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Abstract

We investigate the optimal control of elliptic PDEs with jumping coefficients. As discretization
we use interface concentrated finite elements on subdomains with smooth data. In order to apply
convergence results, we prove higher regularity of the optimal solution using the concept of quasi-
monotone coefficients and a domain that is injective modulo polynomials of degree 1 at each vertex.
Numerical results are presented for a semi-linear control problem with a non-local radiation operator,
which models the production process of silicon carbide single crystals.
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1 Introduction

Let us introduce the class of optimal control problems that we will investigate. We consider the mini-
mization of the objective functional

J(y, u) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(U)

subject to box constraints on the control u and an elliptic partial differential equation (PDE) on a
polygonal domain Ω ⊂ R2 which consists of pairwise disjoint subsets Ωi (also polygonal)

−∇(κi∇yi) = fi in Ωi

where κi > 0. The control u acts on interfaces between subdomains. This setting is used to model
physical applications with different materials, where on subdomain i the material i is used.
Due to the discontinuity of the coefficient κ across subdomain boundaries, we speak of transmission or
interface problems. Their main characteristics are the transmission conditions

yi − yj = gi,j ,

κi∂ni
yi + κj∂nj

yj = hi,j on ∂Ωi ∩ ∂Ωj with i 6= j.
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Existence and regularity of solutions have been thoroughly studied in literature. The homogeneous case
is treated in [6, 28, 30] while inhomogeneous data is discussed for general elliptic operators in [26, 27].
The control will act on the interfaces through the condition κi∂ni

yi + κj∂nj
yj = u.

The application we have in mind is a semi-linear optimal control problem that models the production
process of silicon carbide (SiC) single crystals. These crystals are often used in electronic applications
because of their properties as semiconductor materials. SiC crystals are produced with the physical vapor
transport method. Under high temperatures (2000-3000 K) and low pressure, polycrystalline powder at
the bottom of a cavity inside a graphite crucible is caused to sublimate (see e.g. [16, 17, 18]).
On the interface between the solid and gas phases the radiation of heat is modeled as a source term in
the transmission boundary condition. In order to optimize the production process, the gradient of the
temperature is to be controlled. We formulate an optimal control problem with Neumann control at
the outer boundary of the domain and report about numerical experiments in section 5.2. The case of
distributed controls is treated in more detail with state or control constraints in [7, 22, 23, 24].
The aim of this paper is to apply a suitable discretization method to solve an optimal control problem
subject to the elliptic problem described above. We will focus on the interface concentrated finite element
method. This version of hp-FEM uses a priori information for mesh refinement, i.e. the regularity of the
data and the domain itself. In order to be able to apply error estimates for the boundary concentrated
finite element method (bc-FEM) of [15], we derive local and global regularity of solutions to the interface
problem.
As the elliptic problem is posed on polygonal domains, singularities may appear at vertices that generally
only allow for H1+δ-regular solutions with δ ∈ (0, 1]. The expansion of solutions into a regular part
and singular contributions located at the vertices of the domain is related to the seminal results of [20].
The monographs [5, 10, 11, 21] are classic in this field. In addition, the transmission conditions restrict
the global regularity, which cannot exceed H3/2(Ω) due to the jump in the normal derivative (even if
gi,j = 0). However, the solution to the state equation may display smoother behavior when it is restricted
to a subdomain Ωi.
Moreover, the presence of control constraints makes the application of higher order discretization tech-
niques difficult, because the arising first order necessary conditions are non-smooth, which restrict the
global regularity of the control to at most C0,1. The resulting projection formula is challenging to imple-
ment for higher order trial functions.

The outline of this paper is as follows. After briefly introducing necessary functions spaces and notation,
we exemplarily show in section 3 how the smoothness of a solution is related to an abstract eigenvalue
problem. After rigorously defining the transmission problem we collect some results of the corresponding
eigenvalue theory. The main point of this section is the formulation of an asymptotic expansion of the
solution in the homogeneous case (Theorem 3.9).
Section 4 establishes a lower bound on the distribution of eigenvalues by means of a quasi-monotone
distribution of the coefficients κi. The extension of the regularity result for inhomogeneous problems
is obtained by the aid of the concept of injectivity modulo polynomials for PDEs posed on polygonal
domains. Under the assumption that the interface control is from the space H1/2 we can formulate an
expansion result for the general case, which allows to deduce higher global and local regularity (Theorem
4.10, Corollary 4.11, 4.12).
In section 5 we present two optimal control problems, among them the semi-linear optimal control problem
with non-local radiation operator, as mentioned before. We discuss H1+δ-regularity of the state y and
adjoint q, which determines the convergence rates of the boundary concentrated finite element method
(see [2, 3, 15]).
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2 Preliminaries

The domain Ω is defined as an open, bounded subset of R2 whose boundary ∂Ω =: Γ is a polygon. This
means that

∂Ω = ∪Ee=1γ̄e, E ∈ N,

for pairwise disjoint boundary parts γe. Each γe is a straight line segment, which is open with respect
to the relative topology in R2. If the intersection γ̄e ∩ γ̄e′ is nonempty, we refer to this point as a vertex.
The set of all vertices is called V.
We denote the space of p-times integrable functions by Lp(Ω). The functions whose weak derivatives of
order k also lie in Lp(Ω) are collected in the Sobolev space W k,p(Ω), where we write Hk(Ω) for p = 2.
We also allow fractional exponents s. In this case a functions v lies in Hs(Ω) with

s > 0, s = bsc+ σ

if it has finite norm

‖v‖Hs(Ω) :=

∫
Ω

∑
|α|≤bsc

|Dαv|2 dx+

∫
Ω

∫
Ω

∑
|α|=bsc

|Dαv(x)−Dαv(y)|2

|x− y|2+2σ
dx dy

1/2

. (2.1)

It is well known that there is a bounded trace operator

T : Hs(Ω)→ Hs−1/2(ΓD), v 7→ v|ΓD

if s− 1/2 > 0 is not integer and ΓD ⊆ ∂Ω, see [1, 11].
In order to incorporate homogeneous Dirichlet boundary conditions, we define

H1
ΓD

(Ω) := {v ∈ H1(Ω) | T (v) = 0}.

In the sequel, we will need weighted Sobolev spaces with powers of the weight function

r(x) :=
∏
X∈V

min{1,dist(x,X)}, x ∈ Ω̄.

Define
C∞V (Ω̄) := {v ∈ C∞(Ω̄) | supp(v) ∩ V = ∅}

and V k,pβ (Ω) as the closure of C∞V (Ω) under the norm

‖ v ‖k,p,β :=
∑
|α|≤k

‖ rβ+|α|−kDαv ‖Lp(Ω).

