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Abstract

We investigate the simultaneous regularization and discretization of
an optimal control problem with pointwise control constraints. Typically
such problems exhibit bang-bang solutions: the optimal control almost
everywhere takes values at the control bounds. We derive discretiza-
tion error estimates that are robust with respect to the regularization
parameter. These estimates can be used to make an optimal choice of the
regularization parameter with respect to discretization error estimates.

Keywords. Optimal control, bang-bang control, Tikhonov regularization, parameter-
choice rule.

AMS classification. 49K20, 49N45, 65K15

1 Introduction
In this article we investigate the regularization and discretization of bang-bang
control problems. The class of problems that we consider can be described as
the minimization of

1

2
‖Su− z‖2Y (P)

over all u ∈ L2(D) satisfying the constraint

ua ≤ u ≤ ub a.e. on D. (1.1)

In line with the usual nomenclature in optimal control, the variable u will be
called control, the variable y := Su will be called state. In the problem above
D is a bounded subset of Rn. The operator S is assumed to be linear and
continuous from L2(D) to Y with Y being a Hilbert space. The target state
z ∈ Y is a given desired state. Moreover, we assume that the Hilbert space
adjoint operator S∗ of S maps from Y to L∞(D). Here, we have in mind
optimal control problems for linear partial differential equations.
In order to numerically solve (P), let us introduce a family of linear and contin-
uous operators {Sh}h>0 from L2(D) to Y with finite-dimensional range Yh ⊂ Y ,
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where h denotes the discretization parameter. We assume Sh → S for h↘ 0 in
a sense clarified below, see Section 1.4. Furthermore, we consider the Tikhonov
regularization with parameter α > 0. The regularized and discretized problem
now reads: Minimize

1

2
‖Shu− z‖2Y +

α

2
‖u‖2L2(D) (Pα,h)

subject to (1.1). Let us note that the control space is not discretized, which is
the variational discretization concept introduced in [5].
Here, one is interested in convergence results with respect to (α, h)↘ 0. More-
over, the choice of the parameter α depending on discretization parameters
is important for actual numerical computations. Let us briefly review existing
literature on this subject. Most of the existing results assume a bang-bang struc-
ture of the optimal control u0: u0(x) ∈ {ua(x), ub(x)} a.e. on D. Convergence
rate estimates with respect to α↘ 0 for the undiscretized problem can be found
in [12, 13]. There, an assumption on the measure of the almost-inactive set is
used. Such an assumption was applied in different situation in the literature as
well, we mention only [4, 10]. Convergence rate estimates of the regularization
error are also available without the assumption of bang-bang structure. There
one has to resort to source conditions, see e.g. [7], and combinations of source
condition and active set conditions [13]. Discretization error estimates are well
known in the literature. A-priori discretization error estimates concerning the
discretization of (Pα) for fixed α > 0 can be found for instance in [5, 6]. In
the case α = 0 the analysis is much more delicate, a-priori error discretization
estimates for this case can be found in [3]. Let us mention that the error es-
timates for the regularized problem α > 0 are not robust with respect to α.
Consequently, the results in the case α = 0 cannot be obtained by passing to
the limit α↘ 0. The coupling of discretization and regularization was discussed
in [11]. There the regularization parameter α is chosen depending on a-priori
or a-posteriori discretization error estimates.
Let us emphasize, that almost all of the above cited literature is concerned with
convex problems. The extension to the non-convex case is not straight-forward,
we refer to [1] for results on second-order sufficient optimality conditions for
bang-bang control problems. In a recent work, multi-bang control problems
were investigated [2].
In this article, we discuss robust discretization error estimates for α > 0. In
these estimates, the regularization parameter can tend to zero, and the resulting
estimate coincides with that of [3] in the case α = 0. Of course, the robust
estimates are not optimal in the discretization parameters. A second result is
the arising choice of the regularization parameter depending on discretization
quantities. It turns out that it is optimal to choose α proportional to the L∞-
discretization error. The surprising fact is that this choice is independent of
some unknown constants appearing in the assumption on the almost-inactive
set.

Notation
In the sequel, we will frequently use generic constants c > 0 that may change
from line to line, but which are independent of relevant quantities such as α and
h.
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1.1 Assumptions and preliminary results
Let us specify the standing assumptions that we will use throughout the paper.
Let (D,Σ, µ) be a given finite measure space. The operator S is assumed to be
linear and continuous from L2(D) to the Hilbert space Y . Moreover, we assume
that the Hilbert space adjoint operator S∗ of S maps from Y to L∞(D). Let us
remark that the requirements on S∗ could be relaxed to allow S∗ mapping into
Lp(D), p ∈ (2,∞), see [13].
The control constraints are given with ua, ub ∈ L∞(D) and ua ≤ ub a.e. on D.
The set of admissible controls is defined by

Uad := {u ∈ L2(D) : ua ≤ u ≤ ub a.e. on D}.

