1 − σ)(yh − ȳh). (3.4)

Remark 3.2 Please note, that we did not use feasibility of ȳh for the discrete optimi-
zation problem. Hence, Lemma 3.1 is valid without this assumption, which means it is
also applicable if the discrete optimization problem is solved for instance by penalty
methods.

Remark 3.3 If the discrete space Vh is the space of piecewise linear polynomial func-
tions, then we can replace the constraint violation esc by the interpolation error of the
state constraint bounds. Let Ih denote the Lagrange (or nodal) interpolation operator.
Then the discrete state constraints (2.8) imply Ih ya ≤ ȳh ≤ Ih yb on �̄. And we can
estimate in the previous proof

(1 − σ)yh + σ ŷ ≥ (1 − σ)(ȳh − ‖ȳh − yh‖L∞(�)) + σ(ya + τ)

≥ ya + τ + (1 − σ)(Ih ya − ‖ȳh − yh‖L∞(�) − ya − τ),

which shows that we can replace esc by

ẽsc := max(‖(Ih ya − ya)−‖L∞(�), ‖(yb − Ih yb)
−‖L∞(�)).

If the functions ya, yb can be exactly represented by piecewise linear functions then
ẽsc = 0. This is in particular the case if both state constraints are constant functions.

Remark 3.4 The result of Lemma 3.1 remains valid, if one replaces esc by

êsc := max(ess sup(ya − yh), ess sup(yh − yb)).
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A-posteriori error estimates for optimal control problems 741

If yh is strictly between the state constraints, then êsc is negative. Hence, if êsc ≤
−‖yh − yh‖L∞(�) then one can choose σ = 0. This allows to omit the L∞(�)-
error of the states in the case of inactive state constraints or if no state constraints are
prescribed.

Remark 3.5 The application of Lemma 3.1 requires the explicite knowledge of the
Slater point (ŷ, û). For simple problems such a point can be determined by hand.
If the underlying elliptic equation does not permit this, one can use the following strat-
egy. First, one computes a discrete Slater point (ŷh, ûh) satisfying the discrete state
equation, the control constraints, and strict discrete state constraints ya(xi ) + τh ≤
ŷh(xi ) ≤ yb(xi ) − τh, i = 1, . . . , Kh , with some fixed τh > 0. Secondly, one has to
compute constant-free error estimates of the type ‖ŷh − ŷh‖L∞(�) ≤ ε̂, where ŷh is the
solution of the state equation associated to ûh . This can be achieved using a-posteriori
enclosure methods, see Plum [22, Section 4] for a detailed description. If ε̂ < τh holds
then (ŷh, ûh) is the wanted Slater point, where the function ŷh remains unknown, but
the distance to yh can be bounded by ‖yh − ŷh‖L∞(�) ≤ ‖yh − ŷh‖L∞(�) + ε̂.

However, if one is willing to accept the assumption of existence of an unknown
Slater point, then the estimate of Lemma 3.1 can be transformed into σ ≤ c (‖yh −
yh‖L∞(�) + esc) with a positive constant c > 0. Proceeding this way, the Slater point
(ŷ, û) as well as the distance τ are hidden in some uniformly bounded constant in the
resulting error estimator.

3.2 Estimate of error in the control variational inequality

As one ingredient of the final error estimator we will develop an error estimator for the
error in the variational inequality (2.4). We will comment on the relation to existing
work at the end of Sect. 4.

At first, let us define the following subsets of �

�0,h :=
{

x ∈ � : ūh(x),− 1

α
p̄h(x) ∈ (ua, ub)

or ūh(x) = ua, αūh(x) + p̄h(x) < 0

or ūh(x) = ub, αūh(x) + p̄h(x) > 0
}

(3.5)

and

�a,h :=
{

x ∈ � : ūh(x) ∈ (ua, ub),− 1

α
p̄h(x) ≤ ua

}

�b,h :=
{

x ∈ � : ūh(x) ∈ (ua, ub),− 1

α
p̄h(x) ≥ ub

}

.

(3.6)

The set �0,h contains the points, where ūh and − 1
α

p̄h are strict between the bounds,
and where ūh is at the bound but αūh + p̄h has the wrong sign. The sets �a,h and �b,h

contain points, where ūh is strictly between the bounds, but − 1
α

p̄h is not feasible with
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742 A. Rösch, D. Wachsmuth

respect to these bounds. In addition, we have the following properties

αūh + p̄h ≥ α(ūh − ua) > 0 on �a,h,

αūh + p̄h ≤ α(ūh − ub) < 0 on �b,h .
(3.7)

Lemma 3.6 Let ūh ∈ Uad and p̄h ∈ L2(�) be given. Let the sets �0,h,�a,h, and
�b,h be defined according to (3.5) and (3.6). Then for each u ∈ Uad it holds

(αūh + p̄h, u − ūh) ≥ (χ�0,h (αūh + p̄h), u − ūh)

+ (χ�a,h (αūh + p̄h), ua − ūh) + (χ�b,h (αūh + p̄h), ub − ūh)

Proof The proof follows directly from the definition of the sets, and the properties of
ūh and αūh + p̄h on these sets, confer also (3.7). ��

In the derivation of the a-posteriori error estimate in Sect. 3.4, we will use the
following implication of the previous lemma.

Lemma 3.7 Let ūh ∈ Uad and p̄h ∈ L2(�) be given. Let the sets �0,h,�a,h, and
�b,h be defined according to (3.5) and (3.6). Then for each u ∈ Uad it holds

(αūh + p̄h, u − ūh) ≥ −α

4
‖u − ūh‖2

L2(�)
− ‖ηvi‖2

L2(�)
,

where ηvi = ηvi(ūh, p̄h) ∈ L2(�) is given by

η2
vi = 1

α
χ�0,h (αūh + p̄h)2 + χ�a,h (αūh + p̄h)(ūh − ua)

+χ�b,h (αūh + p̄h)(ūh − ub). (3.8)

Proof The claim follows directly from the definition of ηvi and the inequality

(χ�0,h (αūh + p̄h), u − ūh) ≥ −α

4
‖u − ūh‖2

L2(�)
− 1

α
‖αūh + p̄h‖2

L2(�0,h)
.

��
The function ηvi will serve as a localizable error estimator for the error in the

variational inequality.