3 Expansion of solutions of the transmission problem

In order to investigate the global regularity of solutions to transmission problems, we built on the ex-
pansions of solutions into a regular part and singular parts corresponding to irregular functions at the
vertices of Ω. As the procedure is complicated and tedious, we only sketch the basic ideas for a simpler
case mainly following the exposition in [21].
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3.1 Poisson’s equation

We look for weak solutions to the Dirichlet problem

−∆y = f in Ω, y = 0 on Γ. (3.1)

It is well known, that the Laplacian ∆ in Cartesian coordinates transforms to

1

r
∂r (r∂r) +

1

r2
∂2
θ (3.2)

in polar coordinates with (x1, x2) = (r cos θ, r sin θ) and r ≥ 0, θ ∈ [0, 2π). Analogous formulas are
available for the n-dimensional case which allows for treating higher dimensional problems.
If we formally set r∂r =: λ, Poisson’s equation becomes

(λ2 + ∂2
θ )y = r2f.

Neglecting boundary and interface conditions, this equation is uniquely solvable if and only if

λ2v + ∂2
θv = 0 (3.3)

has only trivial solutions v ≡ 0. This illustrates the important role of the non-linear eigenvalue problem
(3.3).
Let us give a short but more rigorous outline of the derivation of the (Sturm-Liouville-)eigenvalue problem
and the resulting expansion of the solution to (3.1). As regularity is a local concept, we only need to
worry about the smoothness of y at the vertices of Ω. For interior balls

Bd(x0) with x0 ∈ Ω, d < dist(x0,Γ)

we know that y ∈ H2(Bd(x0)). The same is true for smooth parts of the boundary, which can be
locally flattened and become half balls B+(x0) := {x ∈ R2 | x2 = 0}. After the change of coordinates
y ∈ H2(B+

d (x0)) for d small enough and x0 ∈ Γ, x0 /∈ V.
For treating the irregularities in a vertex X ∈ V of the domain, we localize the problem using a smooth
cut-off function ηX = ηX(‖x−X ‖2) ∈ C∞(R2). We stipulate 0 ≤ η ≤ 1 such that ηX ≡ 1 for all x near
X and ηX decreases rapidly to 0 so that all other vertices are not ’visible’. Locally, a solution of (3.1)
satisfies

−∆(ηXy) = g := −(∆ηX)y + ηXf + 2∇ηX · ∇y (3.4)

where we can change the coordinates such that the domain becomes a cone with opening angle ωX ∈ (0, 2π)

CX := {(r, θ) ∈ R2 | r ∈ R+, θ ∈ (0, ωX)}.

Applying this change to the differential operator yields the equivalent problem for the new variable
y := ηXy (we dispense with writing yX everywhere)

−
(
∂2
ry +

1

r
∂ry +

1

r2
∂2
θy

)
= g in CX ,

y(r, 0) = y(r, ωX) = 0.

(3.5)

The operation which manages to send r∂r to λ ∈ C is the Mellin-transform. It reads for fixed θ ∈ (0, ωX)

M [y(., θ)](λ) =
1√
2π

∫ ∞
0

r−λ−1y(r, θ)dr =: Y (λ, θ).
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It is closely connected to the Fourier-Transform F [y(., θ)](z ∈ C) by Euler’s change of variables, which
substitutes r =: eτ , τ ∈ (−∞,∞). If we suppress the dependence on θ, which is assumed to be arbitrary
but fixed in [0, 2π), the use of the definitions of both transforms yields the relation

M [y](λ) = F [y](z), z = −iλ.

Several known properties from the Fourier-Transform, therefore, carry over to the Mellin-Transform. We
only state a few important ones (see [21]).

Theorem 3.1. Let < and = denote the real and imaginary part of a complex number. For λ ∈ C and
h := −<(λ) fixed, the Mellin-Transform M

• is an isomorphism

M :
{
f |

∫ ∞
0

|f(r)|2r2h−1 dx <∞
}
→ L2(−h+ iR).

• possesses an inverse mapping M−1
h given by

M−1
h [U ](r) :=

1

i
√

2π

∫ −h+i∞

−h−i∞
rλU(λ) dλ.

• satisfies
M [(r∂r)

ky](λ) = λkM [y](λ), k ∈ N.

We can apply M to (3.5) and solve the simpler problem for Y (λ, θ)

λ2Y + ∂2
θY = M [−r2g], in (0, ωX),

Y (λ, 0) = Y (λ, ωX) = 0.
(3.6)

In order to solve (3.6) with the help of Theorem 3.1, the integrability of −r2g as defined in (3.5) has to
be investigated. As the cut-off function ηX is smooth and y ∈ H1(Ω), the behavior of f near the vertex
X is crucial.

Let f ∈ V 0,2
β (Ω) with β ≥ 0 and set <(λ) = 1− β = −h, then

∞ >

∫
CX

r2βg(x)2 dx =

∫ ωX

0

∫ ∞
0

r2βg(r, θ)2r dr dθ =

∫ ωX

0

∫ ∞
0

r2h−1|r2g(r, θ)|2 dr dθ. (3.7)

This proves that the Mellin-Transform of −r2g exists for <(λ) ≤ 1. The case <(λ) = 1 corresponds to
f ∈ L2(Ω).
The inverse mapping of the Mellin-Transform works on lines parallel to the imaginary axis. We find
a solution y of (3.4) if we apply the inverse mapping of Theorem 3.1 to solutions Y of (3.6) on a line
{<(λ) = −h} where

λ2V + ∂2
θV = 0,

V (λ, 0) = V (λ, ωX) = 0.
(3.8)

has only trivial solutions (implying that Y is unique). The behavior of the resulting function for r →∞
hereby depends on the value of <(λ) = 1− β = −h which was chosen for the inverse transform. We have
the following regularity ([20, 21])

M−1
h [Y (λ)] ∈ V 2,2

β (CX). (3.9)
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An expansion of the solution to Poisson’s equation is obtained as follows. The solutions of (3.8) are given
by

V = C sin(λθ) +D cos(λθ), C,D ∈ C.
The constants need to be adjusted to fit the boundary conditions, which implies that only the case
λk = kπ/ω allows non-trivial solutions for k ∈ Z \ {0}, i.e. Vk = sin( kπωX

θ). Obviously, the eigenvalues are
real and distributed symmetrically around zero.

For ωX > π the lines {<(λ) = 1} and {<(λ) = 0} are free of eigenvalues. Due to [20], the original problem
(3.5) has a solution in V 2,2

1 (Ω) which corresponds to the inverse Mellin-Transform with <(λ) = h = 0
because of (3.9). Consequently, we need to evaluate

1

i
√

2π

∫ 1+i∞

1−i∞
Y (λ, θ)rλ dλ.

This is done with the help of the residue theorem and the box domain Q depicted in Figure 1.