As already introduced, we will work with a family of operators {Sh}h>0, Sh ∈
L(L2(D), Y ) with finite-dimensional range. The adjoint operators S∗h are as-
sumed to map from Y to L∞(D).
For completeness, let us define the regularized version of the undiscretized prob-
lem: Given α > 0, minimize

1

2
‖Su− z‖2Y +

α

2
‖u‖2L2(D) (Pα)

subject to the inequality constraints (1.1).
Due to classical results, the problems (P), (Pα), (Pα,h) admit solutions.

Proposition 1.1. The problems (P) and (Pα,h), are solvable with convex and
bounded sets of solutions. The problems (Pα) and (Pα,h) are uniquely solvable
for α > 0.
The set of optimal states of (P) {Su : u solves (P)} is a singleton. Moreover,
(P) is uniquely solvable if S is injective.

Proof. Due to the control constraints, the admissible set Uad is bounded in
L2(D). Moreover, it is convex and closed in L2(Ω) hence weakly-closed. By
assumption, the functionals to be minimized are convex and continuous from
L2(D) to R, which implies weakly lower semicontinuity. The existence of solu-
tions of the problems (P), (Pα), and (Pα,h) follows from the Weierstraß theorem,
where L2(D) is supplied with the weak topology. Since the objective functional
and the admissible set are convex, the set of solutions of these problems is
convex.
If α > 0 then the objective functionals of (Pα) and (Pα,h) are strictly convex,
which implies that the solutions are unique. Moreover, the mapping Su 7→
1
2‖Su− z‖ is strictly convex, hence the sets of optimal states for (P) and (Pα,h)
for α = 0 are singletons. If in addition S is injective, then the uniqueness of
solutions of (P) follows.

Let us note that the solutions of (P) and (Pα,h) may not be uniquely determined
if α = 0. However, the optimal states of (P) and (P0,h) are uniquely determined
due to the strict convexity of the cost functional w.r.t. Su.

1.2 Necessary optimality conditions
The solutions of the considered problems can be characterized by means of
first-order necessary optimality conditions, which are sufficient as well due to
the convexity of the problems.
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Proposition 1.2. For α ≥ 0 let uα and uα,h be solutions of (Pα) and (Pα,h),
respectively. Let us define yα := Suα, yα,h := Shuα,h, pα := S∗(yα − z), and
pα,h := S∗h(yα,h − z). Then it holds

(αuα + pα, u− uα) ≥ 0 ∀u ∈ Uad

and
(αuα,h + pα,h, u− uα,h) ≥ 0 ∀u ∈ Uad.

These variational inequalities imply the following pointwise variational inequal-
ity [9, Lemma 2.26]

(αuα(x) + pα(x))(u− uα(x)) ≥ 0 ∀u ∈ [ua(x), ub(x)] f.a.a. x ∈ D. (1.2)

In the case α > 0 this yields pointwise a.e. representations for the optimal
control

uα(x) = proj[ua(x),ub(x)]

(
− 1

α
pα(x)

)
f.a.a. x ∈ D.

If α = 0 we have

u0(x)


= ua(x) if p0(x) > 0

∈ [ua(x), ub(x)] if p0(x) = 0

= ub(x) if p0(x) < 0

f.a.a. x ∈ D. (1.3)

Similar relations hold for uα,h and u0,h. For α = 0, the controls u0 and u0,h are
bang-bang if p0 6= 0 and p0,h 6= 0 a.e. on D, respectively. Moreover, if p0 = 0
and p0,h = 0 on sets of positive measure then the values of u0 and u0,h cannot
be determined by the respective variational inequalities (1.2).

1.3 Regularization error estimate
Let us now recall the assumption on the almost-inactive sets. It is widely used in
the literature, as it can be viewed as a strengthened complementarity condition.

Assumption 1. Let us assume that there are κ > 0, c > 0 such that

meas {x ∈ D : |p0(x)| ≤ ε} ≤ c εκ

holds for all ε > 0.

As discussed above, the optimal state y0 = Su0 and consequently the optimal
adjoint state p0 = S∗(y0 − z) are uniquely determined. Under the assumption
above, the optimal control u0 is uniquely determined as well and has bang-bang
type.

Corollary 1.3. Let Assumption 1 be satisfied. Then the problem (P) is uniquely
solvable, and its solution u0 is bang-bang.

Proof. By proposition 1.1 the optimal state y0 := Su0 with u0 being a solution of
(P) is uniquely determined. Hence, also the adjoint p0 = S∗(y0 − z) is uniquely
determined. Assumption 1 implies that the set {x ∈ D : p0(x) = 0} has measure
zero. Then the pointwise representation (1.3) of solutions of (P) completely
determines the values of a solution u0 on D up to sets of zero measure. This
implies that (P) is uniquely solvable. Moreover, it follows u0(x) ∈ {ua(x), ub(x)}
for almost all x ∈ D by (1.3). Hence, u0 is of bang-bang type.
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Assumption 1 not only guarantees uniqueness of solutions of (P), but it is also
sufficient to prove convergence rates with respect to α for α↘ 0.

Proposition 1.4. Let Assumption 1 be satisfied. Let d be defined by

d =

{
1

2−κ if κ ≤ 1,
κ+1

2 if κ > 1.