Remark 3.8 Let us comment on the situation when the variational discretization is
applied. Then by construction of this discretization concept it holds (αūh + p̄h, u −
ūh) ≥ 0 for all u ∈ Uad if (ūh, p̄h) are the optimal discrete control and adjoint. Then
ηvi = 0 in this case.

Remark 3.9 If no control constraints are prescribed, then it holds η2
vi = 1

α
(αuh + ph)2.

If (ūh, p̄h) are the optimal discrete control and adjoint, and Vh ⊂ Uh then it holds
ηvi = 0.
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A-posteriori error estimates for optimal control problems 743

3.3 Estimate of cost functional values with respect to the admissible point

Due to the feasibility of (ỹ, ũ) the inequality 0 ≤ J (ỹ, ũ) − J (ȳ, ū) holds. Now, we
will derive an upper bound for J (ỹ, ũ) − J (y, u) for arbitrary feasible pairs (y, u) in
terms of the distance ‖u − ũ‖L2(�) and of residuals of the optimality system.

Lemma 3.10 Let (ỹ, ũ) be given by Lemma 3.1. Then it holds for all (y, u) satisfying
(1.2)–(1.4)

J (ỹ, ũ) − J (y, u) ≤ −α

4
‖u − ũ‖2

L2(�)
+ ηa‖u − ũ‖L2(�) + ηb,

where ηa, ηb are real numbers depending on (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h), (ỹ, ũ), and the
data of the problem but not on (y, u), see below (3.13).

Proof Let us introduce the abbreviation r := ‖u − ũ‖L2(�).
Since ỹ and y are solutions to the elliptic equations for right-hand sides ũ and u

respectively, we have by Lemma 2.1 the regularity ỹ, y ∈ H2(�) ∩ H1
0 (�). Since we

have p̄h ∈ Vh ⊂ L2(�) the dual product 〈Aỹ − Ay, p̄h〉 is well-defined.
Let us write the differences of the cost functional as

J (ỹ, ũ) − J (y, u)= 1

2
‖ỹ − yd‖2

L2(�)
+ α

2
‖ũ‖2

L2(�)
− 1

2
‖y − yd‖2

L2(�)
− α

2
‖u‖2

L2(�)

+〈Aỹ − ũ − Ay + u, p̄h〉
= −1

2
‖ỹ − y‖2

L2(�)
− α

2
‖ũ − u‖2

L2(�)
+ (αũ + p̄h, ũ − u)

+〈−A∗ p̄h + ȳh − yd , ỹ − y〉 + (ỹ − ȳh, ỹ − y)

≤ −α

2
r2 + 1

2
‖ỹ − ȳh‖2

L2(�)
+ (αũ + p̄h, ũ − u)

+〈−A∗ p̄h + ȳh − yd , ỹ − y〉. (3.9)

Now we will estimate the third and fourth addend on the right-hand side. By Lemma 3.7
there exists ηvi ∈ L2(�) such that

(αūh + p̄h, u − ūh)≥ − α

4
‖u − ūh‖2

L2(�)
− ‖ηvi‖2

L2(�)
∀u ∈ L2(�) : ua ≤ u ≤ ub.

We then obtain

(αũ + p̄h, ũ − u) = α(ũ − ūh, ũ − u) + (αūh + p̄h, ũ − ūh) + (αūh + p̄h, ūh − u)

≤ α(ũ − ūh, ũ − u) + (αūh + p̄h, ũ − ūh)

+ α

4
‖u − ūh‖2

L2(�)
+ ‖ηvi‖2

L2(�)

≤ α

4
r2 + 3

2
α‖ũ − ūh‖L2(�) r + α

4
‖ũ − ūh‖2

L2(�)

+ (αūh + p̄h, ũ − ūh) + ‖ηvi‖2
L2(�)

. (3.10)
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Due to the complementarity condition (2.10) on μ̄a,h and the feasibility ya ≤ y it
holds

〈μ̄a,h, ỹ − y〉 = 〈μ̄a,h, ỹ − ȳh + ȳh − ya + ya − y〉
= 〈μ̄a,h, ỹ − ȳh〉 + 〈μ̄a,h, ya − y〉
≤ 〈μ̄a,h, ỹ − ȳh〉.

For analogous reasons we find

−〈μ̄b,h, ỹ − y〉 ≤ −〈μ̄b,h, ỹ − ȳh〉.

Thus, the fourth addend in (3.9) can be estimated as

〈−A∗ p̄h + ȳh − yd , ỹ − y〉
= 〈−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h, ỹ − y〉 + 〈μ̄a,h, ỹ − y〉 − 〈μ̄b,h, ỹ − y〉
≤ 〈−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h, ỹ − y〉 + 〈μ̄a,h − μ̄b,h, ỹ − ȳh〉
≤ C0‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�)r + 〈μ̄a,h − μ̄b,h, ỹ − ȳh〉,

(3.11)

where we applied the H2(�)-regularity result Lemma 2.1 in the last step.
Combining (3.9)–(3.11), we can estimate the difference of the values of the cost

functional as

J (ỹ, ũ) − J (y, u) ≤ −α

4
r2

+
(

3

2
α‖ũ − ūh‖L2(�) + C0‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�)

)

r

+ 1

2
‖ỹ − ȳh‖2

L2(�)
+ α

4
‖ũ − ūh‖2

L2(�)
+ (αūh + p̄h, ũ − ūh)

+‖ηvi‖2
L2(�)

+ 〈μ̄a,h − μ̄b,h, ỹ − ȳh〉, (3.12)

which yields the claim with

ηa := 3

2
α‖ũ − ūh‖L2(�) + C0‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�)

ηb := 1

2
‖ỹ − ȳh‖2

L2(�)
+ α

4
‖ũ − ūh‖2

L2(�)
+ (αūh + p̄h, ũ − ūh)

+‖ηvi‖2
L2(�)

+ 〈μ̄a,h − μ̄b,h, ỹ − ȳh〉. (3.13)

��
Remark 3.11 If one uses interior point methods to solve the discretized problem, then
the discrete complementarity condition (2.10), in particular 〈μ̄i,h, ȳh − yi 〉 = 0, i ∈
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{a, b}, is not satisfied in general. It turns out that the estimate of the previous lemma
holds true if ηb is replaced by η̃b given by

η̃b := ηb + 〈μ̄a,h, ȳh − ya〉 − 〈μ̄b,h, ȳh − yb〉,

which takes the violation of the discrete complementarity condition into account.