√
2π lim

L→∞

∫
Q

Y rλ dλ =
1

i
√

2π

∫ +i∞

−i∞
Y (λ, θ)rλ dλ− 1

i
√

2π

∫ 1+i∞

1−i∞
Y (λ, θ)rλ dλ

=
√

2π
∑
λ∈Q

Res(Y (λ, θ)rλ)

=(λ)

<(λ)
0

Li 1 + Li

1− Li−Li

Q

Figure 1: Domain of integra-
tion for evaluating inverse Mellin-
Transforms.

because the integrals for the horizontal parts of Q vanish in the
limit ([21]). The only pole in the domain of integration is located
at λ1 = π/ωX where the residue reads

cXr
π/ωX sin(θπ/ωX), cX ∈ R. (3.10)

On account of the regularity property (3.9) we obtain the expan-
sion

y(r, θ) = wX(r, θ) + cXr
π/ωX sin(θπ/ωX), (3.11)

with wX ∈ H2(CX).
This procedure can be done for all X ∈ V. Remember that we
implicitly agreed on y := ηXy before, so for the true solution y of
(3.1) it follows that

y =
∑
X∈V

η2
Xy +

(
1−

∑
X∈V

η2
X

)
y

where ηXy has the form (3.11). Thus,

y =
∑
X∈V

ηXcX rπ/ωX sin (θπ/ωX) + y0 (3.12)

with the regular part

y0 =
∑
X∈V

ηXwX + (1−
∑
X∈V

η2
X)y

being clearly in H2(Ω).

Remark 3.2. From the expansion (3.12), we see that the regularity of a solution y to (3.1) is limited to
H1+δ(Ω) where

δ = min
X∈V
{π/ωX} − ε, ε > 0

on domains with re-entrant corners. On convex domains, there is no pole in Q yielding a smooth solution
y ∈ H2(Ω).
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3.2 Transmission problems

In the following we generalize the setting of Poisson’s equation to cover jumping coefficients in the elliptic
operator. We then state the eigenvalue problem and provide solutions for several cases. Finally, we
provide a regularity result in form of an asymptotic expansion of the solution. The following presentation
is inspired by [26, 27].

Definition 3.3. We speak of Ω as a 2d-network if it consists of N pairwise disjoint domains Ωi such
that Ω̄ = ∪Ni=1Ω̄i. The following notation is used

∂Ωi =

Ei⋃
e=1

γ̄i,e where γi,e ∩ γi,e′ = ∅ for e 6= e′.

We further stipulate a compatibility condition among the subsets, i.e. exactly one of the following holds
for i, j ∈ {1, . . . , N} and i 6= j:

• Ω̄i ∩ Ω̄j = ∅.

• Ω̄i ∩ Ω̄j is a common vertex.

• Ω̄i ∩ Ω̄j is a common side, denoted by γi,j.

The boundary parts γi,j are collected in I forming the interface Γi = ∪γi,j∈Iγi,j.
The set of all vertices is again called V which now comprises interior vertices as well.

In the context of elliptic PDE we are faced with boundary conditions and (in the case of transmission
problems) interface conditions. Curves that lie on ∂Ω are collected in

E := EN ∪ ED

and divided into disjoint sets of Neumann and Dirichlet edges. The corresponding parts of the boundary
are addressed by ΓD,ΓN . Restricting a function y : Ω→ R̄ to one subdomain Ωi is denoted by yi : Ωi → R̄.
For a compact notation of the regularity of boundary functions on E , ED, EN or interface functions on I
we define

u ∈ Hs(I) ⇔ u|γi,j ∈ Hs(γi,j) ∀γi,j ∈ I.

Assumption 3.4. Assume that ΓD 6= ∅, fi ∈ L2(Ωi), h ∈ H1/2(ΓN ) and u ∈ H1/2(I).

The transmission problem (T ) on a 2d-network reads

−κi∆yi = fi in Ωi, (3.13a)

yi − yj = 0 on γi,j ∈ I, (3.13b)

κi∂niyi + κj∂njyj = u on γi,j ∈ I, (3.13c)

yi = 0 on γi ∈ ED, (3.13d)

κi∂niyi = hi on γi ∈ EN (3.13e)

The function u will serve as a control variable in section 5. Note that in literature (3.13c) is often written
in terms of the normal jump, i.e.

[κ∂ny(x)] := lim
ε↘0

(∇y(x+ εn)−∇y(x− εn)) · n

which is independent of the sign of the normal vector n. With the different values of κi and the charac-
teristic function χ for sets, we set

κ(x) =

N∑
i=1

χΩi
κi
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θ1

ω1

θ2
ω2. . .

θ3θJ

θJ+1
ωJ

X ∈ V

Figure 2: A vertex X in the domain Ω (after a change of variables) where J different materials meet.

and write down the weak formulation of the problem.∫
Ω

κ∇y · ∇v dx =

∫
Ω

fv dx+
∑
γi,j∈I

(u, v)L2(γi,j) +
∑
γi∈EN

(hi, v)L2(γi,j)

for all v ∈ H1
ΓD

(Ω). The arising bi-linear form is bounded and coercive and the application of the Lemma
of Lax-Milgram yields a unique solution (due to Assumption 3.4).
Proceeding as in Section 3.1, we obtain the following non-linear eigenvalue problem for 2d-networks.
Suppose J subdomains Ωj meet at a vertex X ∈ V, see Figure 2 for the notations. Then the non-linear
eigenvalue problem is given by

λ2V + ∂2
θV = 0 in (θj , θj+1), j = 1, . . . , J, (3.14a)

V (λ, θj + 0) = V (λ, θj − 0) j = 2, . . . , J, (3.14b)

κi∂θV (λ, θj + 0) = κj−1∂θV (λ, θj − 0) j = 2, . . . , J, (3.14c)

compare also (3.6). If no exterior boundary is involved, i.e. X ∩ ∂Ω = ∅, we set θJ+1 = θ1 and let both
sums in (3.14b),(3.14c) run from 1, . . . , J with the convention κ0 = κJ . Otherwise, we additionally have
boundary conditions

V (λ, θ1 = 0) = 0 if ∂Ω1 ∩ ΓD 6= ∅ ∨ ∂θV (λ, θ1 = 0) = 0 if ∂Ω1 ∩ ΓN 6= ∅ (3.14d)

V (λ, θJ+1) = 0 if ∂ΩJ ∩ ΓD 6= ∅ ∨ ∂θV (λ, θJ+1) = 0 if ∂ΩJ ∩ ΓN 6= ∅ (3.14e)

A candidate for an eigensolution is (as for the Laplacian) the function

Vj = Cj sin(λ(θ − θj)) +Dj cos(λ(θ − θj)), θ ∈ (θj , θj+1). (3.15)

The boundary and transmission conditions at the interface give rise to a system of equations for the
unknowns Cj , Dj .