Then for every αmax > 0 there exists a constant c > 0, such that

‖y0 − yα‖Y + ‖p0 − pα‖L∞(D) ≤ c αd,
‖u0 − uα‖L2(D) ≤ c αd−1/2,

‖u0 − uα‖L1(D) ≤ c αd−1/2+κ/2 min(d,1)

holds for all α ∈ (0, αmax]. The constant c depends on αmax.

Proof. For the proof we refer to [13, Theorem 3.2].

Let us present a small result to ease the work with the convergence rates stated
above.

Lemma 1.5. Let κ > 0 be given. Let d satisfy

d =

{
1

2−κ if κ ≤ 1,
κ+1

2 if κ > 1.

Then it holds
κmin(1, d) = 2d− 1.

Proof. In the case κ ≤ 1 we have κmin(1, d)+1 = κ
2−κ +1 = 2

2−κ = 2d, whereas
in the case κ > 1 we obtain κmin(1, d) + 1 = κ+ 1 = 2d.

Remark 1.6. With this small lemma at hand, we can simplify the convergence
rate of Proposition 1.4 to

‖u0 − uα‖L1(D) ≤ c α2d−1,

since it holds κ
2 min(1, d) = d− 1

2 by Lemma 1.5 above.

1.4 Discretization error estimates
Let us now turn to the discretization of the considered optimal control problems.
As already mentioned in the introduction, we consider approximations Sh of the
operator S. In order to control the discretization error we make the following
assumption.

Assumption 2. There exist continuous and monotonically increasing functions
δ2(h), δ∞(h) : R+ → R+ with δ2(0) = δ∞(0) = 0 such that it holds

‖(S − Sh)uα,h‖Y + ‖(S∗ − S∗h)(yα,h − z)‖L2(D) ≤ δ2(h),

‖(S∗ − S∗h)(yα,h − z)‖L∞(D) ≤ δ∞(h)
(1.4)

for all h > 0 and α ≥ 0.
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Note that this assumption contains the unknown solutions of discretized optimal
control problems. The functions δ2(h) and δ∞(h) can be realized by means of
a-posteriori error estimators, see e.g. [11]. In the analysis, we can as well allow
for a-priori discretization error estimates, see the comments below in Remark
1.9.
Under this assumption one can prove discretization error estimates for Pα.

Proposition 1.7. Let Assumption 2 be satisfied. Let α > 0. Then there is a
constant c > 0 independent of α, h such that

‖yα − yα,h‖Y + α
1
2 ‖uα − uα,h‖L2(D) ≤ c

(
1 + α−

1
2

)
δ2(h),

‖pα − pα,h‖L∞(D) ≤ c
(
δ∞(h) +

(
1 + α−

1
2

)
δ2(h)

)
.

holds for all h > 0.

Proof. For the proof, we refer to [5, Theorem 2.4] and [11, Proposition 1.8].

Obviously these error estimates are not robust with respect to α ↘ 0. In the
case α = 0 we have an independent discretization error estimate of [3], which
relies on Assumption 1.

Proposition 1.8. Let Assumptions 1 and 2 be satisfied. Let d be as in Propo-
sition 1.4. Then for every hmax > 0 there is a constant c > 0 such that

‖y0 − y0,h‖Y ≤ c
(
δ2(h) + δ∞(h)d

)
,

‖p0 − p0,h‖L∞(D) ≤ c
(
δ2(h) + δ∞(h)min(d,1)

)
,

‖u0 − u0,h‖L1(D) ≤ c
(
δ2(h)κ + δ∞(h)κmin(d,1)

)
holds for all h < hmax. The constant c depends on hmax.

Proof. For the proof, we refer to [3, Theorem 2.2] and [11, Proposition 1.9].

Remark 1.9. As already mentioned, the estimates above are also valid if As-
sumption 2 on the discretization error is replaced by an a-priori variant. To
this end, let us assume that there exist continuous and monotonically increasing
functions δ′2(h), δ′∞(h) : R+ → R+ with δ′2(0) = δ′∞(0) = 0 such that it holds

‖(S − Sh)uα‖Y + ‖(S∗ − S∗h)(yα − z)‖L2(D) ≤ δ′2(h),

‖(S∗ − S∗h)(yα − z)‖L∞(D) ≤ δ′∞(h)
(1.5)

for all h > 0 and α ≥ 0. Here, the error estimate depends still on unknown
solutions of (Pα). However, it is standard to prove uniform norm bounds on yα
and uα, which then can be used to apply standard (e.g. finite element) a-priori
error estimates to deduce the existence of δ′2 and δ′∞, see [3, 5] for the related
analysis with S being the solution operator of an elliptic equation.
According to the discussion in [11], the results of Propositions 1.7 and 1.8 are
valid if δ2 and δ∞ are replaced by δ′2 and δ′∞, respectively.
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2 Robust discretization error estimates
As one can see from the statement of Proposition 1.7, the error estimate is not
robust with respect to α↘ 0, as the constant on the right-hand side behaves like
α−1/2 for α↘ 0. In particular, this means that the estimates of Proposition 1.8
cannot be obtained from those of Proposition 1.7. The purpose of this section
is to prove an a-priori error estimate for α > 0 that is robust for α↘ 0.