Remark 3.12 The proof of Lemma 3.10 relies on the H2(�)-regularity of the elliptic
equation. If the mapping u �→ y(u) is continuous from L2(�) to W 1,p(�), p > n,
instead, then the result of the Lemma has to be modified in the following way. The
duality pairing appearing in (3.11) has to estimated by

〈−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h, ỹ − y〉
≤ ‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖W−1,p′

(�)
‖ỹ − y‖W 1,p(�)

≤ C̃0‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖W−1,p′
(�)

‖ũ − u‖W 1,p(�),

with 1/p + 1/p′ = 1. In this way, all the following results stay valid if the residual in
the adjoint equation is measured in the W −1,p′

(�)-norm instead of the H−2(�)-norm.

3.4 Upper bound for the error in the control and state

Using the solution of the continuous problem as test functions in Lemma 3.10, we get
directly an estimate of the error in the controls.

Lemma 3.13 With the notations of the previous Lemma 3.10, it holds

‖ūh − ū‖2
L2(�)

≤ 2‖ũ − ūh‖2
L2(�)

+ 32

α2 η2
a + 16

α
ηb.

Proof By Lemma 3.10, optimality of (ȳ, ū), and feasibility of (ỹ, ũ), we obtain

0 ≤ J (ỹ, ũ) − J (y, u) ≤ −α

4
‖ū − ũ‖2

L2(�)
+ ηa‖ū − ũ‖L2(�) + ηb,

which gives directly

‖ū − ũ‖2
L2(�)

≤ 16

α2 η2
a + 8

α
ηb.

The claim follows with ‖ūh − ū‖2
L2(�)

≤ 2(‖ũ − ūh‖2
L2(�)

+ ‖ū − ũ‖2
L2(�)

). ��

Here, the quantity η2
a can be bounded from above, cf. (3.13), by

η2
a ≤ 9

2
α2‖ũ − ūh‖2

L2(�)
+ 2C2

0‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖2
H−2(�)

.

(3.14)
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Now we have everything at hand to derive the upper bound for the discretization
error of control and state. Let us emphasize that all quantities on the right-hand side
of the error estimate (3.15) are computable. In particular, the right-hand side does not
contain any component of the solution (ȳ, ū, p̄, μ̄a, μ̄b) of the continuous optimality
system.

Theorem 3.14 Let (ȳ, ū) be the solution of the continuous optimal control problem
(1.1)–(1.4). Let (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h) be the solution of the discrete problem satis-
fying (2.7)–(2.8), (2.10).

Then there is a constant c > 0 that depends only on �, A, τ such that

‖ūh − ū‖2
L2(�)

+ ‖ȳh − ȳ‖2
L∞(�) ≤ c α−1

(
r (1)

state,L∞ + r (2)
state,L∞ + r2

state,L2

+α−1 r2
adjoint,L2 + r2

control,L2 + estate

)
(3.15)

where r (1)
state,L∞ is the scaled L∞-error of the states given by

r (1)
state,L∞ =

(
max

(
(αūh + p̄h, û − ūh) + 〈μ̄a,h − μ̄b,h, ŷ − ȳh〉, 0

)

+‖μ̄a,h − μ̄b,h‖M(�)

)
‖yh − ȳh‖L∞(�),

r (2)
state,L∞ is the squared and scaled L∞-error of the states given by

r (2)
state,L∞ =

(
α‖û − ūh‖2

L2(�)
+ ‖ŷ − ȳh‖2

L2(�)

)
‖yh − ȳh‖2

L∞(�),

rstate,L2 is the L2-error of the states given by

rstate,L2 = ‖yh − ȳh‖L2(�),

radjoint,L2 is the H−2(�)-residual in the adjoint equation

radjoint,L2 = ‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�),

rcontrol,L2 is the L2(�)-residual in the variational inequality defined by

rcontrol,L2 = ‖ηvi‖L2(�), where ηvi = ηvi(ūh, p̄h)is given by Lemma 3.7,

and estate is the weighted violation of the state constraints given by

estate = max
(
(αūh + p̄h, û − ūh) + 〈μ̄a,h − μ̄b,h, ŷ − ȳh〉, 0

)
esc

+
(
α‖û − ūh‖2

L2(�)
+ ‖ŷ − ȳh‖2

L2(�)

)
e2

sc,

where esc is defined in Lemma 3.1, Eq. (3.2).
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Proof Let us first combine the results of Lemma 3.10 with the estimate of η2
a in (3.14)

and the definition of ηb in Lemma 3.13, Eq. (3.13), to obtain

‖ūh − ū‖2
L2(�)

≤ 150‖ũ − ūh‖2
L2(�)

+64C2
0

α2 ‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖2
H−2(�)

+16

α

(
1

2
‖ỹ − ȳh‖2

L2(�)
+ (αūh + p̄h, ũ − ūh) + ‖ηvi‖2

L2(�)

+ 〈μ̄a,h − μ̄b,h, ỹ − ȳh〉
)

.

At first, we have by Lemma 3.1, cf. (3.3),

(αūh + p̄h, ũ − ūh) = (αūh + p̄h, û − ūh)σ

and

‖ũ − ūh‖2
L2(�)

= σ 2‖û − ūh‖2
L2(�)

.

With the help of (3.4) we get

〈μ̄a,h − μ̄b,h, ỹ − ȳh〉 = σ 〈μ̄a,h − μ̄b,h, ŷ − ȳh〉 + (1 − σ)〈μ̄a,h − μ̄b,h, yh − ȳh〉
≤ σ 〈μ̄a,h − μ̄b,h, ŷ − ȳh〉

+ ‖μ̄a,h − μ̄b,h‖M(�)‖yh − ȳh‖L∞(�).

Similarly, we can estimate using σ ≥ 0

‖ỹ − ȳh‖2
L2(�)

= ‖σ(ŷ − ȳh) + (1 − σ)(yh − ȳh)‖2
L2(�)

≤ 2
(
σ 2‖ŷ − ȳh‖2

L2(�)
+ ‖yh − ȳh‖2

L2(�)

)
.

Hence there is a constant c > 0 depending only on �, A such that

‖ūh − ū‖2
L2(�)

≤ cα−1
{
α‖û − ūh‖2

L2(�)
σ 2

+α−1‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖2
H−2(�)

+‖ŷ − ȳh‖2
L2(�)

σ 2 + ‖yh − ȳh‖2
L2(�)

+ (αūh + p̄h, û − ūh)σ + ‖ηvi‖2
L2(�)

+〈μ̄a,h − μ̄b,h, ŷ − ȳh〉σ + ‖μ̄a,h −μ̄b,h‖M(�)‖yh − ȳh‖L∞(�)

}
.