It is proved by induction ([26, Example 2.29]) that the Dirichlet-Dirichlet problem (3.14) with V (λ, 0) = 0
in (3.14d) is solved by

Cj+1 =
D1

Πi
ν=2κν

dDj (λ), Dj+1 =
D1

Πj+1
ν=2κν

dMj (λ),

with the recursion formula

dD1 (λ) = sin(λω1), (3.16a)

dM1 (λ) = κ1 cos(λω1), (3.16b)

dDj (λ) = κj cos(λωj)d
D
j−1(λ) + sin(λωj)d

M
j−1(λ), (3.16c)

dMj (λ) = −κ2
j sin(λωj)d

D
j−1(λ) + κj cos(λωj)d

M
j−1(λ). (3.16d)
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The Dirichlet condition V (λ, θJ+1) = 0 in (3.14e) is equivalent to DJ+1 = 0. Hence, there are non-
trivial solutions if and only if dDJ (λ) is zero. Let us note that the condition dMJ (λ) = 0 determines the
eigenvalues for the transmission problem with mixed boundary conditions, i.e. V (λ, 0) = 0 in (3.14d) and
∂θV (λ, θJ+1) = 0 in (3.14e).

In an analogous way, the discriminant dNJ (λ) for the Neumann-Neumann problem with ∂θV (λ, 0) = 0

in (3.14d) and ∂θV (λ, θJ+1) = 0 in (3.14e) can be derived. It involves the discriminant dM
′

J (λ) for the
mixed transmission problem with ∂θV (λ, 0) = 0 in (3.14d) and V (λ, θJ+1) = 0 in (3.14e). We find

Cj+1 =
C1

Πj
ν=2κν

dM
′

j (λ), Dj+1 = − C1

Πj+1
ν=2κν

dNj (λ),

with the recursion formula

dN1 (λ) = κ1 sin(λω1), (3.16e)

dM
′

1 (λ) = cos(λω1), (3.16f)

dNj (λ) = κ2
j sin(λωj)d

M′

j−1(λ) + κj cos(λωj)d
N
j−1(λ), (3.16g)

dM
′

j (λ) = κj cos(λωj)d
M′

j−1(λ)− sin(λωj)d
N
j−1(λ). (3.16h)

Remark 3.5. The eigenvalues of the transmission problem are real numbers because the problem can
be written as a self-adjoint operator (see [25, Theorem 2.2]). Additionally, the set of eigenvalues is
countable without a cluster point (see [9] with the result of [27, Theorem 3.4]). Furthermore, the roots of
dDJ (λ), dNJ (λ), dMJ (λ), dM

′

J (λ) are symmetric around 0.

Note that at interior vertices, the function V ≡ const solves the eigenvalue problem for λ = 0 because
there are no boundary conditions present.
Let us introduce some new notation and definitions that allow us to rigorously formulate the main result of
this section, which is an asymptotic expansion for the homogeneous transmission problem. The concepts
will also be used in section 4.

Definition 3.6. Let X ∈ V and LX(λ) denote the differential operator corresponding to (3.14a) and
BX(λ) denote the operator collecting (3.14b)-(3.14e) depending on the problem posed at vertex X. The
eigenvalue problem is abbreviated by

AX(λ) := (LX(λ), BX(λ)).

As the eigenvalue problem for A(λ) of Definition 3.6 is non-linear, we provide a generalized Definition of
eigenvalues, eigensolutions and generalized Jordan chains. The following definitions are made under the
assumption of one arbitrary, but fixed vertex X ∈ V, which is why the dependency on X is suppressed.

Definition 3.7. Let C∩s := C ∩ {r = 1} be the intersection of the cone at vertex X with the one-
dimensional sphere. A number λ0 ∈ C is an eigenvalue of the operator AX(λ) if there is a non-trivial
function sλ0,0 ∈ H2(C∩s) (called eigensolution) with

AX(λ0)sλ0,0 = 0.

If λ0 is an eigenvalue of A(λ), there are dim Ker(AX(λ)) =: Iλ0
linearly independent eigensolutions sλ0,i,0

with i = 1, . . . , Iλ0
. Besides them, there may exist Nλ0,i associated eigenfunctions sλ0,i,j .

Definition 3.8. The system {sλ0,i,j} with i = 1, . . . Iλ0
, j = 0, . . . , Nλ0,i consists of eigensolutions and

associated eigensolutions (called a system of Jordan chains) if

k∑
ν=0

1

ν!
∂νλAX(λ0)sλ0,i,k−ν = 0
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for k = 0, . . . , Nλ0,i where Nλ0,i (decreasing with respect to i) denotes the size of the Jordan chain.
An eigenvalue λ0 is called simple if no associated eigensolutions exist, i.e. Nλ0

= 0.

Theorem 3.9. Let λX,j , j = 1, . . . , NX denote all eigenvalues of AX(λ) in (0, 1] and assume that
λX,j 6= 1. Then the solution to (T ) with u = 0 on a 2d-network Ω admits the expansion

y = y0 +
∑
X∈V

NX∑
j=1

cX,j ηX rλX,j sX,j(θ)

where u0,i ∈ H2(Ωi), cX,j ∈ R, sX,j ∈ H1(]0, θJ(X)[) and ηX is a smooth cut-off function.

This result comprises Remark 3.2 and is rigorously proved in [26, Theorem 2.27]. The eigenvalues of
(3.14) are simple, which is why a similar result holds in weighted Sobolev spaces (see [26, Theorem 3.6]).
An expansion of the solution y into a regular part y0 and singular contributions can be derived for more
general 2m-coercive problems (m ≥ 1) and transmission problems. The proofs are more involved and
use (semi-)Fredholm properties of the general operators. At the core, however, a non-linear eigenvalue
problem similar to (3.8) and its solvability is discussed on the infinite cone (see [26, 27] and references
therein).

4 Higher regularity of solutions of the transmission problem

An expansion like the one provided in Theorem 3.9 allows to establish higher regularity (locally and
globally) by bounding the eigenvalues from below. Since

rλs ∈ H1+λ−ε(Ω) but rλs /∈ H1+λ(Ω)

(see [10, Thm. 1.2.18]), the lowest exponent in the singular functions decides on the regularity.

Corollary 4.1. Assume there is a δ ∈ (0, 1] such that λX,j > δ for all X ∈ V. Then the solution y of
(T ) with u = 0 satisfies for all ε > 0

yi ∈ H1+δ(Ωi), y ∈ H1+min{1/2−ε,δ}(Ω).

Proof. The first regularity result of the corollary follows from Theorem 3.9 in the case of λX,i 6= 1.
Otherwise, we can rely on Sobolev embeddings and sharper results in Lp-spaces (see [28, Corollary 2.1]
and references therein).