Lemma 2.1. Let Assumption 2 be satisfied. Let α > 0. Then it holds

1

2
‖yα − yα,h‖2Y + α‖uα − uα,h‖2L2(D) ≤

1

2
δ2(h)2 + δ∞(h)‖uα,h − uα‖L1(D),

for all h > 0 and α > 0.

Proof. Since uα,h and uα are feasible for Pα and Pα,h, respectively, we can use
both functions in the variational inequalities of Proposition 1.2. Adding the
obtained inequalities yields

(αuα + pα, uα,h − uα) + (αuα,h + pα,h, uα − uα,h) ≥ 0

This implies
α‖uα − uα,h‖2L2(D) ≤ (pα − pα,h, uα,h − uα). (2.1)

Using the definitions of pα and pα,h, we obtain

(pα − pα,h, uα,h − uα) = (S∗(yα − z)− S∗h(yα,h − z), uα,h − uα)

= (S∗(yα − yα,h) + (S − S∗h)(yα,h − z), uα,h − uα).

Here the second addend can be estimated as

|((S − S∗h)(yα,h − z), uα,h − uα)| ≤ δ∞(h)‖uα,h − uα‖L1(D). (2.2)

where we used Assumption 2. (If we would have estimated |((S − S∗h)(yα,h −
z), uα,h − uα)| ≤ ‖(S − S∗h)(yα,h − z)‖L2(D)‖uα,h − uα‖L2(D) instead, we would
obtain the non-robust estimate of Proposition 1.7.) We continue with investi-
gating the first addend in the above estimate

(S∗(yα − yα,h), uα,h − uα) = (yα − yα,h, Suα,h − Suα)Y

= (yα − yα,h, (S − Sh)uα,h + Shuα,h − Suα)Y

= −‖yα − yα,h‖2Y + (yα − yα,h, (S − Sh)uα,h)Y

≤ −1

2
‖yα − yα,h‖2Y +

1

2
δ2(h)2,

(2.3)

where we used Assumption 2 in the last step. Combining the estimates (2.1),
(2.2), and (2.3) yields

1

2
‖yα − yα,h‖2Y + α‖uα − uα,h‖2L2(D) ≤

1

2
δ2(h)2 + δ∞(h)‖uα,h − uα‖L1(D),

which is the claim.

The L1-error in the previous estimate can be bounded if the regularity assump-
tion, i.e. Assumption 1, is fulfilled.

7



Lemma 2.2. Let Assumption 1 be satisfied. Let α > 0. Let vα, qα ∈ L∞(D) be
given satisfying the projection formula

vα(x) = proj[ua(x),ub(x)]

(
− 1

α
qα(x)

)
f.a.a. x ∈ D.

Then there is a constant c > 0 independent of α and (vα, qα) such that

‖u0 − vα‖L1(D) ≤ c(ακ + ‖p0 − qα‖κL∞(D))

‖u0 − vα‖L2(D) ≤ c(ακ/2 + ‖p0 − qα‖κ/2L∞(D))

holds for all α > 0.

Proof. This follows from [13, Lemma 3.3].

Now we have everything at hand to derive the robust error estimate.

Theorem 2.3. Let Assumptions 1 and 2 be satisfied. Then for every hmax > 0
and αmax > 0 there is a constant c > 0 such that

‖yα − yα,h‖Y ≤ c
(
δ2(h) + δ∞(h)d + αd−1/2δ∞(h)1/2

)
,

‖pα − pα,h‖L∞(D) ≤ c
(
δ2(h) + δ∞(h)min(d,1) + αd−1/2δ∞(h)1/2

)
,

‖uα − uα,h‖L1(D) ≤ c
(
δ2(h)κ + δ∞(h)κmin(d,1) + ακ(d−1/2)δ∞(h)κ/2 + ακmin(1,d)

)
holds for all h < hmax and α ∈ (0, αmax]. Here, d is given by Proposition 1.4.
The constant c depends on αmax and hmax.

Proof. Let hmax > 0 and αmax > 0 be given, and let h < hmax and α ∈ (0, αmax]
be arbitrary.
In order to invoke Lemma 2.1, we start with an estimate of ‖uα,h − uα‖L1(D).
With the result of Lemma 2.2 we obtain

‖uα,h − uα‖L1(D) ≤ ‖uα,h − u0‖L1(D) + ‖u0 − uα‖L1(D)

≤ c(ακ + ‖p0 − pα,h‖κL∞(D) + ‖p0 − pα‖κL∞(D))

≤ c(ακ + ‖p0 − pα‖κL∞(D) + ‖pα − pα,h‖κL∞(D))

(2.4)

with constants c > 0 independent of α and h. Due to the regularization error
estimate of Proposition 1.4, we have

‖p0 − pα‖κL∞(D) ≤ c α
κd.

Here, c > 0 depends on αmax. The discretization error ‖pα− pα,h‖κL∞(D) can be
estimated by

‖pα − pα,h‖L∞(D) ≤ ‖pα − S∗(yα,h − z) + S∗(yα,h − z)− pα,h‖L∞(D)

≤ ‖S∗(yα − yα,h)‖L∞(D) + ‖(S∗ − S∗h)(yα,h − z)‖L∞(D)

≤ c(‖yα − yα,h‖Y + δ∞(h)).