(3.16)

The value of σ can be bounded according to Lemma 3.1 by

σ ≤ τ−1(‖yh − ȳh‖L∞(�) + esc),
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748 A. Rösch, D. Wachsmuth

where esc is the state constraint violation defined in (3.2). Using this estimate in (3.16),
the claim follows. ��

In Sect. 4, we will prove convergence to zero of the upper bound (3.15) if the
discrete quantities converge in some sense to solutions of the optimality system in
Theorem 2.3.

3.5 Localized a-posteriori error estimates

In the previous sections, we developed error bounds for the discretization error. These
bounds contain terms that are still not fully accessible. In particular, it needs to be spec-
ified, how the L2- and L∞-discretization errors of the states as well as the residual of
the adjoint equation can be calculated.

For the L2-error of the states, we have the following result, which is a standard
estimate, see e.g. [5]. Recall that ȳh is the solution of the discretized equation (2.6)
with right-hand side ūh , while yh is the solution of the elliptic equation (3.1) with the
same right-hand side ūh .

Lemma 3.15 There is a constant c > 0 depending on �, the polynomial degree l,
and the shape regularity of the triangulation such that

‖yh − ȳh‖L2(�) ≤ c η2
state,L2

with η2
state,L2 = ∑

T ∈Th
η2

T,state,L2 and

η2
T,state,L2 =

(

h4
T ‖�ȳh − ȳh + ūh‖2

L2(T )
+ h3

T

∥
∥
∥
∥

[
∂ ȳh

∂n

]∥
∥
∥
∥

2

L2(∂T \�)

)

.

Here,
[

∂ ȳh
∂n

]
denotes the jump of the normal derivative across interior edges.

To estimate the L∞-error we use the following reliable and efficient error estimator
from [21].

Lemma 3.16 There is a constant c > 0 depending on �, the polynomial degree l,
and the shape regularity of the triangulation such that

‖yh − ȳh‖L∞(�) ≤ c ηstate,L∞

with ηstate,L∞ = maxT ∈Th ηT,state,L∞ and

ηT,state,L∞ = | log hmin|2
(

h2
T ‖�ȳh − ȳh + ūh‖L∞(T ) + hT

∥
∥
∥
∥

[
∂ ȳh

∂n

]∥
∥
∥
∥

L∞(∂T \�)

)

,

where hmin := minT ∈Th hT .

It remains to describe the estimation of the H−2-residual of the adjoint equation.
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Lemma 3.17 There is a constant c > 0 depending on �, the polynomial degree l,
and the shape regularity of the triangulation such that

‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�) ≤ c η2
adjoint,L2

with η2
adjoint,L2 = ∑

T ∈Th
η2

T,adjoint,L2 and

η2
T,adjoint,L2 =

(

h4
T ‖� p̄h − p̄h + ȳh − yd‖2

L2(T )
+ h3

T

∥
∥
∥
∥

[
∂ p̄h

∂n

]∥
∥
∥
∥

2

L2(∂T \�)

)

.

Proof For a test function φ ∈ V = H1
0 (�) ∩ H2(�) we will employ the Lagrange

interpolation Ihφ, which has the property φ(xi ) = (Ihφ)(xi ) for all nodes xi . Due to
the assumptions on Vh we get Ihφ ∈ Vh . Since p̄h solves the discrete adjoint equation
(2.9), we have

‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�)

= sup
φ∈V, ‖φ‖H2(�)

=1
〈−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h, φ〉

= sup
φ∈V, ‖φ‖H2(�)

=1
〈−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h, φ − Ihφ〉.

The multipliers μ̄a,h and μ̄b,h are linear combinations of Dirac measures concentrated
in the mesh nodes, which implies

〈−μ̄a,h + μ̄b,h, φ − Ihφ〉 = 0.

Hence, we obtain

‖−A∗ p̄h + ȳh − yd − μ̄a,h + μ̄b,h‖H−2(�)

= sup
φ∈V, ‖φ‖H2(�)

=1
〈−A∗ p̄h + ȳh − yd , φ − Ihφ〉.

Following the arguments in [2] we find the local representation for the residual. ��
Although this result of [2] is formulated only for n = 2, l = 1, and a single Dirac

measure, the proofs carry over one-to-one to the case considered here: n ∈ {2, 3},
general FE-space Vh with l ≥ 1, right-hand side consists of linear combination of
Dirac measures concentrated in the nodes.

In these lemmata, we cited only the reliability estimates (i.e. upper error bounds).
For all three estimators also lower error bounds (efficiency estimates) are available.

The localization of the estimator of the error in the variational inequality is an
obvious choice. Let us define

η2
T,control,L2 := ηvi|T ,

where ηvi = η(ūh, p̄h) is the function constructed in Lemma 3.7.
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Combining the estimates of this section with the result of Theorem 3.14, we get
our main result, which is the localized a-posteriori error estimate.

Theorem 3.18 Let (ȳ, ū) be the solution of the continuous optimal control problem
(1.1)–(1.4). Let (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h) satisfy (2.7)–(2.8), (2.10).

Then there is a constant c > 0 depending on �, τ , and the shape regularity of the
triangulation, and a weight ω∞,h > 0 such that

‖ūh − ū‖2
L2(�)

+ ‖ȳh − ȳ‖2
L∞(�) ≤ c α−1

(
η2

L2 + ω∞,h ηstate,L∞ + estate

)

with η2
L2 = ∑

T ∈Th
η2

T,L2 and

η2
T,L2 = η2

T,state,L2 + η2
T,control,L2 + α−1η2

T,adjoint,L2 .

The weight ω∞,h depends on the discrete quantities (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h). The map-
ping from (ȳh, ūh, p̄h, μ̄a,h, μ̄b,h) to ω∞,h is bounded from C(�̄)× L2(�)× L2(�)×
M(�) × M(�) to R.