In this section we show that the homogeneous transmission problem is H5/4-regular under the general
assumption of a quasi-monotone distribution in the diffusion coefficients κi. After that, we establish
higher regularity for the inhomogeneous case, where the control u 6= 0. This requires the introduction of
the concept of injectivity modulo polynomials.

4.1 Quasi-monotone distributions

Under general assumptions it is impossible to find a lower bound for the eigenvalue distribution of AX(λ),
which the following example shows. For a mixed boundary value problem with ω1 = ω2 = π/2, it holds

dM2 (λ) = −κ2
2 sin2(λπ/2) + κ1κ2 cos2(λπ/2).

A vanishing discriminant dM2 (λ) = 0 leads to

tan(λπ/2) = ±
√
κ1

κ2
.
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Letting κ2 →∞ sends λ→ 0.
In order to avoid such phenomena, [28] used the concept of quasi-monotone diffusion coefficients, first
introduced in [8].

Definition 4.2. Let κi > 0 with i = 1, . . . , N be the distribution of diffusion coefficients for a 2d-network.
Assume that

i 6= j, meas1(Ωi ∩ Ωj) > 0 ⇒ κi 6= κj .

Let at X ∈ V meet J different domains with κj , j = 1, . . . , J . We denote by κaj , κbj the material
constants of the domains which abut on material j with positive one dimensional measure (one of them
being zero if there is only one neighbor). The distribution of κi is called quasi-monotone if the following
assumptions hold for all X ∈ V.

• If X lies in Ω̄ \ ΓD, then

∃! j ∈ {1, . . . , J} : κj > max(κaj , κbj ).

• If X lies on ΓD, then κj = max(κaj , κbj ) implies that meas1(Ω̄j ∩ ΓD) > 0.

Remark 4.3. Three materials meeting at an interior point are automatically distributed in a quasi-
monotone way, i.e. the first condition only poses restrictions for k ≥ 4. The second condition states that,
locally, the domain with maximal material constant has to touch the Dirichlet boundary.

Using this definition, [28] proved

Theorem 4.4. If the coefficients κi are quasi-monotone, then we have

λX,i >
1

4
.

This result answers the question on regularity for the homogeneous transmission problem. Global regu-
larity of H5/4(Ω) is achieved by requiring quasi-monotone coefficients κi.
If we restrict ourselves to only two materials the bound can be improved to achieve optimal global
regularity.

Proposition 4.5. Let Ω consist only of two subdomains Ω1,Ω2. For each X ∈ V and opening angle
ωX ∈ (0, 2π], we have in the case of EN = ∅

λX,i ≥
1

2
.

Proof. The result for X ∈ Γ can be found in [4, Theorem 8.1]. For interior vertices, we refer to [19,
section 2.2].

Two numerical examples for the eigenvalue distribution are shown in figure 3: there the dependence of
eigenvalues of AX(λ) on ω1 is depicted for the two-material case, where two materials meet with angle
ω1 at a boundary and an interior vertex, respectively.

4.2 Injectivity modulo polynomials

Allowing non-homogeneous jumps in the normal derivative, i.e. u 6= 0 in (3.13c), seriously complicates
the analysis. In order to formulate an existence result for the inhomogeneous problem, it is necessary to
introduce the concept of injectivity modulo polynomials, which is described e.g. in [27].
For a cone CX we define the restriction CX,i to be the part of CX on which κ = κ(θ) = κi. Furthermore,
yi := y|CX,i

for functions y defined on CX .

11



Figure 3: Eigenvalue distribution for a boundary (left) and interior (right) vertex with κ1 = 0.25, κ2 = 5.

Definition 4.6. Let D be an open subset of Rn and let l ∈ Z and X ∈ V. We define the homogeneous
polynomial spaces of degree l as

PHl (D) := {q | q is a homogeneous polynomial of degree l defined on D} l ≥ 0,

PHl (D) := {0} l < 0,

PHl (CX) := {q : CX → R | qi ∈ PHl (CX,i)}.

For the data of our problem (P ) we define the polynomial space

ΥHl (CX) := PHl−2(CX)×
∏

γii′∈ED

PHl (γi,i′)×
∏

γii′∈EN

PHl−1(γi,i′)×
∏

γi,i′∈I
PHl (γi,i′)×

∏
γii′∈I

PHl−1(γi,i′).

Definition 4.7. We say AX(λ) is injective modulo polynomials of order l (short i.m.p) for l ∈ N
on CX if and only if any solution wX that solves problem (T ) on the domain CX with a right hand side
in ΥHl (CX) belongs to the space PHl (CX).

Remark 4.8. If the operator is injective modulo polynomials then every solution of the transmission
problem (T ) with polynomial data is itself polynomial.

In order to answer the question on injectivity modulo polynomials in practice, a characterization of wX
is necessary.

Proposition 4.9. Let wX be a solution of the transmission problem (T ) with polynomial data from
ΥHl (CX) with l > 0. Then the restriction to one subdomain Ωi looks like (we suppress the index i for
better readability)

wX,l(r, θ) = PX,l(r, θ) +
∑

λX,j=l

cX,j r
l(ln(r)sX,j(θ) + θ∂θsX,j(θ)) (4.1)

where PX,l is a polynomial of degree l.

For the proof, we refer the reader to [26, Theorem 3.10] where the result extends to l ≥ 0. Note
that general elliptic equations lead to higher powers of ln(r) due to the presence of more associated
eigenfunctions (see [27, Lemma 7.1]).

A discussion of injectivity modulo polynomials for elliptic boundary value problems can be found in [5].
Under the assumption of injective modulo polynomials we have

12



Theorem 4.10. Assume that AX(λ) is i.m.p. of order 1 for all X ∈ V and the line {<(λ) = 1} contains
no eigenvalue of A(λ) except possibly at λ = 1. Then under Assumption 3.4, there exists a solution y to
(T ) that satisfies the expansion

y = y0 +
∑
X∈V

∑
j

cX,j ηX rλX,j sX,j(θ)

where y0 ∈ L2(Ω) and y0,i ∈ H2(Ωi), cX,j ∈ R, sX,j ∈ H2(]0,
∑
i ωX,i[) and ηX is a smooth cut-off

function.

Proof. The proof is the same as [27, Theorem. 7.4] where we set k = 0, m = 1, p = 2 to cover the
situation considered here. We only point out some important steps. The fact u ∈ H1/2(Γi) allows to
construct a lift function v ∈ V 2,2

0 (Ω) that exactly fulfills the transmission conditions [27, Lemma 4.3]. A
unique solution and its expansion with a regular part in the weighted Sobolev space V 0,p

0 (Ω) follows from
[27, Corollary 4.4]. The result for p = 2 is then obtained by an interpolation argument which exploits
the property of injectivity modulo polynomials of order 1.