(2.5)
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This proves

‖uα,h − uα‖L1(D) ≤ c(ακmin(1,d) + ‖yα − yα,h‖κY + δ∞(h)κ)

= c(α2d−1 + ‖yα − yα,h‖κY + δ∞(h)κ)
(2.6)

where in the last step we used Lemma 1.5.
With the result of Lemma 2.1 we obtain

1

2
‖yα − yα,h‖2Y ≤

1

2
δ2(h)2 + δ∞(h)‖uα,h − uα‖L1(D)

≤ 1

2
δ2(h)2 + c δ∞(h)(α2d−1 + ‖yα − yα,h‖κY + δ∞(h)κ).

(2.7)

Let us first consider the case κ < 2, in which the term ‖yα − yα,h‖κY can be
absorbed by the left-hand side. By Young’s inequality we find

c δ∞(h)‖yα − yα,h‖κY ≤
1

4
‖yα − yα,h‖2Y + c′ δ∞(h)

2
2−κ .

This implies

1

4
‖yα − yα,h‖2Y ≤ c (δ2(h)2 + α2d−1δ∞(h) + δ∞(h)

2
2−κ + δ∞(h)κ+1)

≤ c (δ2(h)2 + α2d−1δ∞(h) + δ∞(h)2d)

with c > 0 depending additionally on hmax. Using (2.5) and (2.6) to estimate
‖pα − pα,h‖L∞(D) and ‖uα,h − uα‖L1(D), respectively, yields the claim in the
case κ < 2.
Let us now prove the claim for the case κ ≥ 2. Here, it is not possible to absorb
‖yα− yα,h‖κY . We will derive a rough estimate of this quantity first. Due to the
control constraints, the term ‖u0 − uα‖L1(D) is uniformly bounded. Hence, we
obtain by Lemma 2.1

‖yα − yα,h‖2Y ≤ c(δ2(h)2 + δ∞(h)).

Using this upper bound of ‖yα − yα,h‖Y in (2.7) yields

1

2
‖yα − yα,h‖2Y ≤

1

2
δ2(h)2 + c δ∞(h)(α2d−1 + δ2(h)2κ + δ∞(h)κ).

By Young’s inequality we obtain

δ∞(h)δ2(h)2κ ≤ c(δ∞(h)κ+1 + δ2(h)2κ·κ+1
κ ) = c(δ∞(h)κ+1 + δ2(h)2(κ+1)).

Since κ+ 1 = 2d > 1, this proves

‖yα − yα,h‖2Y ≤ c(δ2(h)2 + δ∞(h)α2d−1 + δ∞(h)κ+1),

with c > 0 depending additionally on hmax. The estimates of ‖pα − pα,h‖L∞(D)

and ‖uα,h − uα‖L1(D) follow now from (2.5) and (2.6), respectively.

Let us compare the results of this theorem to the results of Proposition 1.7
and 1.8. Clearly, the convergence rates of Theorem 2.3 with respect to the
discretization quantities are smaller than the rates given by Proposition 1.7 in
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the case α > 0. But the estimates of Theorem 2.3 are not only robust with
respect to α ↘ 0 but also optimal in the case α = 0 as they coincide with
the rates given by Proposition 1.8. Here, it would be interesting to search for
results that combine both advantages: namely, provide convergence rates that
are similar to Proposition 1.7 in the case α > 0 and that are on the same time
robust with respect to α↘ 0 and yield the convergence rate of Proposition 1.8
in the case α = 0.

3 A-priori regularization parameter choice
The results of the previous section give rise to a-priori parameter choice rules
α(h), where α is chosen depending on δ∞(h). Here it is important to ensure
that the additional error introduced by the regularization is of the same order
as the discretization error. It is favorable to obtain error estimates that are of
the same order as the ones that are available for α = 0, see Proposition 1.8
above.

Theorem 3.1. Let Assumptions 1 and 2 be satisfied. Let α be chosen such that

α(h) = δ∞(h).

Then for every hmax > 0 there is c > 0 such that

‖y0 − yα(h),h‖Y ≤ c
(
δ2(h) + δ∞(h)d

)
,

‖p0 − pα(h),h‖L∞(D) ≤ c
(
δ2(h) + δ∞(h)min(d,1)

)
,

‖u0 − uα(h),h‖L1(D) ≤ c
(
δ2(h)κ + δ∞(h)κmin(d,1)

)
holds for all h < hmax, where c depends on hmax but is independent of h.

Proof. Let us first investigate the error ‖y0 − yα(h),h‖Y . We have

‖y0 − yα(h),h‖Y ≤ ‖y0 − yα(h)‖Y + ‖yα(h) − yα(h),h‖Y .

The first addend can be estimated by Proposition 1.4 using the assumption

‖y0 − yα(h)‖Y ≤ c α(h)d ≤ c δ∞(h)d.

Applying Theorem 2.3 we can bound the second term from above as

‖yα(h) − yα,h‖Y ≤ c
(
δ2(h) + δ∞(h)d + αd−1/2δ∞(h)1/2

)
≤ c

(
δ2(h) + δ∞(h)d

)
.