Proof The result follows directly from Theorem 3.14 and Lemmata 3.15, 3.16, and
3.17. The quantity ω∞,h is given by

ω∞,h = max
(
(αūh + p̄h, û − ūh)+ 〈μ̄a,h − μ̄b,h, ŷ − ȳh〉, 0

)+ ‖μ̄a,h − μ̄b,h‖M(�)

+
(
‖û − ūh‖2

L2(�)
+ ‖ŷ − ȳh‖2

L2(�)

)
‖yh − ȳh‖L∞(�),

cf. the definition of r (1)
state,L∞ and r (2)

state,L∞ in Theorem 3.14. The mapping ūh �→ yh is

bounded from L2(�) to L∞(�) by Lemma 2.1, which proves the claimed boundedness
of ω∞,h . ��

3.6 Marking strategy

It remains to describe, how to mark elements for refinement. Here, we follow the com-
mon strategy to mark elements that have relatively large local error indicators. In our
case, see Theorem 3.18, the error indicator contains two terms with different accumu-
lation properties: η2

L2 = ∑
T ∈Th

η2
T,L2 and ηstate,L∞ = maxT ∈Th (ηT,state,L∞ +eT,state),

where eT,state is the restriction of estate to T .
As marking strategy we employ the one used in [21]. Let us define

η2
2 := η2

L2

η∞ := ω∞,h ηstate,L∞ + estate

η := max(η2, η∞).

We choose an error indicator ηi if it is relatively large compared to the total error, that
is if ηi ≥ θ1η, i ∈ {2,∞}. For a chosen error indicator ηi , we mark elements by the
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maximum strategy, that is, elements T̂ with ηT̂ ,i ≥ θ2 maxT ∈Th ηT,i are marked for
refinement. Here, the parameters θ1, θ2 are taken from (0, 1). In our computations we
used θ1 = 0.2, θ2 = 0.8.

4 Convergence of error bound

In this section we will prove the convergence to zero of the error bound of Theorem
3.14 if the solution of the discrete system converges in the following sense.

Assumption 4 Let a sequence of meshes Thk with associated solutions of the dis-
crete problem {(ȳhk , ūhk , p̄hk , μ̄a,hk , μ̄b,hk )} be given. Let us assume that we have the
following properties of this sequence:

(i) The sequence (ȳhk , ūhk ) converges strongly to (ȳ, ū) in C(�̄) × L2(�).
(ii) The sequence ( p̄hk , μ̄a,hk , μ̄b,hk ) is bounded in W 1,q(�)× M(�)× M(�) with

2n
2+n < q < n

n−1 .
(iii) For each subsequence ( p̄hk′ , μ̄a,hk′ , μ̄b,hk′ ) with p̄hk′ ⇀ p̄ in W 1,q(�), q >

2n
2+n , and (μ̄a,hk′ , μ̄b,hk′ ) ⇀∗ (μ̄a, μ̄b) in M(�) × M(�) the limit element
( p̄, μ̄a, μ̄b) is a Lagrange multiplier to (ȳ, ū), i.e. the system (2.2)–(2.4) is
satisfied.

Please note, that the requirements of this assumption are satisfied for a uniform
refinement of the mesh. Boundedness of multipliers μa,h, μb,h in M(�) can be proven
following see e.g. [15, Chapter 3]. The uniform boundedness of discrete adjoints ph

then follows from [5, Theorem 8.5.3]. Let us emphasize that convergence of the mesh
size h → 0 is not explicitly required in Assumption 4.

Let us recall the error representation of Theorem 3.14, which reads

‖ūh − ū‖2
L2(�)

+ ‖ȳh − ȳ‖2
L∞(�) ≤ c

(
r (1)

state,L∞ + r (2)
state,L∞ + r2

state,L2

+ r2
adjoint,L2 + r2

control,L2 + estate

)
.

Lemma 4.1 Let Assumption 4 be satisfied. Then it holds

r (1)
state,L∞ + r (2)

state,L∞ + r2
state,L2 + r2

adjoint,L2 + estate → 0

for k → ∞.

Proof Let us define yhk to be the solution of (3.1) to the control ūhk . Then we have

‖yhk − ȳhk ‖L∞(�) ≤ ‖yhk − ȳ‖L∞(�) + ‖ȳ − ȳhk ‖L∞(�)

≤ C‖ūhk − ū‖L2(�) + ‖ȳ − ȳhk ‖L∞(�).

which proves that r (1)
state,L∞ , r (2)

state,L∞ , and similarly rstate,L2 converge to zero under the
Assumption 4.
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Because of ȳhk → ȳ in C(�̄) and the feasibility of ȳ with respect to the control
constraints, the state constraint violation esc and consequently estate tend to zero.

Let weak (weak∗) converging subsequences ( p̄hk′ , μ̄a,hk′ , μ̄b,hk′ ) be given. Then
by compact embeddings and after extracting another subsequence p̄hk′′ → p̄ in L2(�)

and (μ̄a,hk′ , μ̄b,hk′ ) → (μ̄a, μ̄b) in H−2(�). Hence radjoint,L2 → 0 for this subse-
quence. Since the subsequence (k′) was chosen arbitrarily, it follows radjoint,L2 → 0
for k → ∞. ��

The discussion of the estimator rcontrol,L2 is more involved, and thus we state and
prove it separately. For convenience, let us recall its definition. In Theorem 3.14 we
set rcontrol,L2 := ‖ηvi‖L2(�), where ηvi was given by Lemma 3.7 and defined by

η2
vi = 1

α
χ�0,h (αūh + p̄h)2 + χ�a,h (αūh + p̄h)(ūh − ua)

+χ�b,h (αūh + p̄h)(ūh − ub),

where the sets �0,h,�a,h,�b,h were defined as

�0,h =
{

x ∈ � : ūh(x),− 1

α
p̄h(x) ∈ (ua, ub)

or ūh(x) = ua, αūh(x) + p̄h(x) < 0

or ūh(x) = ub, αūh(x) + p̄h(x) > 0
}

and

�a,h =
{

x ∈ � : ūh(x) ∈ (ua, ub),− 1

α
p̄h(x) ≤ ua

}

�b,h =
{

x ∈ � : ūh(x) ∈ (ua, ub),− 1

α
p̄h(x) ≥ ub

}

.

Lemma 4.2 Let Assumption 4 be satisfied. Then it holds

rcontrol,L2 → 0.

Proof Since the controls ūhk are feasible for the discrete problem, they are uniformly
bounded in L∞(�). Hence, the sequence ūhk converges to ū in Ls(�) for all 2 ≤
s < ∞. Moreover, as argued above, each weakly converging subsequence p̄hk′ has
a strongly converging subsequence p̄hk′′ → p̄ in L2(�). By Assumption 4, we have
that the variational inequality (2.4) is satisfied.