Corollary 4.11. Suppose that the coefficients κi are distributed in a quasi-monotone way and that the
domain is i.m.p of order 1. Under Assumption 3.4, the solution of (T ) lies in H5/4(Ω).

Proof. Applying Theorem 4.10 gives us an expansion of the solution where the eigenvalues are bound
from below by 1/4 (Theorem 4.4). Just as in the proof of Corollary 4.1, we argue that y ∈ H1+1/4(Ω).

Corollary 4.12. Suppose that there is a δ ∈ (0, 1] such that for each X ∈ V the eigenvalues of AX(λ)
satisfy λX,i > δ. Under Assumption 3.4, the solution y to the transmission problem satisfies

y ∈ H1+δ(Ωi), y ∈ Hmin{1/2−ε,δ}(Ω)

for arbitrary ε > 0 and i = 1, . . . , N .

Proof. The result immediately follows from the expansion in Theorem 4.10 combined with the results
and argumentation of Corollary 4.1.

Let us discuss the concept of injectivity modulo polynomials of order 1 for the transmission problem (T )
with EN = ∅ and some showcase vertices X ∈ V.
Let CX be the cone at an exterior vertex X ∈ V with Dirichlet-Dirichlet boundary conditions where two
materials meet (see Figure 4).

ω1

ω2

X ∈ V
γ1 ∈ ED

γ2 ∈ ED

Figure 4: Dirichlet-Dirichlet problem at a conical point with two materials.
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From (3.16c) we get
dD2 (λ) = κ2 cos(λω2) sin(λω1) + κ1 sin(λω2) cos(λω1).

For ω1 = ω2 it is obvious that λ = 1 is an eigenvalue if sin(ω1) = 0, i.e. ω1 = π/2. We find with (3.15)
that

sX,1 = sin(θ), sX,2 = cos(θ − π/2) = sin(θ)

in (4.1).
Observing that

PX =

{
1
κ1
r cos(θ) θ ∈ (0, π/2)

− 1
κ2
r cos(θ) θ ∈ (π/2, π)

is a polynomial that solves (3.14a)-(3.14e) with polynomial data from ΥH1 (CX), we set

wX,i = PX,i +
r

κi
(ln(r) sin(θ) + θ cos(θ)).

A simple calculation shows that ∆wX = 0. Continuity of wX at θ = π/2 is also fulfilled as well as the
jump in the normal derivative

κ1∂θwX,1 = −r − π/2 = −(r + π/2) = −κ2∂θwX,2.

So wX solves a problem with polynomial data, but is itself non-polynomial. Consequently, the operator
A(λ) is not i.m.p. of order 1 at such a vertex X ∈ V.

The situation is different if 1 is no eigenvalue of AX(λ). Then the sum in (4.1) is empty and Proposition
4.9 yields a unique (polynomial) solution which in turn guarantees i.m.p. of order 1.
This can be also seen in the left diagram of figure 3. There, eigenvalues λ were computed for

κ1 = 0.25, κ2 = 5,

0 < ω1 < π, ω1 + ω2 = π.

According to figure 3, λ = 1 is only an eigenvalue if ω1 = π/2.
As vertices with only one material do not pose a problem due to [5, section 4], the operator A(λ) is i.m.p.
on S1 for the domain shown in figure 5.

γ12 Ω2Ω1

ω1 ω2

Figure 5: A suitably shaped domain to apply Theorem 4.10.

For two materials and an interior vertex, λ = 1 is never an eigenvalue. This can be seen as follows.
Setting J = 2 in (3.14) and inserting the solution candidate from (3.15) yields a system of equation with
the determinant (see also [26, Example 2.30])

d(λ) = (κ1 − κ2)2 sin2(λ(π − ω1)) + (κ1 + κ2)2 sin2(λπ).
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Assume d(1) = 0, then it follows
ω1 = 0 ∨ ω1 = π,

which can also be observed in the right diagram of figure 3. However, these two cases do not allow for an
interior vertex with two materials. Hence, the operator A(λ) is i.m.p on the model domain of Figure 6.

Ω2 Ω1

ω2

ω1

Figure 6: A suitably shaped domain to apply Theorem 4.10.

5 Optimal control problems

We study a linear quadratic optimal control problems with interface control and underlying box con-
straints. The state equation is the transmission problem of (T ) of chapter 3.

The full optimization problem (P ) reads

minimize J(y, u) := 1
2‖ y − yd ‖

2
L2(Ω) + ν

2‖u ‖
2
L2(I)

subject to (T )

−∇(κi∇y) = fi in Ωi,
yi = yj on γi,j ∈ I,

κ∂ni
yi + κj∂nj

yj = u on γi,j ∈ I,
yi = 0 on γi ∈ ED,

κi∂ni
yi = h on γi ∈ EN .

and

ua ≤ u ≤ ub a.e. on I.

(P )

Existence of a solution and first-order necessary conditions can be derived in a standard way [29]. Let
(y∗, u∗) ∈ H1

ΓD
(Ω)× L2(I) denote a solution. Then, there exists q∗ ∈ H1

ΓD
(Ω) satisfying

−∇(κi∇q∗) = y∗ − yd in Ωi,

q∗i = q∗j on γi,j ∈ I,
κ∂ni

q∗i + κj∂nj
q∗j = 0 on γi,j ∈ I,
q∗i = 0 on γi ∈ ED,

κi∂niq
∗
i = 0 on γi ∈ EN

(5.1)

such that

u∗ = PUad

(
−1

ν
q∗
)
∈ H1/2(I) (5.2)

holds. We solve the problem numerically with the boundary concentrated finite element method for
piecewise analytic data ([2, section 3.5]). Moreover, we use the variational discretization concept of
[12] combined with a semi-smooth Newton method (see also [3, 14, 29]). The latter method solves the
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optimality system consisting of the state equation of (P ), adjoint equation (5.1), and the projection
equation (5.2).
In order to to prove a priori error estimates, piecewise analytic data is stipulated for the state equation
and adjoint equation.

Assumption 5.1. Assume that there exists a constant δ ∈ (0, 1] such that fi, yd,i are analytic on Ωi for
i = 1, . . . , N and satisfy

‖ rp+1−δ∇pyd ‖L2(Ω) + ‖ rp+1−δ∇pf ‖L2(Ω) ≤ Cfγfp! ∀p ∈ N0.

Together with the results of section 4 we can derive an a priori error bound for the discrete solution of
(P ).