This implies the claimed estimate

‖y0 − yα(h),h‖Y ≤ c
(
δ2(h) + δ∞(h)d

)
.

Similarly, we can prove

‖p0 − pα(h),h‖L∞(D) ≤ c
(
δ2(h) + δ∞(h)min(1,d)

)
and the estimate of ‖uα − uα,h‖L1(D).
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This result proves convergence rates with respect to the discretization while still
allowing for some regularization. The obtained convergence rate with respect
to δ2 and δ∞ is optimal in the following sense: We prove the same convergence
rates as in the case α = 0.
The surprising fact about this result is that the optimal parameter choice α(h) =
δ∞(h) is independent of the unknown parameter κ in Assumption 1, which
played a key role in all the analysis above. Hence, this result is perfectly suited
to be used in adaptive computations that both are adaptive in the discretization
as well as in the regularization.
Moreover, the theorem above yields the optimal convergence rate for all κ > 0,
whereas the discrepancy-principle-based parameter choice rule of the previous
work [11] only yields optimal rates for κ ≤ 1. Additionally, the result gives a the-
oretically explanation for the numerical results in [11]. There, the discrepancy
principle selects α(h) ∼ h2, which is (up to logarithmic terms) the underlying
convergence rate of the L∞-error for the problem considered there.
Let us mention that an a-priori choice of the regularization parameter based on
the non-robust estimate of Proposition 1.7 does not yield optimal convergence
rates. With the estimates of Proposition 1.4 and 1.7 we have

‖y0 − yα,h‖Y ≤ ‖y0 − yα‖Y + ‖yα − yα,h‖Y

≤ c
(
αd + α−1/2δ2(h) + δ2(h)

)
.

In order to balance the regularization and discretization error, one would have
to choose α̂(h) ∼ δ2(h)

2
2d+1 , which would lead to

‖y0 − yα̂(h),h‖Y ≤ c
(
δ2(h)

2d
2d+1 + δ2(h)

)
.

In the case κ = 1, we would get ‖y0 − yα̂(h),h‖Y ≤ c δ2(h)2/3. The resulting
convergence rate thus is much lower than the optimal one obtained for the
choice α ∼ δ∞(h).

Remark 3.2. The same results can be obtained if we want to use a-priori type
discretization error estimates as in Remark 1.9 above. The results of Theorems
2.3 and 3.1 remain valid if δ2 and δ∞ are replaced by δ′2 and δ′∞, respectively.

4 Relation to parameter choice rules
In the previous work [11] the following parameter choice rule was studied. There
α was chosen by

α̃(h) := sup{α > 0 : Iα,h ≤ δ2(h)2 + δ∞(h)2}. (4.1)

Here, the discrepancy measure Iα,h was defined by

Iα,h :=

∫
{x: pα,h>0}

(uα,h − ua)pα,h dµ+

∫
{x: pα,h<0}

(uα,h − ub)pα,h dµ.

This choice was motivated by the estimate

‖y0,h − yα,h‖2Y ≤ (uα,h − u0,h, pα,h)L2(D) ≤ Iα,h,
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see [11, Lemma 2.1]. Let us now study, whether the choice α(h) = δ∞(h)
satisfies the relation

Iα(h),h ≤ δ2(h)2 + δ∞(h)2,

which would imply α̃(h) ≥ α(h). In order to show this, let us cite the following
estimate of Iα,h

Iα,h ≤ c α(‖p0 − pα,h‖κL∞(D) + ακ), (4.2)

which is taken from [11, (2.3)].

Theorem 4.1. Let Assumptions 1 and 2 be satisfied. Let α be chosen such that

α(h) = δ∞(h).

Then for every hmax > 0 there is c > 0 such that

Iα(h),h ≤ c (δ∞(h)2d + δ2(h)2d)

holds for all h < hmax. Hence, if κ > 1 then there is h0 > 0 such that

Iα(h),h ≤ c (δ2(h)2 + δ∞(h)2)

holds for all h < h0. The constant c depends on hmax but is independent of h.

Proof. Using estimate (4.2) and Theorem 3.1 we find

Iα(h),h ≤ c α(h)(‖p0 − pα(h),h‖κL∞(D) + ακ)

≤ c δ∞(h)(δ2(h)κ + δ∞(h)κmin(1,d) + δ∞(h)κ).

By Young’s inequality we obtain using 2d ≤ κ+ 1

δ∞(h)δ2(h)κ ≤ c (δ∞(h)κ+1 + δ2(h)κ
κ+1
κ ) ≤ c (δ∞(h)2d + δ2(h)2d).

With the help of Lemma 1.5 we find

Iα(h),h ≤ c (δ∞(h)2d + δ2(h)2d),

which proves the claim.