In the course of the proof, we will bound ‖ηvi‖L2(�) in terms of ‖ p̄hk′′ − p̄‖L2(�)

and ‖ūhk′′ − ū‖Ls (�), s > 2. To simplify the notation, we will drop the index k′′.
At first, let us note that

ηvi(x)2 ≤ 1

α
|αūh(x) + p̄h(x)|2 (4.1)

follows directly from the definition of ηvi,�a,h , and �b,h , confer also (3.7).
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Now, we will discuss upper bounds of ηvi on different subsets of �.

Case (1): �1 = {x ∈ � : αū(x) + p̄(x) = 0}.
Using (4.1) it follows directly

‖ηvi‖2
L2(�1)

≤ α−1‖αūh + p̄h − (αū + p̄)‖2
L2(�1)

≤ α−1(α‖ūh − ū‖L2(�) + ‖ p̄h − p̄‖L2(�))
2. (4.2)

Case (2a): �2,a = {x ∈ � : ūh(x) = ū(x) = ua}. Here, we have

‖ηvi‖2
L2(�2,a)

= α−1‖(αūh + p̄h)−‖2
L2(�2,a)

= α−1
∥
∥(αūh + p̄h)− − (αū + p̄)−

∥
∥2

L2(�2,a)

≤ α−1(α‖ūh − ū‖L2(�) + ‖ p̄h − p̄‖L2(�))
2.

Case (2b): �2,b = {x ∈ � : ūh(x) = ū(x) = ub}. Analogous to Case (2a).
Case (3a): �3,a = {x ∈ � : ū(x) = ua} ∩ �a,h . Here, we have by definition of ηvi

ηvi(x)2 = (αūh + p̄h)(ūh − ua) = (αūh + p̄h)(ūh − ū).

Hence, it holds ‖ηvi‖2
L2(�3,a)

≤ ‖αūh + p̄h‖L2(�)‖ūh − ū‖L2(�).

Case (3b): �3,b = {x ∈ � : ū(x) = ub} ∩ �b,h . Analogous to Case (3a).
Case (4a): �4,a = {x ∈ � : ūh(x),− 1

α
p̄h(x) ∈ (ua, ub), ū(x) = ua,

− 1
α

p̄(x) < ua}. The inequality − 1
α

p̄(x) < ua = ū(x) < − 1
α

p̄h(x)

implies

|αūh + p̄h | ≤ α|ūh − ū| + α|ū − (−α−1 p̄h)| ≤ α|ūh − ū| + | − p̄ − (− p̄h)|

which proves with (4.1)

‖ηvi‖2
L2(�4,a)

≤ 1

α
‖αū(x) + p̄(x)‖2

L2(�4,a)
≤ ‖ p̄h − p̄‖2

L2(�4,a)
.

Case (4b): �4,b = {x ∈ � : ūh(x),− 1
α

p̄h(x) ∈ (ua, ub), ū(x) = ub, − 1
α

p̄(x) <

ub}. Analogous to Case (4a).
Case (5a): �5,a = {x ∈ � : ū(x) = ua} ∩ �b,h . Here, we have − 1

α
p̄(x) ≤ ua <

ub < − 1
α

p̄h(x). By Chebyshev’s inequality, we obtain

|�5,a | ≤
∣
∣
∣
{

x ∈ � : α−1| p̄h(x) − p̄(x)| ≥ |ub − ua |
}∣
∣
∣

≤
∫

�

| p̄h(x) − p̄(x)|2
α2|ub − ua |2

≤ 1

(α|ub − ua |)2 ‖ p̄h − p̄‖2
L2(�)

.
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Together with the definition ηvi on �b,h , we find

‖ηvi‖2
L2(�5,a)

≤ |�5,a |1/2‖αūh + p̄h‖L2(�)‖ūh − ub‖L∞(�) ≤ c‖ p̄h − p̄‖L2(�).

Case (5b): �5,b = {x ∈ � : ū(x) = ub} ∩ �a,h . Analogous to Case (5a).
Case (6): �6 = {x ∈ � : ū(x), ūh(x) ∈ {ua, ub}, ū(x) �= ūh(x)}. That is, here the

control constraints are active at ū and ūh but both are not equal. Similarly
as in Case (5a) we estimate

|�6| ≤ ∣
∣
{

x ∈ � : |ū(x) − ūh(x)| ≥ |ub − ua |}∣∣

≤
∫

�

|ūh(x) − ū(x)|s
|ub − ua |s

≤ 1

|ub − ua |s ‖ūh − ū‖s
Ls (�),

which yields due to �6 ⊂ �0,h

‖ηvi‖2
L2(�6)

≤ 1

α
|�6|1−2/s‖αūh + p̄h‖2

Ls (�) ≤ C‖ūh − ū‖s−2
Ls (�).

Let us argue that the splitting introduced by the cases above covers �. Due to
first order optimality conditions, � can be divided in sets, where αū + p̄ = 0 and
ū ∈ {ua, ub}. The first possibility is covered by Case (1). The case that both ū and ūh

are at the bounds is contained in Case (2) and Case (6). Now it remains to cover the
set, where ū ∈ {ua, ub} and ūh ∈ (ua, ub). The subset, where − 1

α
p̄h is not in (ua, ub),

is discussed in Case (3) and Case (5). And Case (4) covers the subset, where − 1
α

p̄h

is in (ua, ub).
Summing up all the estimates, we find the convergence ηvi → 0 in L2(�) for the

subsequence (k′′) chosen above. This implies that for every subsequence of (ūhk , p̄hk )

we can choose a subsequence such that the corresponding quantity ηvi converges to
zero, which finishes the proof. ��

As a consequence of these results we obtain the main result of this section.

Theorem 4.3 Let Assumption 4 be satisfied. Then the error bound given by Theorem
3.14 converges to zero for k → ∞, e.g.

(
r (1)

state,L∞ + r (2)
state,L∞ + r2

state,L2 + r2
adjoint,L2 + r2

control,L2 + estate

)
→ 0.

Let us now comment on different available error estimators for the error in the var-
iational inequality connected to the control constraints. To the best of our knowledge,
a convergence result similar to Lemma 4.2 is not available for error estimators in the
literature.