Theorem 5.2. Let Ω be a 2d-network with N materials and denote by (y∗h, u
∗
h) the discrete approximation

of the solution (y∗, u∗) of (P ). Assume that AX(λ) is i.m.p. of order 1 and satisfies λX,j > δ for all
vertices X ∈ V with δ from Assumption 5.1. Then, the following error bound holds on a geometric mesh
with sufficiently large polynomial slope (see [2])

‖ y∗ − y∗h ‖L2(Ω) +
√
ν‖u∗ − u∗h ‖L2(I) ≤ Chδ. (5.3)

Proof. Let q∗ be the adjoint variable to (y∗, u∗) and q∗h its approximation corresponding to (y∗h, u
∗
h). The

error between the numerical result (y∗h, u
∗
h) and the optimal solution pair (y∗, u∗) can be bounded by the

approximation error of the discretization technique (see [13, Theorem 3.1]).

‖ y∗ − y∗h ‖2L2(Ω) + ν‖u∗ − u∗h ‖2L2(I) ≤ ‖ y
h − y∗ ‖2L2(Ω) +

1

ν
‖ qh − q∗ ‖2L2(I) (5.4)

where yh (respectively qh) denotes the bc-FEM solution the the state (respectively adjoint) equation with
data u∗, (y∗).

The optimality system (5.2) yields u∗ ∈ H1/2(I) because the bounds ua, ub are from H1/2(I) as well. The
same holds true for u∗h since it is variationally discretized and bc-FEM gives rise to conform approximation
space (a subspace of H1

ΓD
(Ω)). Moreover, fi ∈ B2

1−δ(Ω) (Assumption 5.1) implies f ∈ L2(Ωi) which
verifies Assumption 3.4.
Therefore, we can apply Corollary 4.12 and find

y∗i ∈ H1+δ(Ωi).

Assumption 5.1 provides additional regularity for the solution to the state equation (see [15, Theorem
1.4])

y∗i ∈ H1+δ(Ωi) ∩B2
1−δ(Ωi).

The bc-FEM approximation error (see [15, Theorem 2.13] and also [2, section 3.5]) reads

‖ yh − y∗ ‖H1(Ωi) ≤ Ch
δ. (5.5)

An analogous line of reasoning applies to the adjoint variable q∗ ∈ H1+δ(Ωi) ∩ B2
1−δ(Ωi). The refined

approximation result [2, Theorem 3.7]) yields the approximation error

‖ q∗ − qh ‖L2(I) ≤ Chδ+1/2. (5.6)

Plugging the estimates (5.5),(5.6) in (5.4) and adapting the constant C leads to

‖ y∗ − y∗h ‖2L2(Ω) + ν‖u∗ − u∗h ‖2L2(I) ≤ C(h2δ + h2δ+1). (5.7)

Taking the square root concludes the proof.

In the following we apply bc-FEM to two optimal control problems. For the visualization of results, we
used a software library developed at the TU Chemnitz. 1

1http://www-user.tu-chemnitz.de/~pester/graf2d/
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5.1 Linear-quadratic problem

We investigate the theoretical findings for a simple example of problem (P ):

minimize J(y, u) :=
1

2
‖ y − yd ‖2L2(Ω) +

ν

2
‖u ‖2L2(∂Ω1) (5.8a)

subject to the transmission problem (T )

−κi∆yi = fi in Ωi, (5.8b)

yi = yj on ∂Ω1 (5.8c)

κ1∂n1y1 + κ2∂n2y2 = u on ∂Ω1, (5.8d)

y = 0 on ∂Ω2, (5.8e)

where i = 1, 2 and the domain Ω̄ = Ω̄1 ∪ Ω̄2 = [0, 2]2 looks as follows.

Ω1Ω2

x1

x2

0.5 1 1.5 2

0.5

1

1.5

2

Figure 7: The domain Ω for problem (5.7).

The data is chosen as

κ1 = 5, f1 = 10,

κ2 = 0.25, f2 = 10,

with ν = 0.01 and the desired state

yd|Ω1
= 16, yd|Ω2

= 10.

Box constraints are omitted.

A general lower bound δ for the eigenvalues of AX(λ) is obtained by applying Corollary 4.11 (δ = 1/4)
or the refined estimate in Proposition 4.5 (λX,j ≥ 1/2). By numerically evaluating the eigenvalues at the
interior vertices of Ω, we find

λ1 = 0.70114949, λ2 = 1.2988505, λ3 = 2.7011495, . . .

which indicates that, locally, y∗i ∈ H1+λ1−ε(Ωi) (Corollary 4.12). Obviously, the same holds true for the
adjoint variable q∗.
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Because of Theorem 5.2 we expect the following error decay

‖ y∗ − y∗h ‖L2(Ω) +
√
ν‖u∗ − u∗h ‖L2(∂Ω1) . Ch0.7.

We show the errors and convergence rate for the state (respectively adjoint) variable in Table 1 (respec-
tively 2). The experimental order of convergence (EOC) with respect to a given norm is computed by
taking the solution on the finest discretization as reference (see Figure 8,9).
The EOC for the state y in the H1(Ω)-norm is in very good compliance with the theoretical results and
the estimate of δ = λ1 ≈ 0.7. It is still open to prove that the L2(Ω)-error decays like O(h2δ) for bc-FEM,
because the Aubin-Nitsche trick cannot be applied directly.

h ‖y∗h − y∗‖L2(Ω) EOC(y, L2(Ω)) ‖y∗h − y∗‖H1(Ω) EOC(y,H1(Ω))
0.25 3.04 · 10−1 - 5.7 -
0.125 1.04 · 10−1 1.55 3.52 6.94 · 10−1

0.0625 3.85 · 10−2 1.44 2.14 7.19 · 10−1

0.0312 1.41 · 10−2 1.45 1.28 7.44 · 10−1

0.0156 5.14 · 10−3 1.45 7.76 · 10−1 7.2 · 10−1

0.00781 1.87 · 10−3 1.46 4.72 · 10−1 7.16 · 10−1

0.00391 6.73 · 10−4 1.48 2.85 · 10−1 7.3 · 10−1

0.00195 2.28 · 10−4 1.56 1.66 · 10−1 7.76 · 10−1

0.000488 - - - -

Table 1: Numerical results for the state variable y and problem (5.7).

h ‖q∗h − q∗‖L2(∂Ω1) EOC(q, L2(∂Ω1)) ‖q∗h − q∗‖H1(Ω) EOC(q,H1(Ω))
0.25 3.01 · 10−3 - 2.45 -
0.125 1.13 · 10−3 1.42 1.29 9.18 · 10−1

0.0625 4.62 · 10−4 1.29 5.99 · 10−1 1.11
0.0312 2.1 · 10−4 1.14 2.42 · 10−1 1.31
0.0156 9.77 · 10−5 1.1 9.29 · 10−2 1.38
0.00781 4.47 · 10−5 1.13 3.59 · 10−2 1.37
0.00391 1.98 · 10−5 1.18 1.48 · 10−2 1.28
0.00195 8.14 · 10−6 1.28 6.7 · 10−3 1.14
0.000488 - - - -

Table 2: Numerical results for the state variable q and problem (5.7).