This shows that the a-priori choice of the regularization parameter given by
Theorem 2.3 satisfies the discrepancy principle (4.1) above in the case κ > 1. In
the case κ = 1 (and hence d = 1) one can prove a similar result, if one replaces
(4.1) with

α̃(h) := sup{α > 0 : Iα,h ≤ τ(δ2(h)2 + δ∞(h)2)},

where τ > 0 has to be sufficiently small.
The theorem above shows that for sufficiently small h the inequality α(h) ≤ α̃(h)
is satisfied. Here one would like to prove the reverse estimate. Such an estimate
seems not to be available, as it would require to work with estimates of the
discrepancy measure Iα,h from below.
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5 Application to an elliptic optimal control prob-
lem

Let us now report about numerical experiments to solve an elliptic optimal
control problem. This problem is given by: Minimize

J(y, u) :=
1

2
‖y − yd‖L2(Ω)

subject to the elliptic equation

−∆y = u+ f in Ω

y = 0 on ∂Ω

and the control constraints

ua ≤ u ≤ ub a.e. on Ω.

Here, Ω ⊂ Rn is a given bounded, polygonal, and convex domain with boundary
∂Ω. Moreover, we have yd, f, ua, ub ∈ L∞(Ω) with ua ≤ ub a.e. on Ω. The
solution operator S, S : u 7→ (−∆)−1, satisfies the assumptions made at the
beginning of the paper. We set z := yd − Sf . Then the control problem can be
rephrased equivalently in the form (P).
Let us now describe the discretization by finite elements. We use a family
F = {Th}h>0 of regular meshes Th, consisting of closed cells T ∈ Th. For
T ∈ Th let us define hT := diamT . We assume that there is a constant R, such
that hT ≤ R RT for all h > 0, T ∈ Th, where RT is the diameter of the largest
ball contained in T .
The discrete space Vh is defined as

Vh := {v ∈ H1
0 (Ω) : v|T ∈ P1(T )}.

The discrete operator Sh is defined as the solution mapping of the discrete weak
formulation of the elliptic equation. That is, Shu :== yh ∈ Vh, where yh solves∫

Ω

∇yh · ∇vh dµ =

∫
Ω

uvh dµ ∀vh ∈ Vh.

Please note, that S and Sh are self-adjoint, S = S∗ and Sh = S∗h.
We will report about experiments using a-priori or a-posteriori estimates to
calculate δ∞(h).

5.1 A-priori error estimates
Let us assume in addition that the meshes Th are quasi-uniform. That is, there
is a constant M > 1 such that maxT∈Th hT ≤ M minT∈Th hT for all h > 0. In
this case, we have the following optimal optimal a-priori rates, which hold under
additional regularity assumptions, see [3],

‖(S − Sh)f‖L∞(Ω) ≤ c h2| log h|r(n)

with r(2) = 2, r(3) = 11/4.
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5.2 A-posteriori error estimates
For comparison, we also used a-posteriori error estimates to determine the dis-
cretization error. We used the reliable and efficient error estimator from [8],
which is defined as follows. Let us set ηyα,h,∞ := maxT∈Th ηT,yα,h,∞ and

ηT,yα,h,∞ := | log hmin|2
(
h2
T ‖∆yα,h + uα,h + f‖L∞(T ) + hT

∥∥∥∥[∂yα,h∂n

]∥∥∥∥
L∞(∂T\Γ)

)
,

where hmin := minT∈Th hT , and [v]E denotes the jump of the quantity v across
an edge E. Then it holds

‖(S − Sh)uα,h‖L∞(Ω) ≤ c1ηyα,h,∞

with c > 0 independent of h and α. Analogously, the error estimator ηpα,h,∞
for the error in the adjoint equation is defined.

5.3 Numerical experiments
Let us now report about the outcome of numerical experiments. The following
data was used:

Ω = (0, 1)2, ua = −1, ub = +1,

z(x1, x2) = sin(πx1) sin(πx2) + sin(2πx1) sin(2πx2)

f(x1, x2) = − sign
(

sin(2πx1) sin(2πx2)
)

+ 2π2 sin(πx1) sin(πx2).

It is easy to check that (P) admits the following unique solution:

u0(x1, x2) = sign
(

sin(2πx1) sin(2πx2)
)

y0(x1, x2) = sin(πx1) sin(πx2)

p0(x1, x2) = − 1

8π2
sin(2πx1) sin(2πx2).

In addition, it turns out that the regularity assumption is satisfied for all κ < 1.
This implies by Proposition 1.4 d = 1, ‖u0 − uα‖L1(D) ≤ c α.
Moreover, with the choice α(h) = δ∞(h), we have by Theorem 3.1

‖u0 − uα(h),h‖L1(D) ≤ c (δ2(h) + δ∞(h)) .

Since Ω is bounded by assumption, we can estimate the L2-error against the
L∞-error to obtain

‖u0 − uα(h),h‖L1(D) ≤ c δ∞(h).