Let us first compare our findings to the error estimator as considered by Krumbiegel
and Rösch [17]. Their error estimator ηKR coincides with ηvi as developed here except
for the definition on the sets �a,h,�b,h , i.e.
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ηKR = χ�0,h ηvi + 1

α
χ�a,h∪�b,h (αūh + p̄h)2.

which implies ‖ηvi‖2
L2(�)

≤ ‖ηKR‖2
L2(�)

by (3.7). The error estimator ηKR does not
allow a convergence proof comparable to Lemma 4.2. To this end consider the follow-
ing example: let the constant functions ua = 0, ub = 1, α = 1, ū = 0, p̄ = p̄h = 1,
and ūh = h be given. That means, the values are chosen in such a way that �a,h = �

and correspond to the Case (3a) in the proof of Lemma 4.2. Our error estimator gives
‖ηvi‖2

L2(�)
= (αūh + p̄h, ūh − ua) = (αh + 1)h|�| → 0 as h → 0. The estimator of

[17] yields ‖ηKR‖2
L2(�)

= 1
α
‖αh+1‖2

L2(�)
, which does not converge to zero as h → 0.

Similar situations as in the example will occur if one uses interior point methods to
get rid of the control constraints in the discrete optimization problem.

Second, let us comment on the error estimator analyzed by Hintermüller et al. [13].
There an efficient and reliable error estimator for optimal control problems with a
lower control bound is developed. They prove that the estimator is equivalent (up to
higher order terms) to the error

‖ȳ − ȳh‖H1(�) + ‖ p̄ − p̄h‖H1(�) + ‖ū − ūh‖L2(�) + ‖σ − σh‖L2(�),

with σ := αū + p̄ and σh := αūh + 	h p̄h . However, it is not clear, whether it holds
‖σ −σh‖L2(�) → 0 if (ūh, p̄h) converges to (ū, p̄). Indeed, for Case (3a) in the proof
of Lemma 4.2 one has the following. If (ūh, p̄h) are solutions of the discrete optimal
control problem it holds αūh + 	h p̄h = 0 on this set, since ūh is not at the control
bounds. This implies that

‖σ − σh‖L2(�) = ‖(αū + p̄) − (αūh + 	h p̄h)‖L2(�3,a) = ‖αū + p̄‖L2(�3,a).

However, since ū = ua holds on �3,a by definition, this quantity is in general non-
zero. In order to prove ‖σ − σh‖L2(�) → 0, one has to prove in addition that the
measure of �3,a tends to zero.

Finally, we comment on the error estimator for control constrained optimal con-
trol problems as considered by Li et al. [18]. The error estimator developed there
converges to zero under the assumption that (ȳh, ūh, p̄h) converges to (ȳ, ū, p̄), an
assumption on the regularity of the active sets, and the assumption h → 0. Clearly
our convergence result Lemma 4.2 holds under weaker assumptions on ūh, p̄h .

5 Numerical experiment

Let us report on numerical results with adaptive refinement using the error estimator
developed in the present article.

5.1 Example 1

The data of this example is taken from [7]. It was originally posed for � = B1(0). We
modified it to work with � = (−1, 2)2.
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The data of the problem is given in polar coordinates. For convenience we define

r =
√

x2
1 + x2

2 . Let us set

ū(r) = − 1

2πα
χ{r≤1}(log r + r2 − r3),

ȳ(r) = 1

2πα
χ{r≤1}

(
r2

4
(log r − 2) + r3

4
+ 1

4

)

,

p̄(r) = −αū(r),

μ̄a(r) = δ0(r),

f (r) = 1

8π
χ{r≤1}(4 − 9r + 4r2 − 4r3),

yd(r) = ȳ(r) + 1

2π
χ{r≤1}(4 − 9r),

ya(r) = 1

2πα

(
1

4
− r

2

)

,

α = 1.

The problem features one lower state constraint, there are no upper state constraint
and no control constraints given.

One can verify that (ȳ, ū, p̄, μ̄a) is the solution of the problem: Minimize J (y, u)

given by

J (y, u) = 1

2
‖y − yd‖2

L2(�)
+ α

2
‖u‖2

L2(�)

subject to

−�y = u + f in �

y = 0 on �,

and

ya ≤ y in �.

Moreover, one can verify that

û(r) = χ{r≤1}(−12 + 18r) ŷ(r) = χ{r≤1}(1 + 3r2 − 2r3)

fulfills Assumption 2 with τ = 0.24999.
Due to the special structure of the problem, the dual quantities are uniquely deter-

mined. Please note, that the adjoint state has a pronounced singularity. Since the data
of the problem are smooth, there is no chance to perform an a-priori mesh refinement
to resolve the singularity.
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Fig. 1 Example 1: adaptively refined mesh; comparison of ‖ūh − ū‖L2(�) versus number of unknowns
for uniform, adaptive and uniform with grading refinement

We discretize states, adjoints, and controls by continuous and piecewise linear ele-
ments, which corresponds to the choice l = 1.

We computed discrete solutions for different kinds of mesh refinement. For uniform
and adaptive refinement, we ensured that the point x = (0, 0) cannot be a node of the
grid for any refined mesh to avoid superconvergence effects. This is achieved with a
coarse grid mesh generated as a uniform triangulation with 8 triangles. The results of
these computations are then compared to results computed with an optimally graded
mesh according to [1]. There, in each uniform refinement step, the newly added grid
points are graded to the point (0, 0) with parameter μ = 0.5. Moreover, the coarse
grid was built from 18 triangles such that the point (0, 0) is a node of that grid, and
consequently is a node of all refined grids. This is an a-priori refinement, which is
only possible, since the solution of this problem is already known.

Figure 1 shows the adaptively refined mesh after five refinement steps. It shows
local refinement around the singularity at (0, 0), which appears only in the adjoint
equation and thus is not identifiable a-priori. The right-hand plot compares the error
‖ūh − ū‖L2(�) for the different kind of discretizations. Here, the adaptive mesh refine-
ment leads to a better approximation of the solution with respect to the number of
unknowns than uniform refinement. However, adaptive refinement is still worse than
the optimal a-priori refinement. Of course, the optimal a-priori mesh-grading is only
available because we know the solution of the continuous problem. Nevertheless, the
optimal mesh-grading can serve as benchmark for adaptive refinement, which ideally
should yield the same performance.