The convergence for the adjoint variable q and the H1(Ω) norm is significantly faster, which could be
explained by the fact that the optimal adjoint is close to zero in Ω1 (see Figure 8). The singularities at
the interior vertices, therefore, do not have much impact on the approximation quality. It is proved in [2,
Theorem 3.7] that the error ‖ q∗ − q∗h ‖L2(∂Ω1) decays at best like O(hδ+1/2). This rate can be observed
in Table 2.
Since no control constraints are present, it holds u∗ = − 1

ν q
∗ and u∗h = − 1

ν q
∗
h. Consequently, the observed

rate of convergence of ‖u∗ − u∗h ‖L2(∂Ω1) coincides with that of ‖ q∗ − q∗h ‖L2(∂Ω1).
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   7.9 

   11. 
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   0.0

   q

Figure 8: Optimal state (left) and adjoint (right) for problem (5.7).

Figure 9: The optimal control for problem (5.7).

5.2 Semi-linear control problem with non-local radiation

We will now report about the results when applying the interface concentrated finite element method
to the optimal control of the crystal growth problem. The model domain is shaped like in the previous
example (see Figure 6). In order to comply with the notation of [22], we set Ωg := Ω1 with Γr being the
interface ∂Ω1 where the radiation takes place. The boundary Γ0 := ∂Ω is used for the Neumann control.
Let ∂n be the unit normal vector of Γr that points into the interior of Ωg and ∂n0

the standard outward
unit normal of Γ0.

Let us briefly describe the modeling of the radiation problem. The non-local radiation operator G is
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defined by
Gσ|y|3y = (I −K)(I − (1− ε)K)−1εσ|y|3y

where the two dimensional integral operator K is given by

(Kv)(x) =

∫
Γr

Ξ(x, z)
[n(z) · (x− z)][n(x) · (z − x)]

2|z − x|3
v(z) dsz

with the visibility factor

Ξ(x, z) :=

{
0 if xz ∩ Ωs 6= ∅
1 if xz ∩ Ωs = ∅

The radiation problem (R) reads

minimize J(y, u) := 1
2

∫
Ωg
|∇y − z|2 dx+ ν

2

∫
Γ0
u2 ds

subject to

−∇(κs∇y) = fs in Ωs,
−∇(κg∇y) = fg in Ωg,

κg∂nyg − κs∂nys = Gσ|y|3y on Γr,
κs∂n0

y + εσ|y|3y = εσy4
0 + u on Γ0,

and

ua ≤ u ≤ ub a.e. on Γ0.

(R)

The emissivity constant of the materials is denoted by ε and σ signifies the Stefan-Boltzmann constant.
The Tychonov regularization parameter ν is positive, as well as the two coefficients κg, κs.
More details on the physics behind the model problem and derivation of the state equation can be found
in [16, 17, 18, 22, 23, 24].
In order to apply the existence results of [22] we require

Assumption 5.3. Let f ∈ L2(Ωs), z ∈ L2(Ωg)
2. The bounds ua ≤ ub are assumed to be in L4(Γ0) and

the external temperature y0 ∈ L16(Γ0). Finally, σεy4
0 + u ≥ ξ > 0 a.e. on Γ0.

The last assumption is no restriction since the term represents a temperature, which is naturally greater
than zero. It is required for proving a maximum principle allowing existence results for the linearized
state equations.

Theorem 5.4. [22, Theorem 3.7] Under Assumption 5.3, the state equation of (R) possesses a unique
solution y ∈ H1(Ω) ∩ L4(Γr ∪ Γ0) which satisfies

‖ y ‖L∞(Ω) + ‖ y ‖L∞(Γr∪Γ0) ≤ C(1 + ‖ f ‖L2(Ω) + ‖ y0 ‖4L16(Γ0) + ‖u ‖L4(Γ0)).

The optimal control problem (R) admits a solution which can be characterized by first order necessary
conditions. Introducing an adjoint variable q which solves a linearized version of the state equation, the
optimality conditions take the familiar form u∗ = PUad

(−q∗/ν). This can be proved by adapting the
results of [22, chapter 3.3].
We solved the problem numerically with

κg = 0.08, fg = 0,

κs = 24, fs = 125000,

ua = 241, ub = 20000.

The desired gradient is set to z = (0,−10) and the regularization parameter reads ν = 5 · 10−8. The
emissivity is chosen as ε = 0.8 with the Stefan-Boltzmann constant σ = 5.6696 · 10−8.

20



A numerical evaluation of the eigenvalues of AX(λ) gives

λ1 = 0.66910618, λ2 = 1.3308938, λ3 = 2.6691062.

It is known that the radiation operator G is a bounded linear mapping from Lp(Γr) → Lp(Γr) for
1 ≤ p ≤ ∞ ([22, Lemma 3.1]). However, it is open whether G retains higher regularity and maps
into H1/2(Γr). In the positive case we can apply Corollary 4.12 and achieve higher local regularity
y ∈ H1+λ1−ε(Ωi).
This motivates the discretization with boundary concentrated finite elements. As the problem requires a
fine discretization to get reasonable results, we dispense with showing experimental convergence rates on a
set of nested discretizations. Let us emphasize that the benefit of using bc-FEM is the good approximation
quality with respect to the number of unknowns (see [15]).
Problem (R) is solved with an SQP method where the quadratic subproblems are dealt with by a primal
dual active set strategy. In order to globalize the algorithm, we use a projected gradient method with
Armijo linesearch. For a detailed description regarding the discretization of the non-local radiation
operator, the SQP method and the arising linearized state equations, together with their optimality
systems, see [22].
We used the direct sparse LU-solver Umfpack for the arising system of equations because the regular-
ization parameter ν is chosen very small which leads to ill-conditioned matrices and slow convergence
rates in iterative solvers.

The geometric mesh shown in Figure 11 was additionally h-refined at the four vertices of Γr to get a
better resolution of the adjoint variable, which displays peaks (see Figure 10). This behavior was already
noticed by [22] where the area around the vertices were strongly refined as well.
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Figure 10: Optimal state (left) and adjoint (right) of the radiation problem (R).
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Figure 11: The geometric mesh (left) used for computing the optimal control (right) of the radiation
problem (R).

6 Final remarks

We applied the bc-FEM method to different optimal control problems. In order to incorporate bounds on
the control, we restricted ourselves to interface or boundary controls. Global and local H1+δ-regularity
was discussed for elliptic equations by means of solutions expansions. The numerical results are consistent
with the theory.
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[29] F. Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics, vol.
112, AMS, Providence, RI, 2010.

[30] R. Winkler, Schwache Randwertprobleme von Systemen elliptischen Charakters auf konischen Gebi-
eten, Dissertation, Julius-Maximilians-Universität Würzburg, 2008.

24