The initial mesh was obtained by dividing the domain Ω into 32 triangles with
mesh size h = 0.3536. This mesh is then successively refined using uniform
refinement.
Let us first describe the different tests with regularization parameter choices.
We emphasize that both choices of the regularization parameter do not need
information about the value of κ. We comment on the results below in Sec-
tion 5.4.
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h ‖u0 − uα(h),h‖L1(D) ‖p0 − pα(h),h‖L∞(D) α(h)

3.5355 · 10−1 3.2840 · 10−1 1.0098 · 10−2 9.7656 · 10−4

1.7678 · 10−1 1.0145 · 10−1 3.4007 · 10−3 2.4414 · 10−4

8.8388 · 10−2 3.4515 · 10−2 8.7735 · 10−4 1.2207 · 10−4

4.4194 · 10−2 7.7750 · 10−3 2.1340 · 10−4 1.5259 · 10−5

2.2097 · 10−2 1.8164 · 10−3 5.1677 · 10−5 3.8147 · 10−6

1.1049 · 10−2 4.4220 · 10−4 1.2606 · 10−5 9.5367 · 10−7

∼ h2 ∼ h2 ∼ h2

Table 1: Choice by discrepancy principle, a-posteriori error estimate

h ‖u0 − uα(h),h‖L1(D) ‖p0 − pα(h),h‖L∞(D) α(h)

3.5355 · 10−1 5.8409 · 10−1 1.0281 · 10−2 6.2500 · 10−3

1.7678 · 10−1 1.7616 · 10−1 3.4236 · 10−3 1.5625 · 10−3

8.8388 · 10−2 5.2228 · 10−2 8.8031 · 10−4 3.9063 · 10−4

4.4194 · 10−2 1.4560 · 10−2 2.1445 · 10−4 9.7656 · 10−5

2.2097 · 10−2 3.4108 · 10−3 5.2005 · 10−5 2.4414 · 10−5

1.1049 · 10−2 8.0186 · 10−4 1.2699 · 10−5 6.1035 · 10−6

∼ h2 ∼ h2 ∼ h2

Table 2: A-priori choice of regularization parameter, a-priori error estimates

5.3.1 Choice by discrepancy principle, a-posteriori error estimate

First, let us report about the outcome of the computations if the regularization
parameter is chosen by the discrepancy principle (4.1). The costly computation
of the supremum in (4.1) was replaced by the following principle

α̃(h) := sup{α : α = 2−jα0, j ∈ N, Iα,h ≤ τ(ηyα,h,∞ + ηpα,h,∞)}

with τ = 2 · 10−4 and α0 = 10−4. If z 6= 0, then the supremum exists, see [11,
Lemma 3.1]. The results of the computation can be found in Table 1.

5.3.2 A-priori choice of regularization parameter, a-priori error es-
timates

Second, we applied the following strategy. According to Theorem 3.1, we choose
α(h) ∼ δ∞(h). Here, we used δ∞(h) = h2, ignoring the logarithmic term, cf.
Section 5.1. The results of the computation can be found in Table 2.

5.3.3 A-priori choice of regularization parameter, a-posteriori error
estimates

The third strategy we investigated was the following. Again α was chosen
proportionally to the L∞-error. Here, we used the a-posteriori estimates of
Section 5.2. Then the regularization parameter α(h) was chosen iteratively: For
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h ‖u0 − uα(h),h‖L1(D) ‖p0 − pα(h),h‖L∞(D) α(h)

3.5355 · 10−1 4.8075 · 10−1 1.0177 · 10−2 3.6464 · 10−3

1.7678 · 10−1 1.6251 · 10−1 3.4200 · 10−3 1.2837 · 10−3

8.8388 · 10−2 4.8981 · 10−2 8.7957 · 10−4 3.3204 · 10−4

4.4194 · 10−2 1.3059 · 10−2 2.1395 · 10−4 8.3717 · 10−5

2.2097 · 10−2 3.1173 · 10−3 5.1785 · 10−5 2.0964 · 10−5

1.1049 · 10−2 7.6073 · 10−4 1.2645 · 10−5 5.2427 · 10−6

∼ h2 ∼ h2 ∼ h2

Table 3: A-priori choice of regularization parameter, a-posteriori error estimates

a fixed mesh, we solved the regularized discretized problem. If α ≤ ηyα,h,∞ +
ηpα,h,∞ was satisfied, we set α(h) := α and accepted the discrete solution. If α
was larger than ηyα,h,∞ + ηpα,h,∞, we set α := 1

2

(
ηyα,h,∞ + ηpα,h,∞

)
and solved

the discrete problem again. The results of the computation can be found in
Table 3.

5.4 Comments on the computational results
All three tests showed similar performances. Although the choices of the reg-
ularization parameter were conceptually different, the outcome is very similar.
All the methods choose

α(h) ∼ h2.

The resulting errors in control, state, and adjoint behaved like

‖u0 − uα(h),h‖L1(D), ‖y0 − yα(h),h‖L2(D), ‖p0 − pα(h),h‖L∞(D) ∼ h2.

Moreover, the results using the optimistic a-priori rate δ∞(h) = h2 and the
results using the a-posteriori estimator agree to large extend. Hence, the choice
of the a-priori rate is justified.
These results show that both parameter choices - a-priori as well as a-posteriori
- lead to comparable results.

6 Conclusion
In this paper, we presented a robust error estimate for the optimization problem
under consideration. This robust estimate lends itself to an a-priori regulariza-
tion parameter choice. The numerical results confirm these findings, results in
optimal convergence rates with respect to the discretization parameter. More-
over, they show that this a-priori choice leads to the same accuracy as the
a-posteriori choice based on a discrepancy principle.
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