Let us now discuss the efficiency of our error estimators. To this end, the efficiency
index

Ieff = ‖ū − ūh‖L2(�)

η

is depicted in Tables 1, 2, and 3. Ideally, the efficiency index stays constant during
the mesh refinement process. We cannot expect it to be equal to one, which would
be the ideal case, due to the unknown constants in the localized error estimates in
lemmata 3.15, 3.16, and 3.17. As one can see from Table 1, the efficiency index is
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Table 1 Example 1: results for uniform refinement

N ‖ū − ūh‖L2(�) η Ieff

9 2.1598 × 10−1 8.8802 2.4321 × 10−2

25 1.3457 × 10−1 2.0605 6.5312 × 10−2

81 7.5782 × 10−2 9.5844 × 10−1 7.9069 × 10−2

289 4.4661 × 10−2 5.7608 × 10−1 7.7526 × 10−2

1089 2.5174 × 10−2 3.3665 × 10−1 7.4777 × 10−2

4225 1.3598 × 10−2 1.9939 × 10−1 6.8197 × 10−2

16641 7.4047 × 10−3 1.1143 × 10−1 6.6449 × 10−2

Table 2 Example 1: results for adaptive refinement

N ‖ū − ūh‖L2(�) η Ieff

9 2.1598 × 10−1 2.6039 8.2944 × 10−2

25 1.3457 × 10−1 4.8494 × 10−1 2.7750 × 10−1

58 7.5789 × 10−2 3.0258 × 10−1 2.5048 × 10−1

74 4.4358 × 10−2 6.1424 × 10−1 7.2216 × 10−2

181 2.4899 × 10−2 5.2401 × 10−1 4.7516 × 10−2

234 2.5190 × 10−2 2.9914 × 10−1 8.4207 × 10−2

564 1.3438 × 10−2 3.1367 × 10−1 4.2840 × 10−2

657 1.3375 × 10−2 1.8474 × 10−1 7.2400 × 10−2

1573 7.3654 × 10−3 1.5810 × 10−1 4.6588 × 10−2

2217 7.3698 × 10−3 9.7562 × 10−2 7.5540 × 10−2

5246 3.8560 × 10−3 8.0546 × 10−2 4.7874 × 10−2

8020 2.0885 × 10−3 6.3861 × 10−2 3.2703 × 10−2

18839 1.0715 × 10−3 5.0336 × 10−2 2.1286 × 10−2

29853 5.8029 × 10−4 3.8987 × 10−2 1.4884 × 10−2

Table 3 Example 1: results for uniform refinement with optimal mesh-grading

N ‖ū − ūh‖L2(�) η Ieff

16 6.2462 × 10−2 1.0628 5.8771 × 10−2

49 5.3629 × 10−2 9.7516 × 10−1 5.4995 × 10−2

169 1.7151 × 10−2 1.3656 1.2560 × 10−2

625 4.9871 × 10−3 1.0778 4.6272 × 10−3

2401 1.4358 × 10−3 5.7447 × 10−1 2.4994 × 10−3

9409 3.6343 × 10−4 2.8995 × 10−1 1.2534 × 10−3

37249 1.1881 × 10−4 1.4329 × 10−1 8.2918 × 10−4

almost constant during uniform mesh refinement. This is due to the fact that on these
meshes the a-priori L∞(�)-error estimates are valid with uniform bounded constants.
This is not the case for adaptive and grading refinement. Here the efficiency index
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deteriorates as the meshes get refined. This behavior is most prominent for the grading
refinement, cf. Table 3. Hence, the development of a computable, reliable, and efficient
error estimate is subject to future research.

5.2 Example 2

Let us report about the outcome of our numerical experiments for an example with
both control and state constraints. The data of this problem is given as follows.

� = (0, 1)2,

yd = 10(1 − x1 − x2)
3,

ya = −0.35,

yb = 0.4,

ua = −25,

ub = 20,

α = 0.001.

The state equation is defined as

−�y + y = u in �,

y = 0 on �.

Here, the pair

(ŷ, û) = (0, 0)

fulfills Assumption 2 with τ = 0.34999.
As for example 1, we discretize states, adjoints, and controls by continuous and

piecewise linear elements, which corresponds to the choice l = 1. The discrete control
and state for a uniform triangulation consisting of 20,000 triangles can be seen in Fig. 2.

Fig. 2 Example 2: optimal discrete control and state
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Fig. 3 Example 2: active sets; comparison of η versus number of unknowns for uniform and adaptive
refinement

Table 4 Example 2: Results for
uniform (top) and adaptive
(bottom) refinement

N η

121 5.4661 × 10−1

441 1.4406 × 10−1

1681 3.7044 × 10−2

6561 1.1338 × 10−2

25921 3.1461 × 10−3

121 5.4661 × 10−1

154 3.4434 × 10−1

219 2.0604 × 10−1

338 1.3322 × 10−1

621 6.9029 × 10−2

964 4.2551 × 10−2

1787 2.4736 × 10−2

1803 2.4068 × 10−2

2857 1.4400 × 10−2

4305 9.7050 × 10−3

7455 5.7234 × 10−3

11723 3.4542 × 10−3

18302 2.2890 × 10−3

31233 1.3545 × 10−3

The boundaries of the resulting active sets are plotted in Fig. 3. The upper control and
state constraints are active in the lower left part of �, the active sets for the lower
constraints are located in the upper right part. The small sets correspond to active state
constraints, the large sets to the control constraints. As one can see from the picture,
the active sets for the upper state constraint is included in the active set for the upper
control constraint.
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Starting with a coarse grid consisting of 20 triangles, we performed numerical com-
putations with uniform and adaptive refinement. Since the solution of the continuous
problem is unknown, we show the values of the error estimator only. The evolution of
the error estimator η versus the number of degrees of freedom is plotted in Fig. 3. For
comparison, the precise values of η for uniform and adaptive refinement are shown
in Table 4. As can be seen from these numbers, the adaptive refinement outperforms
the uniform refinement strategy. With uniform refinement one needs approximately
three times as much degrees of freedom to achieve the same accuracy as the adaptive
procedure.

6 Conclusion

In this article, we developed a fully computable a-posteriori error estimator for state
and control constrained optimal control problems. Moreover, we showed that the esti-
mator tends to zero if the solution of the discretized problems converge to the solution
of the undiscretized problem.

Acknowledgments The authors want to thank Boris Vexler and the referees for their remarks that lead
to an overall improvement of the presentation.
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